

Axom

Axom is a project in WCI/WSC that is funded by ECP/ATDM.
Its principal goal is to provide a collection of robust and flexible software
components that serve as building blocks for LLNL simulation tools. The
emphasis is on sharing core infrastructure software amongst applications
rather than having different codes develop and maintain similar capabilities.

A key objective of Axom is to facilitate integration of novel,
forward-looking computer science capabilities into LLNL simulation codes.
Thus, a central function of Axom is to enable and simplify data exchange
between applications and tools that Axom provides. To meet these
objectives, developers of Axom components emphasize the following features
in software design and implementation:

	Flexibility to meet the needs of a diverse set of applications

	High-quality, with well designed APIs, good documentation, tested well, high performance, etc.

	Consistency in software engineering practices

	Integrability so that components work well together and are easily adopted by applications

The main drivers of the Axom project are to:

	Provide the CS infrastructure foundation of the ECP/ATDM multi-physics application at LLNL

	Support current ASC and other production applications and as they continue to evolve

	Provide capabilities for LLNL research codes, proxy apps, etc. that simplify technology
transfer from research efforts into production applications

Components

	Inlet: Input deck parsing and information storage/retrieval

	Lumberjack: Scalable parallel message logging and filtering

	Mint: Mesh data model

	Primal: Computational geometry primitives

	Quest: Querying on surface tool

	Sidre: Simulation data repository

	Slam: Set-theoretic lightweight API for meshes

	Slic: Simple Logging Interface Code

	Spin: Spatial indexes

Documentation

	Quickstart Guide

	Source documentation

	Core

	User Guide

	Source documentation

	Inlet

	User Guide

	Source documentation

	Lumberjack

	User Guide

	Source documentation

	Mint

	User Guide

	Source documentation

	Primal

	User Guide

	Source documentation

	Quest

	User Guide

	Source documentation

	Sidre

	User Guide

	Source documentation

	Slam

	User Guide

	Source documentation

	Slic

	User Guide

	Source documentation

	Spin

	User Guide

	Source documentation

Component Level Dependencies

Dependencies between components are as follows:

	Core has no dependencies, and the other components depend on Core

	Slic optionally depends on Lumberjack

	Slam, Spin, Primal, Mint, Quest, and Sidre depend on Slic

	Mint optionally depends on Sidre

	Quest depends on Slam, Spin, Primal, and Mint

	Inlet depends on Sidre, and Slic

The figure below summarizes the dependencies between the components. Solid links
indicate hard dependencies; dashed links indicate optional dependencies.

[image: digraph dependencies { quest -> {slam primal mint spin}; {quest slam primal mint spin} -> {slic core}; mint -> sidre [style="dashed"]; spin -> {slam primal}; sidre -> {slic core}; slic -> core; slic -> lumberjack [style="dashed"]; lumberjack -> core; inlet -> {sidre slic core}; }]

Other Tools Application Developers May Find Useful

Axom developers support other tools that can be used by software
projects independent of the Axom. These include:

	BLT [https://github.com/LLNL/blt]: CMake-based build system developed by the Axom team to simplify CMake usage and development tool integration

	Shroud [https://github.com/LLNL/shroud]: Generator for native C and Fortran APIs from C++ code

	Conduit [https://lc.llnl.gov/confluence/display/CON/Conduit+Home]: Library for describing and managing in-memory data structures

Developer Resources

	Developer Guide

	Coding Guide

Communicating with the Axom Team

Mailing Lists

The project maintains two email lists:

	‘axom-users@llnl.gov’ is how Axom users can contact developers for questions, report issues, etc.

	‘axom-dev@llnl.gov’ is for communication among team members.

Chat Room

We also have a chat room on LLNL’s Microsoft Teams called ‘Axom’. They open to
anyone on the LLNL network. Just log onto Teams and join the room.

Git repository and Issue Tracking

The main interaction hub for Axom is on Github [https://github.com/LLNL/axom]

Axom Copyright and License Information

Please see the Axom License.

Copyright (c) 2017-2020, Lawrence Livermore National Security, LLC.
Produced at the Lawrence Livermore National Laboratory.

LLNL-CODE-741217

Axom Quickstart Guide

This guide provides information to help Axom users and developers get
up and running quickly.

It provides instructions for:

	Obtaining, building and installing third-party libraries on which Axom depends

	Configuring, building and installing the Axom component libraries you want to use

	Compiling and linking an application with Axom

Additional information about Axom can be found on the main
Axom Web Page:

	Build system

	User guides and source code documentation for individual Axom components

	Developer guide, coding guidelines, etc.

	Communicating with the Axom development team (email lists, chat room, etc.)

Contents:

	Zero to Axom: Quick install of Axom and Third Party Dependencies
	Using Axom in Your Project

	The Code
	Getting the Code

	Repository Layout

	Configuration and Building
	Requirements, Dependencies, and Supported Compilers

	Building and Installing Third-party Libraries

	Building and Installing Axom

	Make targets

	Compiling and Linking with an Application

Zero to Axom: Quick install of Axom and Third Party Dependencies

The quickest path to install Axom and its dependencies is via uberenv [https://uberenv.readthedocs.io/en/latest/], a script included in Axom’s repo:

$ git clone --recursive git@github.com:LLNL/axom.git
$ cd axom
$ python scripts/uberenv/uberenv.py --install --prefix="build"

After this completes, build/axom-install will contain an Axom install.

Using Axom in Your Project

The install includes examples that demonstrate how to use Axom
in CMake-based, BLT-based and Makefile-based build systems.

CMake-based build system example

#--
Check for AXOM_DIR and use CMake's find_package to import axom's targets
#--
if(NOT DEFINED AXOM_DIR OR NOT EXISTS ${AXOM_DIR}/lib/cmake/axom-config.cmake)
 message(FATAL_ERROR "Missing required 'AXOM_DIR' variable pointing to an installed axom")
endif()

find_package(axom REQUIRED
 NO_DEFAULT_PATH
 PATHS ${AXOM_DIR}/lib/cmake)

#--
Set up example target that depends on axom
#--
add_executable(example example.cpp)

setup the axom include path
target_include_directories(example PRIVATE ${AXOM_INCLUDE_DIRS})

link to axom targets
target_link_libraries(example axom)
target_link_libraries(example fmt)

See: examples/axom/using-with-cmake

BLT-based build system example

#--
Set up BLT with validity checks
#--

Check that path to BLT is provided and valid
if(NOT DEFINED BLT_SOURCE_DIR OR NOT EXISTS ${BLT_SOURCE_DIR}/SetupBLT.cmake)
 message(FATAL_ERROR "Missing required 'BLT_SOURCE_DIR' variable pointing to a valid blt")
endif()

include(${BLT_SOURCE_DIR}/SetupBLT.cmake)

#--
Check for AXOM_DIR and use CMake's find_package to import axom's targets
#--
if(NOT DEFINED AXOM_DIR OR NOT EXISTS ${AXOM_DIR}/lib/cmake/axom-config.cmake)
 message(FATAL_ERROR "Missing required 'AXOM_DIR' variable pointing to an installed axom")
endif()

find_package(axom REQUIRED
 NO_DEFAULT_PATH
 PATHS ${AXOM_DIR}/lib/cmake)

#--
Set up example target that depends on axom
#--

blt_add_executable(NAME example
 SOURCES example.cpp
 DEPENDS_ON axom fmt)

See: examples/axom/using-with-blt

Makefile-based build system example

INC_FLAGS=-I$(AXOM_DIR)/include/
LINK_FLAGS=-L$(AXOM_DIR)/lib/ -laxom

main:
	$(CXX) $(INC_FLAGS) example.cpp $(LINK_FLAGS) -o example

See: examples/axom/using-with-make

The Code

Our Git repository contains the Axom source code, documentation, test
suites and all files and scripts used for configuring and building the code.
The repository lives in our
Github repository [https://github.com/LLNL/axom].

We use Github [https://github.com/LLNL/axom/issues] for
issue tracking. Please report issues, feature requests, etc. there or send
email to the Axom development team.

Getting the Code

Access to our repository and Atlassian tools requires membership in the LC
group axom. If you’re not in the group, please send email to
‘axom-dev@llnl.gov’ and request to be added.

SSH keys

If you have not used Github before, you should start by creating and adding your SSH keys to Github.
Github provides a good tutorial [https://help.github.com/en/enterprise/2.18/user/github/authenticating-to-github/adding-a-new-ssh-key-to-your-github-account].
Performing these two simple steps will make it easier for you to interact with
our Git repository without having to repeatedly enter login credentials.

Cloning the repo

To clone the repo into your local working space, type the following:

$ git clone --recursive git@github.com:LLNL/axom.git

Important notes:

	You don’t need to remember the URL for the Axom repo above. It can be
found by going to the Axom repo on our Github project and
clicking on the ‘Clone or download’ button that is on the upper right of the Axom Github
page.

	The --recursive argument above is needed to pull in Axom’s submodules.
This includes our data directory, which is used for testing, as well as our
build system called BLT, a standalone product that lives in
its own repository [https://github.com/llnl/blt].
Documentation for BLT can be found here [https://llnl-blt.readthedocs.io/en/latest/].

	If you forget to pass the --recursive argument to the git clone command,
the following commands can be typed after cloning:

$ cd axom
$ git submodule init
$ git submodule update

Repository Layout

If you need to look through the repository, this section explains how it is
organized. If you do not need this information and just want to build the
code, please continue on to the next section.

The top-level Axom directory contains the following directories:

	data

	The optional axom_data submodule is cloned here.

	host-configs

	Detailed configuration information for platforms and compilers we support.

See Host-config files for more information.

	scripts

	Scripts that we maintain to simplify development and usage tasks

	src

	The bulk of the repo contents.

Within the src directory, you will find the following directories:

	axom

	Directories for individual Axom components (see below)

	cmake

	Axom’s build system lives here.

The BLT submodule is cloned into the blt subdirectory.

	docs

	General Axom documentation files

	examples

	Example programs that utilize Axom in their build systems

	thirdparty

	Built-in third party libraries with tests to ensure they are built properly.

In the axom directory, you will find a directory for each of the
Axom components. Although there are dependencies among them, each is
developed and maintained in a largely self-contained fashion. Axom
component dependencies are essentially treated as library dependencies.
Each component directory contains subdirectories for the component header
and implementation files, as well as user documentation, examples and tests.

Axom has the following built-in third party libraries:

	fmt [http://fmtlib.net/latest/index.html]

	BSD-licensed string formatting library

	CLI11 [https://github.com/CLIUtils/CLI11]

	BSD-licenced C++ options parser

	sparsehash [https://github.com/sparsehash/sparsehash]

	BSD-licenced associative containers for C++

Configuration and Building

This section provides information about configuring and building
the Axom software after you have cloned the repository.
The main steps for using Axom are:

	Configure, build, and install third-party libraries (TPLs) on which Axom depends.

	Build and install Axom component libraries that you wish to use.

	Build and link your application with the Axom installation.

Depending on how your team uses Axom, some of these steps, such as
installing the Axom TPLs and Axom itself, may need to be done
only once. These installations can be shared across the team.

Requirements, Dependencies, and Supported Compilers

Basic requirements:

	C++ Compiler

	CMake

	Fortran Compiler (optional)

Compilers we support (listed with minimum supported version):

	Clang 4.0.0

	GCC 4.9.3

	IBM XL 13

	Intel 18

	Microsoft Visual Studio 2015

	Microsoft Visual Studio 2015 with the Intel toolchain

Please see the <axom_src>/scripts/uberenv/spack_configs/*/compilers.yaml
for an up to date list of the supported compilers for each platform.

External Dependencies:

Axom’s dependencies come in two flavors:
Library dependencies contain code that axom must link against,
while tool dependencies are executables that we use as part of our development
process, e.g. to generate documentation and format our code.
Unless otherwise marked, the dependencies are optional.

Library dependencies

	Library

	Dependent Components

	Build system variable

	Conduit [https://llnl-conduit.readthedocs.io/en/latest]

	Sidre (required)

	CONDUIT_DIR

	HDF5 [https://www.hdfgroup.org/solutions/hdf5/]

	Sidre (optional)

	HDF5_DIR

	Lua [https://www.lua.org/]

	Inlet (optional)

	LUA_DIR

	MFEM [https://mfem.org/]

	Quest (optional)

	MFEM_DIR

	RAJA [https://raja.readthedocs.io/en/main/]

	Mint (optional)

	RAJA_DIR

	SCR [https://computation.llnl.gov/projects/scalable-checkpoint-restart-for-mpi]

	Sidre (optional)

	SCR_DIR

	Umpire [https://umpire.readthedocs.io/en/latest/]

	Core (optional)

	UMPIRE_DIR

Each library dependency has a corresponding build system variable
(with the suffix _DIR) to supply the path to the library’s installation directory.
For example, hdf5 has a corresponding variable HDF5_DIR.

Tool dependencies

	Tool

	Purpose

	Build system variable

	clang-format [https://releases.llvm.org/10.0.0/tools/clang/docs/ClangFormat.html]

	Code Style Checks

	CLANGFORMAT_EXECUTABLE

	CppCheck [http://cppcheck.sourceforge.net/]

	Static C/C++ code analysis

	CPPCHECK_EXECUTABLE

	Doxygen [http://www.doxygen.nl/]

	Source Code Docs

	DOXYGEN_EXECUTABLE

	Lcov [http://ltp.sourceforge.net/coverage/lcov.php]

	Code Coverage Reports

	LCOV_EXECUTABLE

	Shroud [https://shroud.readthedocs.io/en/develop/]

	Multi-language binding generation

	SHROUD_EXECUTABLE

	Sphinx [http://www.sphinx-doc.org/en/master/]

	User Docs

	SPHINX_EXECUTABLE

Each tool has a corresponding build system variable (with the suffix _EXECUTABLE)
to supply the tool’s executable path. For example, sphinx has a corresponding build
system variable SPHINX_EXECUTABLE.

Note

To get a full list of all dependencies of Axom’s dependencies in an uberenv
build of our TPLs, please go to the TPL root directory and
run the following spack command ./spack/bin/spack spec uberenv-axom.

Building and Installing Third-party Libraries

We use the Spack Package Manager [https://github.com/spack/spack]
to manage and build TPL dependencies for Axom. The Spack process works on Linux and macOS
systems. Axom does not currently have a tool to automatically build dependencies for
Windows systems.

To make the TPL process easier (you don’t really need to learn much about Spack) and
automatic, we drive it with a python script called uberenv.py, which is located in the
scripts/uberenv directory. Running this script does several things:

	Clones the Spack repo from GitHub and checks out a specific version
that we have tested.

	Configures Spack compiler sets, adds custom package build rules and sets any options
specific to Axom.

	Invokes Spack to build a complete set of TPLs for each configuration and generates a
host-config file that captures all details of the configuration and build
dependencies.

The figure illustrates what the script does.

[image: ../../../_images/Uberenv.jpg]

The uberenv script is run from Axom’s top-level directory like this:

$ python ./scripts/uberenv/uberenv.py --prefix {install path} \
 --spec spec \
 [--mirror {mirror path}]

For more details about uberenv.py and the options it supports,
see the uberenv docs [https://uberenv.readthedocs.io/en/latest/]

You can also see examples of how Spack spec names are passed to uberenv.py
in the python scripts we use to build TPLs for the Axom development team on
LC platforms at LLNL. These scripts are located in the directory
scripts/uberenv/llnl_install_scripts.

Building and Installing Axom

This section provides essential instructions for building the code.

Axom uses BLT [https://github.com/LLNL/blt], a CMake-based system, to
configure and build the code. There are two ways to configure Axom:

	Using a helper script config-build.py

	Directly invoke CMake from the command line.

Either way, we typically pass in many of the configuration options and variables
using platform-specific host-config files.

Host-config files

Host-config files help make Axom’s configuration process more automatic and
reproducible. A host-config file captures all build configuration
information used for the build such as compiler version and options,
paths to all TPLs, etc. When passed to CMake, a host-config file initializes
the CMake cache with the configuration specified in the file.

We noted in the previous section that the uberenv script generates a
‘host-config’ file for each item in the Spack spec list given to it.
These files are generated by spack in the directory where the
TPLs were installed. The name of each file contains information about the
platform and spec.

Python helper script

The easiest way to configure the code for compilation is to use the
config-build.py python script located in Axom’s base directory;
e.g.,:

$./config-build.py -hc {host-config file name}

This script requires that you pass it a host-config file. The script runs
CMake and passes it the host-config.
See Host-config files for more information.

Running the script, as in the example above, will create two directories to
hold the build and install contents for the platform and compiler specified
in the name of the host-config file.

To build the code and install the header files, libraries, and documentation
in the install directory, go into the build directory and run make; e.g.,:

$ cd {build directory}
$ make
$ make install

Caution

When building on LC systems, please don’t compile on login nodes.

Tip

Most make targets can be run in parallel by supplying the ‘-j’ flag
along with the number of threads to use.
E.g. $ make -j8 runs make using 8 threads.

The python helper script accepts other arguments that allow you to specify
explicitly the build and install paths and build type. Following CMake
conventions, we support three build types: ‘Release’, ‘RelWithDebInfo’, and
‘Debug’. To see the script options, run the script without any arguments;
i.e.,:

$./config-build.py

You can also pass extra CMake configuration variables through the script; e.g.,:

$./config-build.py -hc {host-config file name} \
 -DBUILD_SHARED_LIBS=ON \
 -DENABLE_FORTRAN=OFF

This will configure cmake to build shared libraries and disable fortran
for the generated configuration.

Run CMake directly

You can also configure the code by running CMake directly and passing it the
appropriate arguments. For example, to configure, build and install a release
build with the gcc compiler, you could pass a host-config file to CMake:

$ mkdir build-gcc-release
$ cd build-gcc-release
$ cmake -C {host config file for gcc compiler} \
 -DCMAKE_BUILD_TYPE=Release \
 -DCMAKE_INSTALL_PREFIX=../install-gcc-release \
 ../src/
$ make
$ make install

Alternatively, you could forego the host-config file entirely and pass all the
arguments you need, including paths to third-party libraries,
directly to CMake; for example:

$ mkdir build-gcc-release
$ cd build-gcc-release
$ cmake -DCMAKE_C_COMPILER={path to gcc compiler} \
 -DCMAKE_CXX_COMPILER={path to g++ compiler} \
 -DCMAKE_BUILD_TYPE=Release \
 -DCMAKE_INSTALL_PREFIX=../install-gcc-release \
 -DCONDUIT_DIR={path/to/conduit/install} \
 {many other args} \
 ../src/
$ make
$ make install

CMake configuration options

Here are the key build system options in Axom.

	OPTION

	Default

	Description

	AXOM_ENABLE_ALL_COMPONENTS

	ON

	Enable all components
by default

	AXOM_ENABLE_<FOO>

	ON

	Enables the axom component
named ‘foo’

(e.g. AXOM_ENABLE_SIDRE)
for the sidre component

	AXOM_ENABLE_DOCS

	ON

	Builds documentation

	AXOM_ENABLE_EXAMPLES

	ON

	Builds examples

	AXOM_ENABLE_TESTS

	ON

	Builds unit tests

	BUILD_SHARED_LIBS

	OFF

	Build shared libraries.
Default is Static libraries

	ENABLE_ALL_WARNINGS

	ON

	Enable extra compiler warnings
in all build targets

	ENABLE_BENCHMARKS

	OFF

	Enable google benchmark

	ENABLE_CODECOV

	ON

	Enable code coverage via gcov

	ENABLE_FORTRAN

	ON

	Enable Fortran compiler
support

	ENABLE_MPI

	OFF

	Enable MPI

	ENABLE_OPENMP

	OFF

	Enable OpenMP

	ENABLE_WARNINGS_AS_ERRORS

	OFF

	Compiler warnings treated as
errors.

If AXOM_ENABLE_ALL_COMPONENTS is OFF, you must explicitly enable the desired
components (other than ‘common’, which is always enabled).

See Axom software documentation
for a list of Axom’s components and their dependencies.

Note

To configure the version of the C++ standard, you can supply one of the
following values for BLT_CXX_STD: ‘c++11’ or ‘c++14’.
Axom requires at least ‘c++11’, the default value.

See External Dependencies: for configuration variables to specify paths
to Axom’s dependencies.

Make targets

Our system provides a variety of make targets to build individual Axom
components, documentation, run tests, examples, etc. After running CMake
(using either the python helper script or directly), you can see a listing of
all available targets by passing ‘help’ to make; i.e.,:

$ make help

The name of each target should be sufficiently descriptive to indicate
what the target does. For example, to run all tests and make sure the
Axom components are built properly, execute the following command:

$ make test

Compiling and Linking with an Application

Please see Using Axom in Your Project for examples of how to use Axom in your project.

Axom Core User Guide

The Axom Core library provides fundamental data structures and operations used
throughout the rest of Axom. Different compilers and platforms support these
essential building blocks in various ways; the Core library provides a uniform
interface.

Axom Core contains numeric limits and a matrix representation with operators in
the axom::numerics namespace. It contains various utilities including a timer
class, lexical comparator class, processAbort() function, and numeric,
filesystem, and string manipulation utilities in the axom::utilities
namespace. Axom Core also contains the axom::Array and axom::StackArray
container classes.

The Core library is used by the rest of Axom, so Core does not use macros from
Axom Slic for output.

API Documentation

Doxygen generated API documentation can be found here: API documentation

Contents

	Core numerics

	Core utilities

	Core containers

Core numerics

The axom::numerics namespace was designed for convenient representation
and use of a mathematical matrix, with accompanying manipulation and
solver routines.

As an example, the following code shows vector operations.

 namespace numerics = axom::numerics;

 // First and second vectors
 double u[] = {4., 1., 0.};
 double v[] = {1., 2., 3.};
 double w[] = {0., 0., 0.};

 std::cout << "Originally, u and v are" << std::endl
 << "u = [" << u[0] << ", " << u[1] << ", " << u[2] << "]" << std::endl
 << "v = [" << v[0] << ", " << v[1] << ", " << v[2] << "]"
 << std::endl;

 // Calculate dot and cross products
 double dotprod = numerics::dot_product(u, v, 3);
 numerics::cross_product(u, v, w);

 std::cout << "The dot product is " << dotprod << " and the cross product is"
 << std::endl
 << "[" << w[0] << ", " << w[1] << ", " << w[2] << "]" << std::endl;

 // Make u orthogonal to v, then normalize v
 numerics::make_orthogonal(u, v, 3);
 numerics::normalize(v, 3);

 std::cout << "Now orthogonal u and normalized v are" << std::endl
 << "u = [" << u[0] << ", " << u[1] << ", " << u[2] << "]" << std::endl
 << "v = [" << v[0] << ", " << v[1] << ", " << v[2] << "]"
 << std::endl;

 // Fill a linear space
 const int lincount = 45;
 double s[lincount];
 numerics::linspace(1., 9., s, lincount);

 // Find the real roots of a cubic equation.
 // (x + 2)(x - 1)(2x - 3) = 0 = 2x^3 - x^2 - 7x + 6 has real roots at
 // x = -2, x = 1, x = 1.5.
 double coeff[] = {6., -7., -1., 2.};
 double roots[3];
 int numRoots;
 int result = numerics::solve_cubic(coeff, roots, numRoots);

 std::cout << "Root-finding returned " << result
 << " (should be 0, success)."
 " Found "
 << numRoots << " roots (should be 3)" << std::endl
 << "at x = " << roots[0] << ", " << roots[1] << ", " << roots[2]
 << " (should be x = -2, 1, 1.5 in arbitrary order)." << std::endl;

This example code shows how to construct a matrix.

 namespace numerics = axom::numerics;

 // Here's a 3X3 matrix of double values, initialized from an array.
 const int nrows = 3;
 const int ncols = 3;
 double val[9] = {0.6, 2.4, 1.1, 2.4, 0.6, -.1, 1.1, -.1, 0.6};
 numerics::Matrix<double> A(nrows, ncols, val, true);

 // We'll make a 3X3 identity matrix.
 // The third argument specifies the value to fill the matrix.
 numerics::Matrix<double> m(nrows, ncols, 0.);
 m.fillDiagonal(1.);

We can add and multiply matrices, vectors, and scalars, find the determinant,
and extract upper and lower triangular matrices.

 std::cout << "Originally, the matrix A = " << std::endl << A << std::endl;

 // Multiply, add matrices
 numerics::Matrix<double> result(nrows, ncols, 0.);
 numerics::matrix_add(A, m, result);
 std::cout << "A + identity matrix = " << std::endl << result << std::endl;
 numerics::matrix_scalar_multiply(m, 2.);
 numerics::matrix_multiply(A, m, result);
 std::cout << "A * 2*(identity matrix) = " << std::endl << result << std::endl;

 double x1[3] = {1., 2., -.5};
 double b1[3];
 std::cout << "Vector x1 = [" << x1[0] << ", " << x1[1] << ", " << x1[2] << "]"
 << std::endl;
 numerics::matrix_vector_multiply(A, x1, b1);
 std::cout << "A * x1 = [" << b1[0] << ", " << b1[1] << ", " << b1[2] << "]"
 << std::endl;

 // Calculate determinant
 std::cout << "Determinant of A = " << numerics::determinant(A) << std::endl;

 // Get lower, upper triangle.
 // By default the diagonal entries are copied from A, but you can get the
 // identity vector main diagonal entries by passing true as the second
 // argument.
 numerics::Matrix<double> ltri = lower_triangular(A);
 numerics::Matrix<double> utri = upper_triangular(A, true);
 std::cout << "A's lower triangle = " << std::endl << ltri << std::endl;
 std::cout << "A's upper triangle (with 1s in the main diagonal) = " << std::endl
 << utri << std::endl;

 // Get a column from the matrix.
 double* col1 = A.getColumn(1);
 std::cout << "A's column 1 is [" << col1[0] << ", " << col1[1] << ", "
 << col1[2] << "]" << std::endl;

We can also extract rows and columns. The preceding example shows how to get
a column. Since the underlying storage layout of Matrix is column-based, retrieving
a row is a little more involved: the call to getRow() retrieves the stride for
accessing row elements p as well the upper bound for element indexes in the row.
The next selection shows how to sum the entries in a row.

 IndexType p = 0;
 IndexType N = 0;
 const T* row = A.getRow(i, p, N);

 T row_sum = 0.0;
 for(IndexType j = 0; j < N; j += p)
 {
 row_sum += utilities::abs(row[j]);
 } // END for all columns

We can use the power method or the Jacobi method to find the eigenvalues and
vectors of a matrix. The power method is a stochastic algorithm, computing many
matrix-vector multiplications to produce approximations of a matrix’s
eigenvalues and vectors. The Jacobi method is also an iterative algorithm, but
it is not stochastic, and tends to converge much more quickly and stably than
other methods. However, the Jacobi method is only applicable to symmetric
matrices. In the following snippet, we show both the power method and the
Jacobi method to demonstrate that they get the same answer.

Note

As of August 2020, the API of eigen_solve is not consistent
with jacobi_eigensolve (eigen_solve takes a double pointer as input
instead of a Matrix and the return codes differ). This is an issue we’re
fixing.

 // Solve for eigenvectors and values using the power method
 // The power method calls rand(), so we need to initialize it with srand().
 std::srand(std::time(0));
 double eigvec[nrows * ncols];
 double eigval[nrows];
 int res = numerics::eigen_solve(A, nrows, eigvec, eigval);
 std::cout << "Tried to find " << nrows
 << " eigenvectors and values from"
 " matrix "
 << std::endl
 << A << std::endl
 << "and the result code was " << res << " (1 = success)."
 << std::endl;
 if(res > 0)
 {
 for(int i = 0; i < nrows; ++i)
 {
 display_eigs(eigvec, eigval, nrows, i);
 }
 }

 // Solve for eigenvectors and values using the Jacobi method.
 numerics::Matrix<double> evecs(nrows, ncols);
 res = numerics::jacobi_eigensolve(A, evecs, eigval);
 std::cout << "Using the Jacobi method, tried to find eigenvectors and "
 "eigenvalues of matrix "
 << std::endl
 << A << std::endl
 << "and the result code was " << res << " ("
 << numerics::JACOBI_EIGENSOLVE_SUCCESS << " = success)."
 << std::endl;
 if(res == numerics::JACOBI_EIGENSOLVE_SUCCESS)
 {
 for(int i = 0; i < nrows; ++i)
 {
 display_eigs(evecs, eigval, i);
 }
 }

We can solve a linear system directly or by using LU decomposition and
back-substitution.

 {
 // Solve a linear system Ax = b
 numerics::Matrix<double> A(nrows, ncols);
 A(0, 0) = 1;
 A(0, 1) = 2;
 A(0, 2) = 4;
 A(1, 0) = 3;
 A(1, 1) = 8;
 A(1, 2) = 14;
 A(2, 0) = 2;
 A(2, 1) = 6;
 A(2, 2) = 13;
 double b[3] = {3., 13., 4.};
 double x[3];

 int rc = numerics::linear_solve(A, b, x);

 std::cout << "Solved for x in the linear system Ax = b," << std::endl
 << "A = " << std::endl
 << A << " and b = [" << b[0] << ", " << b[1] << ", " << b[2]
 << "]." << std::endl
 << "Result code is " << rc << " (0 = success)" << std::endl;
 if(rc == 0)
 {
 std::cout << "Found x = [" << x[0] << ", " << x[1] << ", " << x[2] << "]"
 << std::endl;
 }
 }

 {
 // Solve a linear system Ax = b using LU decomposition and back-substitution
 numerics::Matrix<double> A(nrows, ncols);
 A(0, 0) = 1;
 A(0, 1) = 2;
 A(0, 2) = 4;
 A(1, 0) = 3;
 A(1, 1) = 8;
 A(1, 2) = 14;
 A(2, 0) = 2;
 A(2, 1) = 6;
 A(2, 2) = 13;
 double b[3] = {3., 13., 4.};
 double x[3];
 int pivots[3];

 int rc = numerics::lu_decompose(A, pivots);

 std::cout << "Decomposed to " << std::endl
 << A << " with pivots [" << pivots[0] << ", " << pivots[1] << ", "
 << pivots[2] << "]"
 << " with result " << rc << " (" << numerics::LU_SUCCESS
 << " is success)" << std::endl;

 rc = numerics::lu_solve(A, pivots, b, x);
 if(rc == numerics::LU_SUCCESS)
 {
 std::cout << "Found x = [" << x[0] << ", " << x[1] << ", " << x[2] << "]"
 << std::endl;
 }
 }

Core utilities

The axom::utilities namespace contains basic useful functions. Often these
have started out in another, higher-level library and proven so useful they’re
“promoted” to Axom Core. In some cases, axom::utilities brings functionality
from recent standards of C++ to platforms restricted to older compilers.

Axom can print a self-explanatory message and provide a version string.

 std::cout << "Here is a message telling you about Axom." << std::endl;
 axom::about();

 std::cout << "The version string '" << axom::getVersion()
 << "' is part of the previous message, " << std::endl
 << " and is also available separately." << std::endl;

Here a function showing the usage of string and filesystem facilities available
in Axom Core.

void demoFileSystemAndString(const char* argv0)
{
 using namespace axom::utilities;

 // Get the current directory
 std::string cwd = filesystem::getCWD();

 // Split it on file separator.
#if WIN32
 const char pathsep = '\\';
#else
 const char pathsep = '/';
#endif
 std::vector<std::string> cmp;
 string::split(cmp, cwd, pathsep);

 // Count how many start with "ax" or end with "exe"
 // (we could also use std::count_if)
 int matchcount = 0;
 std::string prefix {"ax"};
 std::string suffix {"exe"};
 const int N = static_cast<int>(cmp.size());
 for(int i = 0; i < N; ++i)
 {
 if(string::startsWith(cmp[i], prefix) || string::endsWith(cmp[i], suffix))
 {
 matchcount += 1;
 }
 }
 std::cout << "Found " << matchcount << " path components starting with "
 << prefix << " or ending with " << suffix << "." << std::endl;

 // Append "hello.txt"
 std::string hellofile =
 filesystem::joinPath(cwd, "hello.txt", std::string {pathsep});

 // Does this exist?
 std::cout << "The file \"hello.txt\" ";
 if(filesystem::pathExists(hellofile))
 {
 std::cout << "exists ";
 }
 else
 {
 std::cout << "DOES NOT exist ";
 }
 std::cout << "in the current working directory." << std::endl;

 // Does argv0 exist?
 if(filesystem::pathExists(argv0))
 {
 std::cout << argv0 << " exists ";
 }
 else
 {
 std::cout << argv0 << " DOES NOT exist ";
 }
 std::cout << "in the current working directory." << std::endl;

 // sleep for a second
 sleep(1);
}

Axom Core also includes a Timer class. Here, we time the preceding
filesystem example snippet.

 axom::utilities::Timer t;

 t.start();

 if(argc == 1)
 {
 std::cerr << "Error: not path given on command line" << std::endl;
 return 1;
 }
 else
 {
 demoFileSystemAndString(argv[0]);
 }

 t.stop();

 std::cout << "The tests took " << t.elapsedTimeInMilliSec() << " ms."
 << std::endl;

There are several other utility functions. Some are numerical functions such as
variations on clamp (ensure a variable is restricted to a given range) and
swap (exchange the values of two variables). There are also functions for
testing values with tolerances, such as isNearlyEqual and
isNearlyEqualRelative. There is also processAbort, to gracefully end an
application. For details on all these, please see the API documentation.

Core containers

Axom Core contains the Array and StackArray classes. Among other things, these
data containers facilitate porting code that uses std::vector to the GPU.

Here’s an example showing how to use Array instead of std::vector.

 // Here is an Array of ints with length three.
 axom::Array<int> a(3);
 std::cout << "Length of a = " << a.size() << std::endl;
 a[0] = 2;
 a[1] = 5;
 a[2] = 11;

 // An Array increases in size if a value is appended.
 a.append(4);
 std::cout << "After appending a value, a's length = " << a.size() << std::endl;

 // You can also insert a value in the middle of the Array.
 // Here we insert value 6 at position 2 and value 1 and position 4.
 showArray(a, "a");
 a.insert(6, 2);
 a.insert(1, 4);
 std::cout << "After inserting two values, ";
 showArray(a, "a");

Applications commonly store tuples of data in a flat array or a std::vector.
The Array class formalizes tuple storage, as shown in the next example.

 // Here is an Array of ints, containing two triples.
 axom::Array<int> b(2, 3);
 // Set tuple 0 to (1, 4, 2).
 b(0, 0) = 1;
 b(0, 1) = 4;
 b(0, 2) = 2;
 // Set tuple 1 to one tuple, (8, 0, -1).
 // The first argument to set() is the buffer to copy into the Array, the
 // second is the number of tuples in the buffer, and the third argument
 // is the first tuple to fill from the buffer.
 int ival[3] = {8, 0, -1};
 b.set(ival, 1, 1);

 showTupleArray(b, "b");

 // Now, insert two tuples, (0, -1, 1), (1, -1, 0), into the Array, directly
 // after tuple 0.
 int jval[6] = {0, -1, 1, 1, -1, 0};
 b.insert(jval, 2, 1);

 showTupleArray(b, "b");

The Array class can use an external memory buffer, with the restriction that
operations that would cause the buffer to resize are not permitted.

 // The internal buffer maintained by an Array is accessible.
 int* pa = a.getData();
 // An Array can be constructed with a pointer to an external buffer.
 // Here's an Array interpreting the memory pointed to by pa as three 2-tuples.
 axom::Array<int> c(pa, 3, 2);

 showTupleArray(c, "c");

 // Since c is an alias to a's internal memory, changes affect both Arrays.
 a(0, 0) = 1;
 c(1, 1) = 9;

 std::cout << "Arrays a and c use the same memory, a's internal buffer."
 << std::endl;
 showArray(a, "a");
 showTupleArray(c, "c");

Similar to std::vector, when using an internal array the Array class can
reserve memory in anticipation of future growth as well as shrink to just the
memory currently in use.

The StackArray class is a work-around for a limitation in the nvcc compiler,
which can’t capture arrays on the stack in device lambdas. More details are in
the API documentation and in the tests.

Inlet User Guide

Note

Inlet, and this guide, is under heavy development.

Inlet, named because it provides a place of entry, is a C++ library that
provides an easy way to read, store, and access input files for computer
simulations in a variety of input languages.

API Documentation

Doxygen generated API documentation can be found here: API documentation

Introduction

Inlet provides an easy and extensible way to handle input files for simulation code.
We provide Lua functionality but any language can be used via an inherited Reader class.
Inlet is used to define the structure of the information expected in your input file.
That data is then read via a Reader class into the Sidre Datastore. You can then verify
that the input file met your criteria and use that information later in your code.

Requirements

	Sidre - Inlet stores all data from the input file in the Sidre DataStore

	(Optional) Lua - Inlet provides a Lua reader class that assists in Lua input files

Contents

	Quick Start
	Defining Schema

	Verification

	Accessing Data

	Generating Documentation

Quick Start

Inlet’s workflow is broken into the four following steps:

	Defining the schema of your input file and reading in the user-provided input file

	Verifying that the user-provided input file is valid

	Accessing the input data in your program

	Optional Generating documentation based on defined schema

Defining Schema

The first step in using Inlet is to define the schema of your input file.
Inlet defines an input file into two basic classes: Tables and Fields. Basically
Fields are individual values and Tables hold groups of Fields and Tables.

Define the schema by using the following functions, on either the main Inlet class, for
global Tables and Fields, or on individual Table instances, for Tables and Fields under that Table:

	Name

	Description

	addTable

	Adds a Table to the input file schema with the given name.

	addBool

	Adds a boolean Field to the global or parent Table with the given name.

	addDouble

	Adds a double Field to the global or parent Table with the given name.

	addInt

	Adds a integer Field to the global or parent Table with the given name.

	addString

	Adds a string Field to the global or parent Table with the given name.

All possible Tables and Fields that are can be found in the input file must be defined
at this step. The value of the Field is read and stored into the Sidre datastore when you call the appropriate
add function. Use the required class member function on the Table and Field class to indicate that
they have to present in the given input file. You can also set a default value to each field via the type-safe
Field::defaultValue() member functions. Doing so will populate the corresponding Fields value
if the specific Field is not present in the input file. The following example shows these concepts:

 // defines a required global field named "dimensions" with a default value of 2
 auto dimField = myInlet->addInt("dimensions")->required(true)->defaultValue(2);

 // defines a required table named vector with an internal field named 'x'
 auto v = myInlet->addTable("vector")->required(true);
 v->addInt("x");

Verification

This step helps ensure that the given input file follows the rules expected by the code. This should
be done after completely defining your schema, which also reads in the values in the input
file. This allows you to access any other part of the user-provided input. These
rules are not verified until you call Inlet::verify(). Doing so will return true/false and
output SLIC warnings to indicate which Field or Table violated which rule.

As shown above, both Tables and Fields can be marked as required. Fields have two additional
basic rules that can be enforced with the following Field class member functions:

	Name

	Description

	validValues

	Indicates the Field can only be set to one of the given values.

	range

	Indicates the Field can only be set to inclusively between two values.

Inlet also provides functionality to write your own custom rules via callable lambda verifiers.
Fields and Tables can both register one lambda each via their registerVerifier() member functions.
The following example adds a custom verifier that simply verifies that the given dimensions field
match the length the given vector:

 v->registerVerifier([&]() -> bool {
 int dim;
 myInlet->get("dimensions", dim);
 int value; // field value doesnt matter just that it is present in input file
 bool x_present = v->hasField("x") && myInlet->get("vector/x", value);
 bool y_present = v->hasField("y") && myInlet->get("vector/y", value);
 bool z_present = v->hasField("z") && myInlet->get("vector/z", value);
 if(dim == 1 && x_present)
 {
 return true;
 }
 else if(dim == 2 && x_present && y_present)
 {
 return true;
 }
 else if(dim == 3 && x_present && y_present && z_present)
 {
 return true;
 }
 return false;
 });

 std::string msg;
 // We expect verification to be unsuccessful since the only Field
 // in vector is x but 2 dimensions are expected
 SLIC_INFO("This should fail due to a missing dimension:");
 myInlet->verify() ? msg = "Verification was successful\n"
 : msg = "Verification was unsuccessful\n";
 SLIC_INFO(msg);

 // Add required dimension to schema
 v->addInt("y");

 // We expect the verification to succeed because vector now contains
 // both x and y to match the 2 dimensions
 SLIC_INFO("After adding the required dimension:");
 myInlet->verify() ? msg = "Verification was successful\n"
 : msg = "Verification was unsuccessful\n";
 SLIC_INFO(msg);

Note

Inlet::getGlobalTable()->registerVerifier() can be used to add a verifier to apply rules
to the Fields at the global level.

Accessing Data

After the input file has been read and verified by the previous steps, you can access the data by name
via Inlet::get() functions. These functions are type-safe, fill the given variable with what is found,
and return a boolean whether the Field was present in the input file or had a default value it could fall
back on. Variables, on the Inlet side, are used in a language-agnostic way and are then converted
to the language-specific version inside of the appropriate Reader. For example, Inlet refers to the
Lua variable vector={x=3} or vector.x as vector/x on all Inlet function calls.

For example, given the previous verificiation example, this access previously read values:

 int dim, x, y;
 bool dim_found, x_found, y_found;

 // Get dimensions if it was present in input file
 dim_found = myInlet->get("dimensions", dim);
 if(dim_found)
 {
 msg = "Dimensions = " + std::to_string(dim) + "\n";
 SLIC_INFO(msg);
 }

 // Get vector information if it was present in input file
 x_found = myInlet->get("vector/x", x);
 y_found = myInlet->get("vector/y", y);
 if(x_found && y_found)
 {
 msg = "Vector = " + std::to_string(x) + "," + std::to_string(y) + "\n";
 SLIC_INFO(msg);
 }

Generating Documentation

We provide a slightly more complex but closer to a real world Inlet usage example of the usage of Inlet.
You can find that example in our repository here [https://github.com/LLNL/axom/blob/develop/src/axom/inlet/examples/document_generation.cpp].

After you create your Inlet class but before you start defining your schema, create a concrete
instantiation of a DocWriter class and register it with your Inlet class.

 auto docWriter =
 std::make_shared<SphinxDocWriter>("example_doc.rst", inlet->sidreGroup());
 inlet->registerDocWriter(docWriter);

Then after you are finishing defining your schema, call writeDoc() on your Inlet class
to write out your documentation to the given file.

inlet->writeDoc();

We provided a basic Sphinx documentation writing class but you may want to customize it to your
own style. The link below shows the example output from the documentation_generation.cpp example:

	Example Output: Input File Options

Example Output: Input File Options

thermal_solver

Table 1 Fields

	Field Name

	Description

	Default Value

	Range/Valid Values

	Required

	order

	thermal solver order

	
	1 to 2147483647

	☑

	timestepper

	thermal solver timestepper

	quasistatic

	quasistatic, forwardeuler, backwardeuler

	☐

mesh

Table 2 Fields

	Field Name

	Description

	Default Value

	Range/Valid Values

	Required

	filename

	file for thermal solver

	
	
	☑

	serial

	serial value

	1

	0 to 2147483647

	☐

	parallel

	
	1

	1 to 2147483647

	☐

u0

Table 3 Fields

	Field Name

	Description

	Default Value

	Range/Valid Values

	Required

	type

	description for u0 type

	constant

	constant, function

	☐

	func

	description for u0 func

	
	
	☑

kappa

Table 4 Fields

	Field Name

	Description

	Default Value

	Range/Valid Values

	Required

	type

	description for kappa type

	
	constant, function

	☑

	constant

	description for kappa constant

	
	
	☑

solver

Description: This is the solver sub-table in the thermal_solver table

Table 5 Fields

	Field Name

	Description

	Default Value

	Range/Valid Values

	Required

	rel_tol

	description for solver rel tol

	0.000001

	0.000e+00 to 1.798e+308

	☐

	abs_tol

	description for solver abs tol

	0.000000

	0.000e+00 to 1.798e+308

	☑

	print_level

	description for solver print level

	0

	0 to 3

	☑

	max_iter

	description for solver max iter

	100

	1 to 2147483647

	☐

	dt

	description for solver dt

	1.000000

	0.000e+00 to 1.798e+308

	☑

	steps

	description for solver steps

	1

	1 to 2147483647

	☑

Lumberjack User Guide

Lumberjack, named because it cuts down logs, is a C++ library that
provides scalable logging while reducing the amount of messages
written out the screen or file system.

API Documentation

Doxygen generated API documentation can be found here: API documentation

Introduction

Lumberjack was created to provide scalable logging with a simple programming
model while allowing developers to customize its behavior. It is named Lumberjack
because it cuts down logs. It uses MPI and a scalable binary tree reduction
scheme to combine duplicate messages and limit output to only the root node.

Requirements

	MPI - MPI is fundamental to Lumberjack and without MPI, Lumberjack is not useful.

Code Guarding

You tell if Axom was built with Lumberjack enabled by using the following
include and compiler define:

#include "axom/config.hpp"
#ifdef AXOM_USE_LUMBERJACK
 // Lumberjack code
#endif

Contents

	Quick Start

	Core Concepts
	Combining

	Communication

	Pushing

	Lumberjack Classes
	Basic

	Combiners

	Communicators

Quick Start

This quick start guide goes over the bare minimum you need to do to get up
and running with Lumberjack. You can find this example in the repository under
Lumberjack’s examples directory.

This example uses the Binary Tree Communicator and queues one unique message and
three similar messages per rank. They are combined and then pushed
fully through the tree.

The following files need to be included for Lumberjack:

Lumberjack specific header
#include "axom/lumberjack.hpp"

MPI and C++
#include <mpi.h>
#include <iostream>

Basic MPI setup and information:

// Initialize MPI and get rank and comm size
MPI_Init(&argc, &argv);

int commRank = -1;
MPI_Comm_rank(MPI_COMM_WORLD, &commRank);
int commSize = -1;
MPI_Comm_size(MPI_COMM_WORLD, &commSize);

Initialize Lumberjack:

// Determine how many ranks we want to individually track per message
int ranksLimit = commSize/2;

// Initialize which lumberjack communicator we want
axom::lumberjack::BinaryTreeCommunicator communicator;
communicator.initialize(MPI_COMM_WORLD, ranksLimit);

// Initialize lumberjack
axom::lumberjack::Lumberjack lj;
lj.initialize(&communicator, ranksLimit);

This queues the individual messages into Lumberjack:

// Queue messages into lumberjack
if (commRank == 0){
 lj.queueMessage("This message will not be combined");
}
else {
 lj.queueMessage("This message will be combined");
 lj.queueMessage("This message will be combined");
 lj.queueMessage("This message will be combined");
}

This is how you fully push all Messages through the Communicator,
which also combines Messages before and after pushing :

// Push messages fully through lumberjack's communicator
lj.pushMessagesFully();

Optionally, you could spread the pushing over the
course of your work by doing the following:

int cycleCount = 0;
int cycleLimit = 10;
for (int i = 0; i < someLoopLength; ++i){
 //
 // Do some work
 //
 lj.queueMessage("This message will combine")
 ++cycleCount;
 if (cycleCount > cycleLimit) {
 // Incrementally push messages through system
 lj.pushMessagesOnce();
 cycleCount = 0;
 }
}

Once you are ready to retrieve your messages, do so by the following:

// Determine if this is an output node
if (lj.isOutputNode()){
 // Get Messages from Lumberjack
 std::vector<axom::lumberjack::Message*> messages = lj.getMessages();
 for(int i=0; i<(int)(messages.size()); ++i){
 // Output a single Message at a time to screen
 std::cout << "(" << messages[i]->stringOfRanks() << ") " << messages[i]->count() <<
 " '" << messages[i]->text() << "'" << std::endl;
 }
 // Clear already outputted Messages from Lumberjack
 lj.clearMessages();
}

Finalize Lumberjack, the Lumberjack Communicator and MPI in the following order to guarantee nothing
goes wrong:

// Finalize lumberjack
lj.finalize();
// Finalize the lumberjack communicator
communicator.finalize();
// Finalize MPI
MPI_Finalize();

Core Concepts

The following are core concepts required to understand how Lumberjack works.

Combining

Combining Messages is how Lumberjack cuts down on the number of Messages output from
your program. It does so by giving the currently held Messages at the current node,
two at a time, to the Combiner classes that are currently registered to Lumberjack
when a Push happens.

Lumberjack only provides one Combiner, the TextEqualityCombiner. You can write your own
Combiners and register them with Lumberjack. The idea is that each Combiner would have
its own criteria for whether a Message should be combined and how to combine that specific
Message with another of the same type.

Combiner’s have two main functions, shouldMessagesBeCombined and combine.

The function shouldMessagesBeCombined, returns True if the pair of messages satisfy the associated criteria. For example in the TextEqualityCombiner,
if the Text strings are exactly equal, it signals they should be combined.

The function combine, takes two Messages and combines them in the way that is specific
to that Combiner class. For example in the TextEqualityCombiner, the only thing
that happens is the second Message’s ranks gets added to the first and the message count
is increased. This is because the text strings were equal. This may not be the case
for all Combiners that you write yourself.

Communication

Communicating Messages between nodes in an intelligent way is how Lumberjack scales
logging Messages. The Communicator
class instance handles the specifics on how the communication is implemented. For
example, it handles where a specific node passes its Messages and which nodes
are allowed to output messages. As of now, there are two implemented Communicators:
BinaryTreeCommunicator and
RootCommunicator.

BinaryTreeCommunicator, as the name implies, utilizes a standard Binary Tree
algorithm to define how the nodes are connected. Children pass their
Messages to their parent and the root node is the only node allowed to output Messages.

RootCommunicator has a very simple communication scheme that does not scale well
but is useful in some cases for its simplicity. All nodes connect directly
to the root node which is also the only node allowed to output Messages.

Pushing

A push has three steps: combining, sending, and receiving Messages. When you queue
a Message into Lumberjack, it is held at the node that generated the Message until
you indicate the Lumberjack to push, either once or fully. If you do not push,
then only the Messages generated at the root node will be outputed.

In a single push, nodes send their currently held Messages to the nodes their are connected
to based on the Communicator’s communcation scheme. For example in the BinaryTreeCommunicator,
children nodes send their Messages to their parent. While the root node only receives Messages.
After a single push, it is not guaranteed that all Messages will be ready to be outputted.

A full push is a number of single pushes until all currently held Messages. The Communicator
tells the Lumberjack class how many single pushes it takes to fully flush the system of
Messages. For example in the BinaryTreeCommunicator, it is the log of the number of nodes.

Lumberjack Classes

Basic

	Lumberjack - Performs all high level functionality for the Lumberjack library.

	Message - Holds all information pertaining to a Message.

Combiners

Handles Message combination and tests whether Message classes should be combined.

	Combiner - Abstract base class that all Combiners must inherit from.

	TextEqualityCombiner - Combines Message classes that have equal Text member variables.

Communicators

Handles all node-to-node Message passing.

	Communicator - Abstract base class that all Communicators must inherit from.

	BinaryTreeCommunicator - Main Communicator that is implemented with a scalable Binary Tree scheme.

	RootCommunicator - non-scalable communication scheme that all nodes connect to the root node. This is given for diagnostic purposes only.

	Lumberjack Class

	Combiner Class

	Communicator Class

	Message Class

Lumberjack Class

The Lumberjack class is where all high-level functionality of the library is done,
such as adding, retrieving, and combining messages and telling the given Communicator
to push Messages through the communication scheme. You can also add and remove
Combiner classes, as well as tell if the current node is supposed to output any messages.

Functions

General

	Name

	Description

	initialize

	Starts up Lumberjack. Must be called before anything else.

	finalize

	Cleans up Lumberjack. Must be called when done with Lumberjack.

	isOutputNode

	Returns whether this node should output messages.

	ranksLimit

	Sets the limit on individually tracked ranks

	ranksLimit

	Gets the limit on individually tracked ranks

Combiners

	Name

	Description

	addCombiner

	Adds a combiner to Lumberjack

	removeCombiner

	Removes a specific combiner from Lumberjack

	clearCombiners

	Removes all currently registered Combiners from Lumberjack

Messages

	Name

	Description

	clearMessages

	Delete all Messages currently held by this node.

	getMessages

	Get all Messages currently held by this node.

	queueMessage

	Adds a Message to Lumberjack

	pushMessagesOnce

	Moves Messages up the communication scheme once

	pushMessagesFully

	Moves all Messages through the communication scheme to the output node.

Combiner Class

The Combiner class is an abstract base class that defines the interface for
all Combiner classes. Concrete instances need to inherit from this class and
implement these functions to be used when Message classes are combined by the
Lumberjack class.

Functions

	Name

	Description

	id

	Returns the unique differentiating identifier for the class instance.

	shouldMessagesBeCombined

	Indicates if two messages should be combined.

	combine

	Combines the second message into the first.

Concrete Instances

TextEqualityCombiner

This Combiner combines the two given Messages if the Message text strings are equal.
It does so by adding the second Message’s ranks to the first Message (if not past
the ranksLimit) and incrementing the Message’s count as well. This is handled by
Message.addRanks().

Note

This is the only Combiner automatically added to Lumberjack for you. You can remove it by calling Lumberjack::removeCombiner(“TextEqualityCombiner”).

Communicator Class

The Communicator class is an abstract base class that defines the interface for
all Communicator classes. Concrete instances need to inherit from this class and
implement these functions to be used when the Lumberjack class does any communication
work.

Functions

	Name

	Description

	initialize

	Starts up the Communicator. Must be called before anything else.

	finalize

	Cleans up the Communicator. Must be called when finished.

	rank

	Returns the rank of the current node.

	ranksLimit

	Getter/Setter for the limit on individually stored ranks.

	numPushesToFlush

	Returns the number of individual pushes to completely flush all Messages.

	push

	Pushes all currently held Messages once up structure.

	isOutputNode

	Returns whether this node should output messages.

Concrete Instances

BinaryTreeCommunicator

Note

This is the recommended Communicator.

This Communicator uses a standard Binary Tree design to scalably pass Messages between nodes.
Rank 0 is the root of the Binary Tree and the only node allowed to output messages. For each single
push, the child nodes send their currently held messages to their parents without waiting to
receive messages themselves. For a full push, this communicator takes the log of nodes to completely flush
all currently held messages to the root node.

RootCommunicator

Note

This Communicator is useful for debugging purposes, but will not scale as well as the recommended BinaryTreeCommunicator.

This Communicator has all nodes directly connecting to the root node which
is rank 0. The root node is the only node allowed to output messages.
Each single push, the child nodes send their currently held messages
to the root. After each push the tree is completely flushed.

Message Class

The Message class holds the information about a single message or multiple messages
that were combined via a Combiner instance.

Information

The Message class contains the following information. All fields have their respective
getters and setters.

	Name

	Description

	text

	Contents of the message

	ranks

	Truncated list of where the message originated

	count

	Total count of how many individual messages occurred

	fileName

	File name that generated the message

	lineNumber

	Line number that generated the message

	level

	Message severity (error, warning, debug, etc.)

	tag

	Tag for showing what part of the code generated the message

Functions

The Message class also contains the following helper functions to ease use of the class.

	Name

	Description

	stringOfRanks

	Returns a string of the ranks

	pack

	Returns a packed version of all the message’s information

	unpack

	Takes a packed message and overwrites all the message’s information

	addRank

	Add a rank to the message to the given limit

	addRanks

	Add ranks to the message to the given limit

Mint User Guide

Mint provides a comprehensive mesh data model and a mesh-aware, fine-grain,
parallel execution model that underpins the development of
computational tools and numerical discretization methods. Thereby, enable
implementations that are born parallel and portable to new and emerging
architectures.

API Documentation

Doxygen generated API documentation can be found here: API documentation

Key Features

	Support for 1D/2D/3D mesh geometry.

	Efficient data structures to represent Particle Mesh,
Structured Mesh and Unstructured Mesh types, including
unstructured meshes with Mixed Cell Type Topology.

	Native support for a variety of commonly employed Cell Types.

	A flexible Mesh Storage Management system, which can optionally
inter-operate with Sidre as the underlying, in-memory, hierarchical
datastore, facilitating the integration across packages.

	Basic support for Finite Elements, consisting of
commonly employed shape functions and quadratures.

	A Mesh-Aware Execution Model, based on the RAJA [https://raja.readthedocs.io/en/main/index.html] programming
model abstraction layer that supports on-node parallelism for mesh-traversals,
enabling the implementation of computational kernels that are born parallel
and portable across different processor architectures.

Requirements

Mint is designed to be light-weight and self-contained.
The only requirement for using Mint is a C++11 compliant compiler.
However, to realize the full spectrum of capabilities, support for
the following third-party libraries is provided:

	RAJA [https://raja.readthedocs.io/en/main/index.html], used for the parallel execution and portability layer.

	Conduit [https://llnl-conduit.readthedocs.io/en/latest/index.html] , for using Sidre as the Mesh Storage Management system.

	Umpire [https://umpire.readthedocs.io/en/develop/], for memory management on next-generation architectures.

For further information on how to build the Axom Toolkit using these
third-party libraries, consult the Axom Quick Start Guide.

About this Guide

This guide discusses the basic concepts and architecture of Mint.

	The Getting Started with Mint section provides a quick introduction
to Mint, designed to illustrate high-level concepts and key capabilities, in
the context of a small working example.

	The Tutorial section provides code snippets that
demonstrate specific topics in a structured and simple format.

	For complete documentation of the interfaces of the various classes and
functions in Mint consult the Mint Doxygen API Documentation.

	Complete examples and code walk-throughs of mini-apps using Mint are
provided in the Examples section.

Additional questions, feature requests or bug reports on Mint can be submitted
by creating a new issue on Github [https://github.com/LLNL/axom/issues]
or by sending e-mail to the Axom Developers mailing list at axom-dev@llnl.gov.

Contents

	Getting Started with Mint
	Prerequisites

	Goals

	Step 1: Add Header Includes

	Step 2: Get a Mesh

	Step 3: Add Fields

	Step 4: Evaluate a Scalar Field

	Step 5: Average to Cell Centers

	Step 6: Output the Mesh in VTK

	Step 7: Run the Example

	Preliminary Concepts

	Mesh Representation
	Topology
	Cells

	Faces

	Nodes

	Connectivity

	Geometry

	Field Data

	Mesh Types
	Structured Mesh
	Curvilinear Mesh

	Rectilinear Mesh

	Uniform Mesh

	Unstructured Mesh
	Single Cell Type Topology

	Mixed Cell Type Topology

	Cell Types

	Add a New Cell Type

	Particle Mesh

	Component Architecture
	The Mesh Base Class

	Mesh Field Data

	Concrete Mesh Classes
	Structured Mesh

	Unstructured Mesh

	Particle Mesh

	Mesh Storage Management
	Native Storage

	External Storage

	Sidre Storage

	Execution Model
	Execution Policy

	Execution Signature

	Finite Elements
	Lagrange Basis
	QUAD: Linear Quadrilateral

	QUAD9: Quadratic Quadrilateral

	TRIANGLE: Linear Triangle

	HEX: Linear Hexahedron

	HEX27: Quadratic Hexahedron

	PYRAMID: Linear Pyramid

	PRISM: Linear Prism/Wedge

	Add a New Lagrange Element

	Isoparametric Mapping

	Quadratures

	Add a New Finite Element Basis

	Tutorial
	Create a Uniform Mesh

	Create a Rectilinear Mesh

	Create a Curvilinear Mesh

	Create an Unstructured Mesh

	Create a Mixed Unstructured Mesh

	Working with Fields
	Add Fields

	Request Fields by Name

	Check Fields

	Remove Fields

	Query Fields

	Using External Storage

	Using Sidre
	Create a new Mesh in Sidre

	Import a Mesh from Sidre

	Node Traversal Functions
	Simple Loop Over Nodes

	Loop with Coordinates

	Loop with IJK Indices

	Cell Traversal Functions
	Simple Loop Over Cells

	Loop with Node IDs

	Loop with Coordinates

	Loop with Face IDs

	Loop with IJK Indices

	Face Traversal Functions
	Simple Loop Over Faces

	Loop with Node IDs

	Loop with Coordinates

	Loop with Cell IDs

	Finite Elements
	Create a Finite Element Object

	Evaluate Shape Functions

	Evaluate the Jacobian

	Forward Isoparametric Map

	Inverse Isoparametric Map

	Output to VTK

	Examples

	FAQ

	Appendix
	Mint Application Code Example

	AXOM_LAMBDA Macro

	Raw Sidre Data

Getting Started with Mint

This section presents a complete code walk-through of an example Mint
application, designed to illustrate some of the key concepts and capabilities
of Mint. The complete Mint Application Code Example, is included in the
Appendix section and is also available in the Axom source
code under src/axom/mint/examples/user_guide/mint_getting_started.cpp.

The example Mint application demonstrates how Mint is used to develop
kernels that are both mesh-agnostic and device-agnostic.

Tip

Mint’s RAJA [https://raja.readthedocs.io/en/main/index.html]-based Execution Model helps facilitate
the implementation of various computational kernels that are both
mesh-agnostic and device-agnostic. Both kernels discussed in
this example do not make any assumptions about the underlying mesh
type or the target execution device, e.g. CPU or GPU. Consequently, the
same implementation can operate on both Structured Mesh and
Unstructured Mesh types and run sequentially or in parallel on all
execution devices supported through RAJA [https://raja.readthedocs.io/en/main/index.html].

Prerequisites

Understanding the discussion and material presented in this section requires:

	Working knowledge of C++ templates and Lambda Expression [https://www.cprogramming.com/c++11/c++11-lambda-closures.html] functions.

	High-level understanding of nested memory hierarchies on heterogeneous
architectures and CUDA Unified Memory [https://devblogs.nvidia.com/unified-memory-cuda-beginners/].

	Basics of the Execution Model (recommended)

Note

Mint does not provide a memory manager. The application must explicitly
specify the desired allocation strategy and memory space to use. This is
facilitated by using Umpire [https://umpire.readthedocs.io/en/develop/] for memory management. Specifically, this
example uses CUDA Unified Memory [https://devblogs.nvidia.com/unified-memory-cuda-beginners/] when compiled with RAJA [https://raja.readthedocs.io/en/main/index.html] and CUDA
enabled by setting the default Umpire [https://umpire.readthedocs.io/en/develop/] allocator in the beginning of the
program as follows:

 // NOTE: use unified memory if we are using CUDA
 const int allocID = axom::execution_space<ExecPolicy>::allocatorID();
 axom::setDefaultAllocator(allocID);

When Umpire [https://umpire.readthedocs.io/en/develop/] , RAJA [https://raja.readthedocs.io/en/main/index.html] and CUDA are not enabled, the code will use the
malloc() internally to allocate memory on the host and all kernels will
be executed on the CPU.

Goals

Completion of the walk-though of this simple code example should only require a
few minutes. Upon completion, the user will be familiar with using Mint to:

	Create and evaluate fields on a mesh

	Use the Node Traversal Functions and Cell Traversal Functions of the
Execution Model to implement kernels that operate on the
mesh and associated fields.

	Plot the mesh and associated fields in VTK for visualization.

Step 1: Add Header Includes

First, the Mint header must be included for the
definition of the various Mint classes and functions. Note, this example also
makes use of Axom’s Matrix class, which is also included by the following:

	1
2
3
4
5

	#include "axom/config.hpp" // compile time definitions
#include "axom/core/execution/execution_space.hpp" // for execution_space traits

#include "axom/mint.hpp" // for mint classes and functions
#include "axom/core/numerics/Matrix.hpp" // for numerics::Matrix

Step 2: Get a Mesh

The example application is designed to operate on either a Structured Mesh
or an Unstructured Mesh. The type of mesh to use is specified by a runtime
option that can be set by the user at the command line. See Step 7: Run the Example for
more details.

To make the code work with both Structured Mesh and Unstructured Mesh
instances the kernels are developed in terms of the The Mesh Base Class,
mint::Mesh.

The pointer to a mint::Mesh object is acquired as follows:

	1
2

	 mint::Mesh* mesh =
 (Arguments.useUnstructured) ? getUnstructuredMesh() : getUniformMesh();

When using a Uniform Mesh, the mesh is constructed by the following:

	1
2
3
4
5
6
7
8

	mint::Mesh* getUniformMesh()
{
 // construct a N x N grid within a domain defined in [-5.0, 5.0]
 const double lo[] = {-5.0, -5.0};
 const double hi[] = {5.0, 5.0};
 mint::Mesh* m = new mint::UniformMesh(lo, hi, Arguments.res, Arguments.res);
 return (m);
}

This creates an \(N \times N\) Uniform Mesh, defined on a
domain given by the interval \(\mathcal{I}:[-5.0,5.0] \times [-5.0,5.0]\),
where \(N=25\), unless specified otherwise by the user at the command line.

When an Unstructured Mesh is used, the code will generate the
Uniform Mesh internally and triangulate it by subdividing each
quadrilateral element into four triangles. See the complete
Mint Application Code Example for details.

See the Tutorial for more details on how to
Create a Uniform Mesh or Create an Unstructured Mesh.

Step 3: Add Fields

Fields are added to the mesh by calling the createField() method
on the mesh object:

	1
2
3
4
5
6
7

	 // add a cell-centered and a node-centered field
 double* phi = mesh->createField<double>("phi", mint::NODE_CENTERED);
 double* hc = mesh->createField<double>("hc", mint::CELL_CENTERED);

 constexpr int NUM_COMPONENTS = 2;
 double* xc =
 mesh->createField<double>("xc", mint::CELL_CENTERED, NUM_COMPONENTS);

	The node-centered field, phi, stores the result, computed in Step 4: Evaluate a Scalar Field

	The cell-centered field, hc, stores the nodal average of phi, computed in Step 5: Average to Cell Centers

	The cell-centered field, xc, stores the cell-centers, computed in Step 5: Average to Cell Centers

Note, the template argument to the createField() method indicates the
underlying field type, e.g. double, int , etc. In this case, all three
fields have a double field type.

The first required argument to the createField() method is a string
corresponding to the name of the field. The second argument, which is also
required, indicates the centering of the field, i.e. node-centered,
cell-centered or face-centered.

A third, optional, argument may be specified to indicate the number of
components of the corresponding field. In this case, the node-centered field,
phi, is a scalar field. However, the cell-centered field, xc,
is a 2D vector quantity, which is specified explicitly by
supplying the third argument in the createField() method invocation.

Note

Absence of the third argument when calling createField() indicates
that the number of components of the field defaults to \(1\) and thereby
the field is assumed to be a scalar quantity.

See the Tutorial for more details on Working with Fields
on a mesh.

Step 4: Evaluate a Scalar Field

The first kernel employs the for_all_nodes() traversal function of the
Execution Model to iterate over the constituent
mesh Nodes and evaluate Himmelblau’s Function [https://en.wikipedia.org/wiki/Himmelblau%27s_function] at each node:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 // loop over the nodes and evaluate Himmelblaus Function
 mint::for_all_nodes<ExecPolicy, xargs::xy>(
 mesh,
 AXOM_LAMBDA(IndexType nodeIdx, double x, double y) {
 const double x_2 = x * x;
 const double y_2 = y * y;
 const double A = x_2 + y - 11.0;
 const double B = x + y_2 - 7.0;

 phi[nodeIdx] = A * A + B * B;
 });

	The arguments to the for_all_nodes() function consists of:

	A pointer to the mesh object, and

	The kernel that defines the per-node operations, encapsulated within a
Lambda Expression [https://www.cprogramming.com/c++11/c++11-lambda-closures.html], using the convenience AXOM_LAMBDA Macro.

	In addition, the for_all_nodes() function has two template arguments:

	ExecPolicy:
The execution policy specifies, where and how the kernel is executed.
It is a required template argument that corresponds to an
Execution Policy defined by the Execution Model.

	xargs::xy:
Indicates that in addition to the index of the node, nodeIdx, the
kernel takes the x and y node coordinates as additional arguments.

Within the body of the kernel, Himmelblau’s Function [https://en.wikipedia.org/wiki/Himmelblau%27s_function] is evaluated using the
supplied x and y node coordinates. The result is stored in the
corresponding field array, phi, which is captured by the
Lambda Expression [https://www.cprogramming.com/c++11/c++11-lambda-closures.html], at the corresponding node location, phi[nodeIdx].

See the Tutorial for more details on using the
Node Traversal Functions of the Execution Model.

Step 5: Average to Cell Centers

The second kernel employs the for_all_cells() traversal function of the
Execution Model to iterate over the constituent mesh
Cells and performs the following:

	computes the corresponding cell centroid, a 2D vector quantity,

	averages the node-centered field, phi, computed in Step 4: Evaluate a Scalar Field, at the
cell center.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

	 // loop over cells and compute cell centers
 mint::for_all_cells<ExecPolicy, xargs::coords>(
 mesh,
 AXOM_LAMBDA(IndexType cellIdx,
 const numerics::Matrix<double>& coords,
 const IndexType* nodeIds) {
 // NOTE: A column vector of the coords matrix corresponds to a nodes coords

 // Sum the cell's nodal coordinates
 double xsum = 0.0;
 double ysum = 0.0;
 double hsum = 0.0;

 const IndexType numNodes = coords.getNumColumns();
 for(IndexType inode = 0; inode < numNodes; ++inode)
 {
 const double* node = coords.getColumn(inode);
 xsum += node[mint::X_COORDINATE];
 ysum += node[mint::Y_COORDINATE];

 hsum += phi[nodeIds[inode]];
 } // END for all cell nodes

 // compute cell centroid by averaging the nodal coordinate sums
 const IndexType offset = cellIdx * NUM_COMPONENTS;
 const double invnnodes = 1.f / static_cast<double>(numNodes);
 xc[offset] = xsum * invnnodes;
 xc[offset + 1] = ysum * invnnodes;

 hc[cellIdx] = hsum * invnnodes;
 });

	Similarly, the arguments to the for_all_cells() function consists of:

	A pointer to the mesh object, and

	The kernel that defines the per-cell operations, encapsulated within a
Lambda Expression [https://www.cprogramming.com/c++11/c++11-lambda-closures.html], using the convenience AXOM_LAMBDA Macro.

	In addition, the for_all_cells() function has two template arguments:

	ExecPolicy:
As with the for_all_nodes() function, the execution policy specifies,
where and how the kernel is executed.

	xargs::coords:
Indicates that in addition to the index of the cell, cellIdx, the
supplied kernel takes two additional arguments:

	coords, a matrix that stores the node coordinates of the cell, and

	nodeIds, an array that stores the IDs of the constituent cell nodes.

The cell node coordinates matrix, defined by axom::numerics::Matrix is
organized such that:

	The number of rows of the matrix corresponds to the cell dimension, and,

	The number of columns of the matrix corresponds to the number of cell nodes.

	The \(ith\) column vector of the matrix stores the coordinates of the
\(ith\) cell node.

In this example, the 2D Uniform Mesh, consists of 2D rectangular cells,
which are defined by \(4\) nodes. Consequently, the supplied node coordinates
matrix to the kernel, coords, will be a \(2 \times 4\) matrix of the
following form:

\[\left(
\begin{array}{ c c c c }
 x_0 & x_1 & x_2 & x_3 \\
 y_0 & y_1 & y_2 & y_3
\end{array}
\right) \]
Within the body of the kernel, the centroid of the cell is calculated by
averaging the node coordinates. The code loops over the columns of the
coords matrix (i.e., the cell nodes) and computes the sum of each
node coordinate in xsum and ysum respectively. Then, the average is
evaluated by multiplying each coordinate sum with \(1/N\), where \(N\)
is the number of nodes of a cell. The result is stored in the corresponding
field array, xc, which is captured by the Lambda Expression [https://www.cprogramming.com/c++11/c++11-lambda-closures.html].

Since, the cell centroid is a 2D vector quantity, each cell entry has an
x-component and y-component. Multi-component fields in Mint are stored using a
2D row-major contiguous memory layout, where, the number of rows corresponds to
the number of cells, and the number of columns correspond to the number of
components of the field. Consequently, the x-component of the centroid of a cell
with ID, cellIdx is stored at xc[cellIIdx * NUM_COMPONENTS] and the
y-component is stored at xc[cellIdx * NUM_COMPONENTS + 1], where
NUM_COMPONENTS=2.

In addition, the node-centered quantity, phi, computed in Step 4: Evaluate a Scalar Field is
averaged and stored at the cell centers. The kernel first sums all the nodal
contributions in hsum and then multiplies by \(1/N\), where \(N\)
is the number of nodes of a cell.

See the Tutorial for more details on using the
Cell Traversal Functions of the Execution Model.

Step 6: Output the Mesh in VTK

Last, the resulting mesh and data can be output in the Legacy VTK File Format [https://vtk.org/Wiki/images/5/51/VTK-File-Formats.pdf],
which can be visualized by a variety of visualization tools, such as VisIt [https://wci.llnl.gov/simulation/computer-codes/visit]
and ParaView [https://www.paraview.org/] as follows:

	1
2
3
4

	 // write the mesh in a VTK file for visualization
 std::string vtkfile =
 (Arguments.useUnstructured) ? "unstructured_mesh.vtk" : "uniform_mesh.vtk";
 mint::write_vtk(mesh, vtkfile);

A VTK file corresponding to the VTK File Format [https://vtk.org/Wiki/images/5/51/VTK-File-Formats.pdf] specification for the mesh
type used will be generated.

Step 7: Run the Example

After building the Axom Toolkit, the basic Mint example may be run
from within the build space directory as follows:

> ./examples/mint_getting_started_ex

By default the example will use a \(25 \times 25\) Uniform Mesh domain
defined on the interval \(\mathcal{I}:[-5.0,5.0] \times [-5.0,5.0]\).
The resulting VTK file is stored in the specified file, uniform_mesh.vtk.
A depiction of the mesh showing a plot of Himmelblau’s Function [https://en.wikipedia.org/wiki/Himmelblau%27s_function] computed
over the constituent Nodes of the mesh is illustrated in
Fig. 1.

[image: Resulting Uniform mesh]
Fig. 1 Plot of Himmelblau’s Function [https://en.wikipedia.org/wiki/Himmelblau%27s_function] computed over the constituent Nodes
of the Uniform Mesh.

The user may choose to use an Unstructured Mesh instead by specifying
the --unstructured option at the command line as follows:

> ./examples/mint_getting_started_ex --unstructured

The code will generate an Unstructured Mesh by triangulating the
Uniform Mesh such that each quadrilateral is subdivided into four triangles.
The resulting unstructured mesh is stored in a VTK file, unstructured_mesh.vtk,
depicted in Fig. 2.

[image: Resulting Unstructured mesh]
Fig. 2 Plot of Himmelblau’s Function [https://en.wikipedia.org/wiki/Himmelblau%27s_function] computed over the constituent Nodes
of the Unstructured Mesh.

By default the resolution of the mesh is set to \(25 \times 25\). A user
may set the desired resolution to use at the command line, using the
--resolution [N] command line option.

For example, the following indicates that a mesh of resolution
\(100 \times 100\) will be used instead when running the example.

> ./examples/mint_getting_started_ex --resolution 100

Note

This example is designed to run:

	In parallel on the GPU when the Axom Toolkit is compiled
with RAJA [https://raja.readthedocs.io/en/main/index.html] and CUDA enabled.

	In parallel on the CPU when the Axom Toolkit is compiled
with RAJA [https://raja.readthedocs.io/en/main/index.html] and OpenMP enabled.

	Sequentially on the CPU, otherwise.

Preliminary Concepts

A mesh (sometimes also called a grid), denoted by \(\mathcal{M}(\Omega)\), provides a discrete
represenation of a geometric domain of interest, \(\Omega\), on which, the
underlying mathematical model is evaluated. The mathematical model
is typically defined by a system of governing Partial Differential Equations
(PDEs) and associated boundary and initial conditions. The solution
to the governing PDE predicts a physical process that occurs and evolves on
\(\Omega\) over time. For example, consider the flow around an aircraft,
turbulence modeling, blast wave propagation over complex terrains, or,
heat transfer in contacting objects, to name a few.
Evolving the mathematical model to predict such a physical process is typically
done numerically, which requires discretizing the governing PDE by a numerical
scheme, such as a Finite Difference (FD), Finite Volume (FV), or, the
Finite Element Method (FEM), chief among them.

[image: Sample Mesh domain]
Fig. 3 Mesh discretization of a geometric domain: (a) Sample geometric domain,
\(\Omega\). (b) Corresponding mesh of the domain,
\(\mathcal{M}(\Omega)\). The nodes and cells of the mesh, depicted in
red, correspond to the discrete locations where the unknown variables of the
governing PDE are stored and evaluated.

Discretization of the governing PDE requires the domain to be approximated
with a mesh. For example, Fig. 3 (a) depicts a geometric
domain, \(\Omega\). The corresponding mesh, \(\mathcal{M}(\Omega)\),
is illustrated in Fig. 3 (b). The mesh approximates
the geometric domain, \(\Omega\), by a finite number of simple geometric
entities, such as nodes and cells, depicted in red in
Fig. 3 (b). These geometric entities comprising the mesh
define the discrete locations, in space and time, at which the unknown variables,
i.e., the degrees of freedom of the governing PDE, are evaluated, by the
numerical scheme being employed.

There are a variety of different Mesh Types one can choose from.
The type of mesh employed depends on the choice of the underlying
numerical discretization scheme. For example, a finite difference scheme
typically requires a Structured Mesh. However, the finite volume and
finite element methods may be implemented for both Structured Mesh and
Unstructured Mesh types. In contrast, meshless or mesh-free methods,
such as Smoothed Particle Hydrodynamics (SPH), discretize the governing PDE
over a set of particles or nodes, using a Particle Mesh
representation.

Mesh Representation

Irrespective of the mesh type, a mesh essentially provides a data structure
that enables efficient storage, management and access of:

	Mesh Geometry information (i.e., nodal coordinates),

	Mesh Topology information (i.e., cell-to-node connectivity, etc.), and

	Field Data stored on a mesh

The underlying, concrete representation of the Geometry and
Topology of a mesh is the key distinguishing characteristic used to
classify a mesh into the different Mesh Types. As a prerequisite to the
proceeding discussion on the taxonomy of the various Mesh Types, this
section provides a high level description of the key constituents of the
Mesh Representation. Namely, the Topology, Geometry and
Field Data comprising a mesh.

Topology

The topology of a mesh, \(\mathcal{M}(\Omega) \in \mathbb{R}^d\), is
defined by the collection of topological entities, e.g. the Cells,
Faces and Nodes, comprising the mesh and the associated
adjacency information that encodes the topological connections between them,
broadly referred to as Connectivity information.
Each topological entity in the mesh is identified by a unique index, as depicted
in the sample Unstructured Mesh shown in
Fig. 4. This provides a convenient way to traverse
and refer to individual entities in the mesh.

[image: Mesh Representation]
Fig. 4 Sample unstructured mesh. Each node, cell and face on the mesh has a unique
index.

In Mint, the three fundamental topological entities comprising a mesh are
(1) Cells, (2) Faces, and (3) Nodes.

Note

The current implementation does not provide first class support for edges and
associated edge data in 3D. However, this is a feature we are planning
to support in future versions of Mint.

Cells

A cell, \(\mathcal{C}_i\), is given by an ordered list of Nodes,
\(\mathcal{C}_i=\{n_0,n_1,...n_k\}\), where each entry,
\(n_j \in \mathcal{C}_i\), corresponds to a
unique node index in the mesh. The order of Nodes defining a cell is
determined according to a prescribed local numbering convention for a
particular cell type. See Fig. 15 and Fig. 16.
All Mint Cell Types follow the CGNS Numbering Conventions [https://cgns.github.io/CGNS_docs_current/sids/conv.html#unstructgrid.].

Faces

Similarly, a face, \(\mathcal{F}_i\), is defined by an ordered list of
Nodes, \(\mathcal{F}_i=\{n_0,n_1,...,n_k\}\). Faces are essentially
Cells whose topological dimension is one less than the dimension of the
Cells they are bound to. See Fig. 5.
Consequently, the constituent faces of a 3D cell are 2D topological entities,
such as triangles or quads, depending on the cell type. The faces of a 2D
cell are 1D topological entities, i.e. segments. Last, the faces of a 1D cell
are 0D topological entities, i.e. Nodes.

Note

In 1D the Faces of a cell are equivalent to the constituent
mesh Nodes, hence, Mint does not explicitly support Faces
in 1D.

[image: Cell Faces]
Fig. 5 Constituent faces of a cell in 2D and 3D respectively. the constituent faces
of a 3D cell are 2D topological entities, such as triangles or quads,
depending on the cell type. The faces of a 2D cell are 1D topological
entities, i.e. segments.

Face Types

A mesh face can be bound to either one or two Cells:

	Faces bound to two Cells, within the same domain, are called
internal faces.

	Faces bound to two Cells, across different domains
(or partitions), are called internal boundary faces. Internal boundary
faces define the communication boundaries where ghost data is exchanged
between domains.

	Faces bound to a single cell are called external boundary faces.
External boundary faces (and/or their consistuent nodes) are typically
associated with a boundary condition.

Face Orientation

As with Cells, the ordering of the constituent nodes of a face is
determined by the cell type. However, by convention, the orientation of a
face is according to an outward pointing face normal, as illustrated in
Fig. 6.

[image: Face Orientation]
Fig. 6 Face Orientation. (a) From the viewpoint of a cell, its constituent faces
are oriented according to an outward facing normal. (b) From the viewpoint
of a face, a face is oriented according to an outward facing normal with
respect to the first cell abutting to the face, denoted by,
\(\mathcal{C}_0\).

From the viewpoint of a cell, \(\mathcal{C}_k\), its constituent faces,
defined in the local node numbering of the cell, are oriented
according to an outward facing normal with respect to the cell,
\(\mathcal{C}_k\). For example, in Fig. 6 (a),
the triangle, \(\mathcal{C}_k\), has three faces that are oriented
according to an outward facing normal and defined using local node numbers
with respect to their cell as follows, \(\mathcal{F}_0=\{0,1\}\),
\(\mathcal{F}_1=\{1,2\}\) and \(\mathcal{F}_2=\{2,0\}\)

As noted earlier, a face can have at most two adjacent Cells,
denoted by \(\mathcal{C}_0\) and \(\mathcal{C}_1\). By convention,
from the viewpoint of a face, \(\mathcal{F}_k\), defined using global node
numbers, the face is oriented according to an outward facing normal with
respect to the cell corresponding to \(\mathcal{C}_0\). As depicted in
Fig. 6 (b), the face denoted by \(\mathcal{F}_k\)
has an outward facing normal with respect to \(\mathcal{C}_0\),
consequently it is defined as follows, \(\mathcal{F}_k=\{1,2\}\).

Note

By convention, \(\mathcal{C}_1\) is set to \(-1\) for
external boundary faces, which are bound to a single cell.

Nodes

The Nodes are zero dimensional topological entities and hence, are the
lowest dimensional constituent entities of a mesh. The Nodes are
associated with the spatial coordinates of the mesh and are used in defining
the topology of the higher dimensional topological entities comprising the mesh,
such as the Cells, Faces, etc., as discussed earlier.
In a sense, the Nodes provide the means to link the Topology
of the mesh to its constituent Geometry and thereby instantiate the mesh
in physical space.

Definition

A mesh node, \(\mathcal{n_i}\), is associated with a point,
\(p_i \in \mathbb{R}^d\) and provides the means to:

	Link the Topology of the mesh to its constituent Geometry

	Support one or more degrees of freedom, evaluated at the given node
location.

Notably, the nodes of a mesh may be more than just the vertices of the mesh.
As discussed in the Preliminary Concepts section, a mesh is a
discretization of a PDE. Recall, the primary purpose of the mesh is to define
the discrete locations, in both space and time, at which the
unknown variables or degrees of freedom of the governing PDE are evaluated.
Depending on the numerical scheme employed and the Cell Types used,
additional mesh Nodes may be located on the constituent cell faces,
edges and in the cell interior.
For example, in the Finite Element Method (FEM), the nodes for the linear
Lagrange Finite Elements, see Fig. 15, are located at the
cell vertices. However, for quadratic Cell Types,
see Fig. 16, the Lagrange \(P^2\) finite element,
for the quadrilateral and hexahedron (in 3D) cells, includes as Nodes,
the cell, face and edge (in 3D) centroids in addition to the cell vertices.
Other higher order finite elements may involve additional nodes for each edge
and face as well as in the interior of the cell.

Connectivity

The topological connections or adjecencies between the Cells,
Faces and Nodes comprising the mesh, give rise to a hierarchical
topological structure, depicted in Fig. 7, that is
broadly referred to as Connectivity information. At the top level, a
mesh consists of one or more Cells, which constitute the highest
dimensional entity comprising the mesh. Each cell is bounded by zero or more
Faces, each of which is bounded by one or more Nodes.

[image: Topological Structure]
Fig. 7 Hierarchical topological structure illustrating the downward and upward
topological connections of the constituent mesh entities supported in Mint.

The topological connections between the constituent entities of the mesh can be
distinguished in (a) downward and (b) upward topological connections, as
illustrated in Fig. 7.

	The downward topological connections encode the connections from
higher dimensional mesh entities to lower dimensional entities,
such as cell-to-node, face-to-node or cell-to-face.

	The upward topological connections, also called reverse connectivities,
encode the connections from lower dimensional mesh entities to higher
dimensional entities, such as face-to-cell.

Two key guiding considerations in the design and implementation of mesh data
structures are storage and computational efficiency. In that respect,
the various Mesh Types offer different advantages and tradeoffs. For
example, the inherent regular topology of a Structured Mesh implicitly
defines the Connectivity information. Consequently, the topological
connections between mesh entities can be efficiently computed on-the-fly.
However, for an Unstructured Mesh, the Connectivity information has
to be extracted and stored explicitly so that it is readily available for
computation.

An Unstructured Mesh representation that explicitly stores all \(0\)
to \(d\) topological entities and associated downward and upward
Connectivity information is said to be a full mesh representation.
Otherwise, it is called a reduced mesh representation. In practice,
it can be prohibitively expensive to store a full mesh representation.
Consequently, most applications keep a reduced mesh representation.

The question that needs to be addressed at this point is what
Connectivity information is generally required. The answer can vary
depending on the application. The type of operations performed on the mesh
impose the requirements for the Connectivity information needed.
The minimum sufficient representation for an Unstructured Mesh is
the cell-to-node Connectivity, since, all additional
Connectivity information can be subsequently computed based on
this information.

In an effort to balance both flexibility and simplicity, Mint, in its simplest
form, employs the minumum sufficient Unstructured Mesh representation,
consisting of the cell-to-node Connectivity. This allows applications
to employ a fairly light-weight mesh representation when possible. However,
for applications that demand additional Connectivity information, Mint
provides methods to compute the needed additional information.

Warning

The present implementation of Mint provides first class support for
cell-to-node, cell-to-face, face-to-cell and face-to-node
Connectivity information for all the Mesh Types.
Support for additional Connectivity information will be added
in future versions based on demand by applications.

Geometry

The Geometry of a mesh is given by a set of Nodes.
Let \(\mathcal{N}=\{n_0, n_1, n_2, ..., n_k\}\) be the finite set of nodes
comprising a mesh, \(\mathcal{M}(\Omega) \in \mathbb{R}^d\), where \(d\)
is the spatial dimension, \(d \in \{1,2,3\}\). Each node,
\(n_i \in \mathcal{N}\), corresponds to a point,
\(p_i \in \mathbb{R}^d\), whose spatial coordinates, i.e. an ordered tuple,
define the physical location of the node in space,
\(n_i \in \mathbb{R}^d\) . The Nodes link the
Geometry of the mesh to its Topology. The Geometry and
Topology of the mesh collectively define the physical shape, size
and location of the mesh in space.

Field Data

The Field Data are used to define various physical quantities over
the constituent mesh entities, i.e. the Cells, Faces and
Nodes of the mesh. Each constituent mesh entity can be associated with
zero or more fields, each of which may correspond to a scalar, vector or
tensor quantity, such as temperature, velocity, pressure, etc.
Essentially, the Field Data are used to define the solution to the
unknown variables of the governing PDE that are evaluated on a given mesh,
as well as, any other auxiliary variables or derived quantities that an
application may need.

Warning

The present implementation of Mint supports Field Data defined on
Cells, Faces and Nodes. Support for storing
Field Data on edges will be added in future versions based on
application demand.

Mesh Types

The underlying, concrete, representation of the constituent Geometry
and Topology of a mesh is the key defining charachteristic
used in classifying a mesh into the different Mesh Types.
The Geometry and Topology of a mesh is specified in one of the
following three representations:

	Implicit Representation: based on mesh metadata

	Explicit Representation: employs explicitly stored information.

	Semi-Implicit Representation: combines mesh metadata and explicitly
stored information.

The possible representation combinations of the constituent Geometry and
Topology comprising a mesh define a taxonomy of Mesh Types
summarized in the table below.

	Mesh Type

	Geometry

	Topology

	Curvilinear Mesh

	explicit

	implicit

	Rectilinear Mesh

	semi-implicit

	implicit

	Uniform Mesh

	implicit

	implicit

	Unstructured Mesh

	explicit

	explicit

	Particle Mesh

	explicit

	implicit

A brief overview of the distinct characteristics of each of the Mesh Types
is provided in the following sections.

Structured Mesh

A Structured Mesh discretization is characterized by its ordered,
regular, Topology. A Structured Mesh divides the computational
domain into Cells that are logically arranged on a regular grid. The
regular grid topology allows for the constituent Nodes, Cells
and Faces of the mesh to be identified using an IJK ordering scheme.

Numbering and Ordering Conventions in a Structured Mesh

The IJK ordering scheme employs indices along each dimension, typically
using the letters i,j,k for the 1st, 2nd and 3rd dimension respectively.
The IJK indices can be thought of as counters. Each index counts the number
of Nodes or Cells along a given dimension. As noted in
the general Mesh Representation section, the constituent entities of
the mesh Topology are associated with a unique index.
Therefore, a convention needs to be established for mapping the IJK indices to
the corresponding unique index and vice-versa.

The general convention and what Mint employs is the following:

	All Nodes and Cells of a Structured Mesh are indexed
first along the I-direction, then along the J-direction and last along
the K-direction.

	Likewise, the Faces of a Structured Mesh are indexed by first
counting the Faces of each of the Cells along the
I-direction (I-Faces), then the J-direction (J-Faces) and
last the K-direction (K-Faces).

One of the important advantages of a Structured Mesh representation is
that the constituent Topology of the mesh is implicit. This enables
a convenient way for computing the Connectivity information
automatically without the need to store this information explicitly. For example,
an interior 2D cell (i.e., not at a boundary) located at \(C=(i,j)\),
will always have four face neighbors given by the following indices:

	\(N_0=(i-1,j)\),

	\(N_1=(i+1,j)\),

	\(N_2=(i,j-1)\) and

	\(N_3=(i,j+1)\)

Notably, the neighboring information follows directly from the IJK ordering
scheme and therefore does not need to be stored explicitly.

In addition to the convenience of having automatic Connectivity, the
IJK ordering of a Structured Mesh offers one other important advantage
over an Unstructured Mesh discretization. The IJK ordering
results in coefficient matrices that are banded. This enables the use of
specialized algebraic solvers that rely on the banded structure of the matrix
that are generally more efficient.

While a Structured Mesh discretization offers several advantages, there
are some notable tradeoffs and considerations. Chief among them,
is the implied restriction imposed by the regular topology of the
Structured Mesh. Namely, the number of Nodes and Cells on
opposite sides must be matching. This requirement makes local refinement
less effective, since grid lines need to span across the entire range along
a given dimension. Moreover, meshing of complex geometries, consisting of
sharp features, is complicated and can lead to degenerate Cells that can be
problematic in the computation. These shortcomings are alleviated to an extent
using a block-structured meshing strategy and/or patch-based AMR, however
the fundamental limitations still persist.

All Structured Mesh types have implicit Topology. However, depending
on the underlying, concrete representation of the consituent mesh
Geometry, a Structured Mesh is distinguished into three
subtypes:

	Curvilinear Mesh,

	Rectilinear Mesh, and,

	Uniform Mesh

The key characteristics of each of theses types is discussed in more detail in
the following sections.

Curvilinear Mesh

The Curvilinear Mesh, shown in Fig. 8, is
logically a regular mesh, however in contrast to the Rectilinear Mesh
and Uniform Mesh, the Nodes of a Curvilinear Mesh are not
placed along the Cartesian grid lines. Instead, the equations of the governing
PDE are transformed from the Cartesian coordinates to a new coordinate system,
called a curvilinear coordinate system. Consequently, the Topology of
a Curvilinear Mesh is implicit, however its Geometry, given
by the constituent Nodes of the mesh, is explicit.

[image: Sample Curvilinear Mesh]
Fig. 8 Sample Curvilinear Mesh example.

The mapping of coordinates to the curvilinear coordinate system
facilitates the use of structured meshes for bodies of arbitrary shape. Note,
the axes defining the curvilinear coordinate system do not need to be straight
lines. They can be curves and align with the contours of a solid body. For this
reason, the resulting Curvilinear Mesh is often called a mapped mesh or
body-fitted mesh.

See the Tutorial for an example that demonstrates how to
Create a Curvilinear Mesh.

Rectilinear Mesh

A Rectilinear Mesh, depicted in Fig. 9,
divides the computational domain into a set of rectangular Cells,
arranged on a regular lattice. However, in contrast to the
Curvilinear Mesh, the Geometry of the mesh is not mapped to a
different coordinate system. Instead, the rows and columns of Nodes
comprising a Rectilinear Mesh are parallel to the axis of the Cartesian
coordinate system. Due to this restriction, the geometric domain and resulting
mesh are always rectangular.

[image: Sample Rectilinear Mesh]
Fig. 9 Sample Rectilinear Mesh example.

The Topology of a Rectilinear Mesh is implicit, however its
constituent Geometry is semi-implicit. Although, the
Nodes are aligned with the Cartesian coordinate axis, the spacing
between adjacent Nodes can vary. This allows a Rectilinear Mesh
to have tighter spacing over regions of interest and be sufficiently coarse in
other parts of the domain. Consequently, the spatial coordinates of the
Nodes along each axis are specified explicitly in a seperate array
for each coordinate axis, i.e. \(x\), \(y\) and \(z\) arrays for
each dimension respectively. Given the IJK index of a node, its corresponding
physical coordinates can be obtained by taking the Cartesian product of the
corresponding coordinate along each coordinate axis. For this reason, the
Rectilinear Mesh is sometimes called a product mesh.

See the Tutorial for an example that demonstrates how to
Create a Rectilinear Mesh.

Uniform Mesh

A Uniform Mesh, depicted in Fig. 10, is the
simplest of all three Structured Mesh types, but also, relatively the most
restrictive of all Mesh Types. As with the Rectilinear Mesh,
a Uniform Mesh divides the computational domain into a set of rectangular
Cells arranged on a regular lattice. However, a Uniform Mesh
imposes the additional restriction that Nodes are uniformly distributed
parallel to each axis. Therefore, in contrast to the Rectilinear Mesh, the
spacing between adjacent Nodes in a Uniform Mesh is constant.

[image: Sample Uniform Mesh]
Fig. 10 Sample Uniform Mesh example.

The inherent constraints of a Uniform Mesh allow for a more compact
representation. Notably, both the Topology and Geometry of a
Uniform Mesh are implicit. Given the origin of the mesh,
\(X_0=(x_0,y_0,z_0)^T\), i.e. the coordinates of the lowest corner of the
rectangular domain, and spacing along each direction, \(H=(h_x,h_y,h_z)^T\),
the spatial coordinates of any point, \(\hat{p}=(p_x,p_y,p_z)^T\),
corresponding to a node with lattice coordinates, \((i,j,k)\), are
computed as follows:

\begin{eqnarray}
 p_x &=& x_0 &+& i &\times& h_x \\
 p_y &=& y_0 &+& j &\times& h_y \\
 p_z &=& z_0 &+& k &\times& h_z \\
\end{eqnarray}
See the Tutorial for an example that demonstrates how to
Create a Uniform Mesh.

Unstructured Mesh

The impetus for an Unstructured Mesh discretization is largely prompted
by the need to model physical phenomena on complex geometries. In relation to
the various Mesh Types, an Unstructured Mesh discretization provides
the most flexibility. Notably, an Unstructured Mesh can accomodate
different Cell Types and does not enforce any constraints or particular
ordering on the constituent Nodes and Cells. This makes an
Unstructured Mesh discretization particularly attractive, especially for
applications that require local adaptive mesh refinement (i.e., local h-refinement)
and deal with complex geometries.

Generally, the advantages of using an Unstructured Mesh come at the cost
of an increase in memory requirements and computational intensity. This is
due to the inherently explicit, Mesh Representation
required for an Unstructured Mesh. Notably, both Topology and
Geometry are represented explicitly thereby increasing the storage
requirements and computational time needed per operation. For example, consider
a stencil operation. For a Structured Mesh, the neighbor indices needed
by the stencil can be automatically computed directly from the IJK ordering,
a relatively fast and local operation. However, to obtain the neighbor indices
in an Unstructured Mesh, the arrays that store the associated
Connectivity information need to be accessed, resulting in additional
load/store operations that are generaly slower.

Depending on the application, the constituent Topology of an
Unstructured Mesh may employ a:

	Single Cell Type Topology, i.e. consisting of Cells of the same type, or,

	Mixed Cell Type Topology, i.e. consisting of Cells of different type, i.e. mixed cell type.

There are subtle differrences in the underlying Mesh Representation that
can result in a more compact and efficient representation when the
Unstructured Mesh employs a Single Cell Type Topology. The following
sections discuss briefly these differences and other key aspects of the
Single Cell Type Topology and Mixed Cell Type Topology representations.
Moreover, the list of natively supported Cell Types that can be used with
an Unstructured Mesh is presented, as well as, the steps necessary to
Add a New Cell Type in Mint.

Note

In an effort to balance both flexibility and simplicity, Mint, in its simplest
form, employs the minumum sufficient Unstructured Mesh
Mesh Representation, consisting of the cell-to-node
Connectivity. This allows applications to employ a fairly
light-weight mesh representation when possible. However, for applications
that demand additional Connectivity information, Mint provides
methods to compute the needed additional information.

Single Cell Type Topology

An Unstructured Mesh with Single Cell Type Topology consists of a
collection of Cells of the same cell type. Any Structured Mesh
can be treated as an Unstructured Mesh with Single Cell Type Topology,
in which case, the resulting Cells would either be segments (in 1D),
quadrilaterals (in 2D) or hexahedrons (in 3D). However, an
Unstructured Mesh can have arbitrary Connectivity and does not
impose any ordering constraints. Moreover, the Cells can also be
triangular (in 2D) or tetrahedral (in 3D). The choice of cell type generally
depends on the application, the physics being modeled, and the numerical
scheme employed. An example tetrahedral Unstructured Mesh of the F-17
blended wing fuselage configuration is shown in
Fig. 11. For this type of complex geometries
it is nearly impossible to obtain a Structured Mesh that is adequate for
computation.

[image: Sample Unstructured Mesh (single shape topology)]
Fig. 11 Sample unstructured tetrahedral mesh of the F-17 blended wing fuselage
configuration.

Mint’s Mesh Representation of an Unstructured Mesh with
Single Cell Type Topology consists of a the cell type specification and the
cell-to-node Connectivity information. The Connectivity information
is specified with a flat array consisting of the node indices that comprise
each cell. Since the constituent mesh Cells are of the same type,
cell-to-node information for a particular cell can be obtained by accessing
the Connectivity array with a constant stride, where the stride
corresponds to the number of Nodes of the cell type being used. This is
equivalent to a 2D row-major array layout where the number of rows corresponds
to the number of Cells in the mesh and the number of columns corresponds
to the stride, i.e. the number of Nodes per cell.

[image: Mesh Representation of the Unstructured Mesh with Single Cell Topology]
Fig. 12 Mesh Representation of an Unstructured Mesh with
Single Cell Type Topology consiting of triangular Cells. Knowing
the cell type enables traversing the cell-to-node Connectivity array
with a constant stride of \(3\), which corresponds to the number of
constituent Nodes of each triangle.

This simple concept is best illustrated with an example.
Fig. 12 depicts a sample Unstructured Mesh with
Single Cell Type Topology consisting of \(N_c=4\) triangular Cells.
Each triangular cell, \(C_i\), is defined by \(||C_i||\) Nodes.
In this case, \(||C_i||=3\).

Note

The number of Nodes of the cell type used to define an
Unstructured Mesh with Single Cell Type Topology,
denoted by \(||C_i||\), corresponds to the constant stride used to
access the flat cell-to-node Connectivity array.

Consequently, the length of the cell-to-node Connectivity array
is then given by \(N_c \times ||C_i||\). The node indices for each of the
cells are stored from left to right. The base offset for a given cell is given
as a multiple of the cell index and the stride. As illustrated in
Fig. 12, the base offset for cell \(C_0\) is
\(0 \times 3 = 0\), the offest for cell \(C_1\) is
\(1 \times 3 = 3\), the offset for cell \(C_2\) is
\(2 \times 3 = 6\) and so on.

Direct Stride Cell Access in a Single Cell Type Topology UnstructuredMesh

In general, the Nodes of a cell, \(C_i\), of an Unstructured Mesh
with Single Cell Type Topology and cell stride \(||C_i||=k\), can be
obtained from a given cell-to-node Connectivity array as follows:

\begin{eqnarray}
 n_0 &=& cell_to_node[i \times k] \\
 n_1 &=& cell_to_node[i \times k + 1] \\
 ... \\
 n_k &=& cell_to_node[i \times k + (k-1)]
\end{eqnarray}

	Cell Type

	Stride

	Topological
Dimension

	Spatial
Dimension

	Quadrilateral

	4

	2

	2,3

	Triangle

	3

	2

	2,3

	Hexahdron

	8

	3

	3

	Tetrahedron

	4

	3

	3

The same procedure follows for any cell type. Thereby, the stride for a mesh
consisting of quadrilaterals is \(4\), the stride for a mesh consisting
of tetrahedrons is \(4\) and the stride for a mesh consisting of
hexahedrons is \(8\). The table above summarizes the possible
Cell Types that can be employed for an Unstructured Mesh with
Single Cell Type Topology, corresponding stride and applicalble topological
and spatial dimension.

See the Tutorial for an example that demonstrates how to
Create an Unstructured Mesh.

Mixed Cell Type Topology

An Unstructured Mesh with Mixed Cell Type Topology provides the most
flexibility relative to the other Mesh Types. Similar to the
Single Cell Type Topology Unstructured Mesh, the constituent
Nodes and Cells of a Mixed Cell Type Topology Unstructured Mesh
can have arbitrary ordering. Both Topology and Geometry are
explicit. However, a Mixed Cell Type Topology Unstructured Mesh may
consist Cells of different cell type. Hence, the cell topology and
cell type is said to be mixed.

Note

The constituent Cells of an Unstructured Mesh with
Mixed Cell Type Topology have a mixed cell type. For this reason,
an Unstructured Mesh with Mixed Cell Type Topology is sometimes also
called a mixed cell mesh or hybrid mesh.

[image: Sample Unstrucrured Mesh (mixed shape topology)]
Fig. 13 Sample Unstructured Mesh with Mixed Cell Type Topology of a Generic
wing/fuselage configuration. The mesh consists of high-aspect ratio prism
cells in the viscous region of the computational domain to accurately capture
the high gradients across the boundary layer and tetrahedra cells for the
inviscid/Euler portion of the mesh.

Several factors need to be taken in to account when selecting
the cell topology of the mesh. The physics being modeled, the PDE
discretization employed and the required simulation fidelity are chief among
them. Different Cell Types can have superior properties for certain
calculations. The continuous demand for increasing fidelity in physics-based
predictive modeling applications has prompted practitioners to employ a
Mixed Cell Type Topology Unstructured Mesh discretization in order to
accurately capture the underlying physical phenomena.

For example, for Navier-Stokes viscous fluid-flow computations, at high
Reynolds numbers, it is imperative to capture the high gradients across the
boundary layer normal to the wall. Typically, high-aspect ratio, anisotropic
triangular prisms or hexahedron Cells are used for discretizing the
viscous region of the computational domain, while isotropic tetrahedron or
hexahedron Cells are used in the inviscid region to solve the Euler
equations. The sample Mixed Cell Type Topology Unstructured Mesh, of a
Generic Wing/Fuselage configuration, depicted in
Fig. 13, consists of triangular prism
Cells for the viscous boundary layer portion of the domain that are
stitched to tetrahedra Cells for the inviscid/Euler portion of the
mesh.

The added flexibility enabled by employing a Mixed Cell Type Topology
Unstructured Mesh imposes additional requirements to the underlying
Mesh Representation. Most notably, compared to the
Single Cell Type Topology Mesh Representation, the cell-to-node
Connectivity array can consist Cells of different cell type,
where each cell can have a different number of Nodes. Consequently, the
simple stride array access indexing scheme, used for
the Single Cell Type Topology Mesh Representation, cannot be employed to
obtain cell-to-node information. For a Mixed Cell Type Topology an
indirect addressing access scheme must be used instead.

[image: Mesh Representation of the Unstructured Mesh with Mixed Cell Topology]
Fig. 14 Mesh Representation of a Mixed Cell Type Topology
Unstructured Mesh with a total of \(N=3\) Cells,
\(2\) triangles and \(1\) quadrilateral. The
Mixed Cell Type Topology representation consists of two additional arrays.
First, the Cell Offsets array, an array of size \(N+1\), where the
first \(N\) entries store the starting position to the flat
cell-to-node Connectivity array for each cell. The last entry of
the Cell Offsets array stores the total length of the Connectivity
array. Second, the Cell Types array , an array of size \(N\),
which stores the cell type of each constituent cell of the mesh.

There are a number of ways to represent a Mixed Cell Type Topology mesh.
In addition to the cell-to-node Connectivity array, Mint’s
Mesh Representation for a Mixed Cell Type Topology Unstructured Mesh
employs two additional arrays. See sample mesh and corresponding
Mesh Representation in Fig. 14.
First, the Cell Offsets array is used to provide indirect addressing to
the cell-to-node information of each constituent mesh cell. Second, the
Cell Types array is used to store the cell type of each cell in the
mesh.

The Cell Offsets is an array of size \(N+1\), where the first
\(N\) entries, corresponding to each cell in the mesh, store the
start index position to the cell-to-node Connectivity array for the
given cell. The last entry of the Cell Offsets array stores the total
length of the Connectivity array. Moreover, the number of constituent
cell Nodes for a given cell can be directly computed by subtracting a
Cell’s start index from the next adjacent entry in the Cell Offsets array.

However, knowing the start index position to the cell-to-node
Connectivity array and number of constituent Nodes for a given
cell is not sufficient to disambiguate and deduce the cell type. For example,
both tetrahedron and quadrilateral Cells are defined by \(4\)
Nodes. The cell type is needed in order to correctly interpret the
Topology of the cell according to the cell’s local numbering.
Consequently, the Cell Types array, whose length is \(N\),
corresponding to the number of cells in the mesh, is used to store the cell
type for each constituent mesh cell.

Indirect Address Cell Access in a Mixed Cell Type Topology UnstructuredMesh

In general, for a given cell, \(C_i\), of a Mixed Cell Type Topology
Unstructured Mesh, the number of Nodes that define the
cell, \(||C_i||\), is given by:

\begin{eqnarray}
 k = ||C_i|| &=& cells_offset[i + 1] - cells_offset[i] \\
\end{eqnarray}
The corresponding cell type is directly obtained from the Cell Types
array:

\begin{eqnarray}
 ctype &=& cell_types[i] \\
\end{eqnarray}
The list of constituent cell Nodes can then obtained from the
cell-to-node Connectivity array as follows:

\begin{eqnarray}

 offset &=& cells_offset[i+1] \\
 k &=& cells_offset[i + 1] - cell_offset[i] \\

 \\

 n_0 &=& cell_to_node[offset] \\
 n_1 &=& cell_to_node[offset + 1] \\
 ... \\
 n_k &=& cell_to_node[offset + (k-1)]
\end{eqnarray}

See the Tutorial for an example that demonstrates how to
Create a Mixed Unstructured Mesh.

Cell Types

Mint currently supports the common Linear Cell Types,
depicted in Fig. 15, as well as, support for
quadratic, quadrilateral and hexahedron Cells, see Fig. 16.

[image: Supported linear cell types.]
Fig. 15 List of supported linear cell types and their respective local node
numbering.

[image: Supported high-order cell types.]
Fig. 16 List of supported quadratic cell types and their respective local node
numbering.

Note

All Mint Cell Types follow the CGNS Numbering Conventions [https://cgns.github.io/CGNS_docs_current/sids/conv.html#unstructgrid.].

Moreover, Mint is designed to be extensible. It is relatively straightforward
to Add a New Cell Type in Mint. Each of the Cell Types in Mint simply
encode the following attributes:

	the cell’s topology, e.g. number of nodes, faces, local node numbering etc.,

	the corresponding VTK type, used for VTK dumps, and,

	the associated blueprint name, conforming to the Blueprint [https://llnl-conduit.readthedocs.io/en/latest/blueprint.html]
conventions, used for storing the mesh in Sidre

Warning

The Blueprint [https://llnl-conduit.readthedocs.io/en/latest/blueprint.html] specification does not currently support the following
cell types:

	Transitional cell types, Pyramid(mint::PYRAMID)
and Prism(mint::PRISM)

	Quadratic cells, the 9-node, quadratic Quadrilateral(mint::QUAD9) and
the 27-node, quadratic Hexahedron(mint::HEX27)

Add a New Cell Type

Warning

This section is under construction.

Particle Mesh

A Particle Mesh, depicted in Fig. 17, discretizes the
computational domain by a set of particles which correspond to the Nodes
at which the solution is evaluated. A Particle Mesh is commonly employed in
the so called particle methods, such as Smoothed Particle Hydrodynamics
(SPH) and Particle-In-Cell (PIC) methods, which are used in a variety
of applications ranging from astrophysics and cosmology simulations to plasma
physics.

There is no special ordering imposed on the particles. Therefore, the particle
coordinates are explicitly specified by nodal coordinates, similar to an
Unstructured Mesh. However, the particles are not connected to form a
control volume, i.e. a filled region of space. Consequently,
a Particle Mesh does not have Faces and any associated
Connectivity information. For this reason, methods that
employ a Particle Mesh discretization are often referred to as
meshless or mesh-free methods.

[image: Sample Particle Mesh]
Fig. 17 Sample Particle Mesh within a box domain.

A Particle Mesh can be thought of as having explicit Geometry,
but, implicit Topology. Mint’s Mesh Representation for a
Particle Mesh, associates the constituent particles with the Nodes
of the mesh. The Nodes of the Particle Mesh can
also be thought of as Cells that are defined by a single node index.
However, since this information can be trivially obtained there is no need to
be stored explicitly.

Note

A Particle Mesh can only store variables at its constituent
particles, i.e. the Nodes of the mesh. Consequently,
a Particle Mesh in Mint can only be associated with node-centered
Field Data.

Component Architecture

This section links the core concepts, presented in the
Mesh Representation and Mesh Types sections, to the underlying
implementation of the Mint mesh data model.
The Component Architecture of Mint’s mesh data model consists of a class
hierarchy that follows directly the taxonomy of Mesh Types discussed
earlier. The constituent classes of the mesh data model are combined
using a mix of class inheritance and composition, as illustrated in
the class diagram depicted in Fig. 18.

[image: Mint Class Hierarchy Diagram]
Fig. 18 Component Architecture of the Mint mesh data model, depicting the
core mesh classes and the inter-relationship between them.
The solid arrows indicate an inheritance relationship, while the dashed
arrows indicate an ownership relationship between two classes.

At the top level, The Mesh Base Class, implemented in mint::Mesh,
stores common mesh attributes and fields. Moreover, it defines a unified
Application Programming Interface (API) for the various Mesh Types. See the
Mint Doxygen API Documentation for a complete specification of
the API. The Concrete Mesh Classes extend The Mesh Base Class
and implement the Mesh Representation for each of the
Mesh Types respectively. The mint::ConnectivityArray and
mint::MeshCoordinates classes, are the two main internal support classes
that underpin the implementation of the Concrete Mesh Classes and facilitate
the representation of the constituent Geometry and Topology
of the mesh.

Note

All Mint classes and functions are encapsulated in the axom::mint
namespace.

The Mesh Base Class

The Mesh Base Class stores common attributes associated with a mesh.
Irrespective of the mesh type, a Mint mesh has two identifiers. The mesh
BlockID and mesh DomainID, which are assigned by domain decomposition.
Notably, the computational domain can consist of one or more blocks, which are
usually defined by the user or application. Each block is then subsequently
partitioned to multiple domains that are distributed across processing units
for parallel computation. For example, a sample block and domain decomposition
is depicted in Fig. 19. Each of the constituent domains is
represented by a corresponding mint::Mesh instance, which in aggregate
define the entire problem domain.

[image: Block and Domain Decomposition.]
Fig. 19 Sample block & domain decomposition of the computational domain.
The computational domain is defined using \(3\) blocks (left). Each block
is further partitioned into two or more domains(right). A mint::Mesh
instance represents one of the constituent domains used to define the
overall problem domain.

Note

A mint::Mesh instance provides the means to store the mesh
BlockID and DomainID respectively. However, Mint does not impose a
numbering or partitioning scheme. Assignment of the BlockID and DomainID
is handled at the application level and by the underlying mesh partitioner
that is being employed.

Moreover, each mint::Mesh instance has associated Mesh Field Data,
represented by the mint::FieldData class. Each of the constituent
topological mesh entities, i.e. the Cells, Faces and Nodes
comprising the mesh, has a handle to a corresponding mint::FieldData
instance. The mint::FieldData object essentialy provides a container to
store and manage a collection of fields, defined over the corresponding mesh
entity.

Warning

Since a Particle Mesh is defined by a set of Nodes, it
can only store Field Data at its constituent Nodes. All
other supported Mesh Types can have Field Data associated with
their constituent Cells, Faces and Nodes.

Mesh Field Data

A mint::FieldData instance typically stores multiple fields.
Each field is represented by an instance of a mint::Field object
and defines a named numerical quantity, such as mass, velocity,
temperature, etc., defined on a given mesh. Moreover, a field can be either
single-component, i.e. a scalar quantity, or, multi-component, e.g.
a vector or tensor quantity. Typically, a field represents some physical
quantity that is being modeled, or, an auxiliary quantity that is needed to
perform a particular calculation.

In addition, each mint::Field instance can be of different data type.
The mint::FieldData object can store different types of fields.
For example, floating point quantities i.e., float or double,
as well as, integral quantities, i.e. int32_t, int64_t, etc. This is
accomplished using a combination of C++ templates and inheritance. The
mint::Field object is an abstract base class that defines a type-agnostic
interface to encapsulate a field. Since mint::Field is an abstract
base class, it is not instantiated directly. Instead, all fields are created by
instantiating a mint::FieldVariable object, a class templated on data type,
that derives from the mint::Field base class. For example, the code snippet
below illustrates how fields of different type can be instantiated.

...

// create a scalar field to store mass as a single precision quantity
mint::Field* mass = new mint::FieldVariable< float >("mass", size);

// create a velocity vector field as a double precision floating point quantity
constexpr int NUM_COMPONENTS = 3;
mint::Field* vel = new mint::FieldVariable< double >("vel", size, NUM_COMPONENTS);

...

Generally, in application code, it is not necessary to create fields using the
mint::FieldVariable class directly. The mint::Mesh object provides
convenience methods for adding, removing and accessing fields on a mesh.
Consult the Tutorial for more details on
Working with Fields on a Mesh.

Concrete Mesh Classes

The Concrete Mesh Classes, extend The Mesh Base Class and implement
the underlying Mesh Representation of the various Mesh Types,
depicted in Fig. 20.

[image: Supported Mesh Types.]
Fig. 20 Depiction of the supported Mesh Types with labels of the corresponding
Mint class used for the underlying Mesh Representation.

Structured Mesh

All Structured Mesh types in Mint can be represented by an instance of
the mint::StructuredMesh class, which derives directly from The Mesh Base Class,
mint::Mesh. The mint::StructuredMesh class is also an abstract base class
that encapsulates the implementation of the implicit, ordered and regular
Topology that is common to all Structured Mesh types. The
distinguishing characteristic of the different Structured Mesh types is
the representation of the constituent Geometry. Mint implements each of
the different Structured Mesh types by a corresponding class, which
derives directly from mint::StructuredMesh and thereby inherit its
implicit Topology representation.

Consequently, support for the Uniform Mesh is implemented in
mint::UniformMesh. The Geometry of a Uniform Mesh is
implicit, given by two attributes, the mesh origin and spacing.
Consequently, the mint::UniformMesh consists of two data members to
store the origin and spacing of the Uniform Mesh and provides
functionality for evaluating the spatial coordinates of a node given its
corresponding IJK lattice coordinates.

Similarly, support for the Rectilinear Mesh is implemented in
mint::RectilinearMesh. The constituent Geometry representation of
the Rectilinear Mesh is semi-implicit. The spatial coordinates
of the Nodes along each axis are specified explicitly while the
coordinates of the interior Nodes are evaluated by taking the
Cartesian product of the corresponding coordinate along each coordinate
axis. The mint::RectilinearMesh consists of seperate arrays to
store the coordinates along each axis for the semi-implicit Geometry
representation of the Rectilinear Mesh.

Support for the Curvilinear Mesh is implemented by the
mint::CurvilinearMesh class. The Curvilinear Mesh requires explicit
representation of its constituent Geometry. The mint::CurvilinearMesh
makes use of the mint::MeshCoordinates class to explicitly represent the
spatial coordinates associated with the constituent Nodes of the mesh.

Unstructured Mesh

Mint’s Unstructured Mesh representation is provided by the
mint::UnstructuredMesh class, which derives directly from the
The Mesh Base Class, mint::Mesh. An Unstructured Mesh has both
explicit Geometry and Topology. As with the
mint::CurvilinearMesh class, the explicit Geometry representation
of the Unstructured Mesh employs the mint::MeshCoordinates. The
constituent Topology is handled by the mint::ConnectivityArray,
which is employed for the representation of all the topological
Connectivity information, i.e. cell-to-node, face-to-node,
face-to-cell, etc.

Note

Upon construction, a mint::UnstructuredMesh instance consists of the
minimum sufficient representation for an Unstructured Mesh comprised
of the cell-to-node Connectivity information.
Applications that require face Connectivity information must
explicitly call the initializeFaceConnectivity() method on the
corresponding Unstructured Mesh object.

Depending on the cell Topology being employed, an Unstructured Mesh
can be classified as either a Single Cell Type Topology Unstructured Mesh
or a Mixed Cell Type Topology Unstructured Mesh. To accomodate these
two different representations, the mint::UnstructuredMesh class, is templated
on CELL_TOPOLOGY. Internally, the template argument is used to indicate
the type of mint::ConnectivityArray to use, i.e. whether,
stride access addressing or indirect addressing is used, for
Single Cell Type Topology and Mixed Cell Type Topology respectively.

Particle Mesh

Support for the Particle Mesh representation is implemented in
mint::ParticleMesh, which derives directly from The Mesh Base Class,
mint::Mesh. A Particle Mesh discretizes the domain by a set
of particles, which correspond to the constituent Nodes of the mesh.
The Nodes of a Particle Mesh can also be thought of as Cells,
however, since this information is trivially obtrained, there is not need
to be stored explicitly, e.g. using a Single Cell Type Topology
Unstructured Mesh representation. Consequently, the Particle Mesh
representation consists of explicit Geometry and implicit
Topology. As with the mint::CurvilinearMesh and
mint::UnstructuredMesh, the explicit Geometry of the
Particle Mesh is represented by employing the mint::MeshCoordinates
as an internal class member.

The following code snippet provides a simple examples illustrating how to
construct and operate on a Particle Mesh.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

	// Copyright (c) 2017-2020, Lawrence Livermore National Security, LLC and
// other Axom Project Developers. See the top-level COPYRIGHT file for details.
//
// SPDX-License-Identifier: (BSD-3-Clause)

/*!
 * \file
 *
 * \brief Illustrates how to construct and use a ParticleMesh to perform
 * operations on a set of particles.
 */

// Axom utilities
#include "axom/core.hpp"
#include "axom/mint.hpp"

// namespace aliases
namespace mint = axom::mint;
namespace utilities = axom::utilities;

//--
int main(int AXOM_NOT_USED(argc), char** AXOM_NOT_USED(argv))
{
 using int64 = axom::IndexType;
 const axom::IndexType NUM_PARTICLES = 100;
 const int DIMENSION = 3;

 const double HI = 10.0;
 const double LO = -10.0;
 const double VLO = 0.0;
 const double VHI = 1.0;

 // STEP 0: create the ParticleMesh
 mint::ParticleMesh particles(DIMENSION, NUM_PARTICLES);

 // STEP 1: Add fields to the Particles
 double* vx = particles.createField<double>("vx", mint::NODE_CENTERED);
 double* vy = particles.createField<double>("vy", mint::NODE_CENTERED);
 double* vz = particles.createField<double>("vz", mint::NODE_CENTERED);
 int64* id = particles.createField<int64>("id", mint::NODE_CENTERED);

 // STEP 2: grab handle to the particle position arrays
 double* px = particles.getCoordinateArray(mint::X_COORDINATE);
 double* py = particles.getCoordinateArray(mint::Y_COORDINATE);
 double* pz = particles.getCoordinateArray(mint::Z_COORDINATE);

 // STEP 3: loop over the particle data
 const int64 numParticles = particles.getNumberOfNodes();
 for(int64 i = 0; i < numParticles; ++i)
 {
 px[i] = utilities::random_real(LO, HI);
 py[i] = utilities::random_real(LO, HI);
 pz[i] = utilities::random_real(LO, HI);

 vx[i] = utilities::random_real(VLO, VHI);
 vy[i] = utilities::random_real(VLO, VHI);
 vz[i] = utilities::random_real(VLO, VHI);

 id[i] = i;

 } // END

 // STEP 4: write the particle mesh in VTK format for visualization
 mint::write_vtk(&particles, "particles.vtk");

 return 0;
}

Mesh Storage Management

Mint provides a flexible Mesh Storage Management system that can
optionally interoperate with Sidre as the underlying, in-memory,
hierarchichal datastore. This enables Mint to natively conform to
Conduit [https://llnl-conduit.readthedocs.io/en/latest/index.html]’s Blueprint [https://llnl-conduit.readthedocs.io/en/latest/blueprint.html] protocol for representing a computational mesh in
memory and thereby, facilitate with the integration across different physics
packages.

Mint’s Mesh Storage Management substrate supports three storage options.
The applicable operations and ownership state of each storage option are
summarized in the table below, followed by a brief description of each option.

	
	Modify

	Reallocate

	Ownership

	Native Storage

	✓

	✓

	Mint

	External Storage

	✓

	
	Application

	Sidre Storage

	✓

	✓

	Sidre

Native Storage

A Mint object using Native Storage owns all memory and associated data.
The data can be modified and the associated memory space can be reallocated
to grow and shrink as needed. However, once the Mint object goes out-of-scope,
all data is deleted and the memory is returned to the system.

See the Tutorial for more information and a set of concrete
examples on how to create a mesh using Native Storage.

External Storage

A Mint object using External Storage has a pointer to a supplied
application buffer. In this case, the data can be modified, but the application
maintains ownership of the underlying memory. Consequently, the memory space
cannot be reallocated and once the Mint object goes out-of-scope, the data is not
deleted. The data remains persistent in the application buffers until it is
deleted by the application.

See the Tutorial for more information on
Using External Storage.

Sidre Storage

A Mint object using Sidre Storage is associated with a Sidre Group
object which has owneship of the mesh data. In this case the data can be
modified and the associated memory can be reallocated to grow and shrink as
needed. However, when the Mint object goes out-of-scope, the data remains
persistent in Sidre.

See the Tutorial for more information and a set of concrete
examples on Using Sidre.

Execution Model

Mint provides a mesh-aware Execution Model,
based on the RAJA [https://raja.readthedocs.io/en/main/index.html] programming model abstraction layer. The
execution model supports on-node fine-grain parallelism for mesh traversals.
Thereby, enable the implementation of computational kernels that are born parallel
and portable across different processor architectures.

Note

To utilize NVIDIA GPUs, using the RAJA [https://raja.readthedocs.io/en/main/index.html] CUDA backend, Axom needs to be
compiled with CUDA support and linked to a CUDA-enabled RAJA [https://raja.readthedocs.io/en/main/index.html] library.
Consult the Axom Quick Start Guide for more information.

The execution model consists of a set of templated functions that accept
two arguments:

	A pointer to a mesh object corresponding to one of the supported
Mesh Types.

	The kernel that defines the operations on the supplied mesh, which is
usually specified by a C++11 Lambda Expression.

Note

Instead of a C++11 Lambda Expression [https://www.cprogramming.com/c++11/c++11-lambda-closures.html] a C++ functor may also be used
to encapsulate a kernel. However, in our experience, using C++11 functors,
usually requires more boiler plate code, which reduces readability and may
potentially have a negative impact on performance.

The Execution Model provides Node Traversal Functions,
Cell Traversal Functions and Face Traversal Functions to iterate and
operate on the constituent Nodes, Cells and Faces of the
mesh respectively. The general form of these functions is shown
in Fig. 21.

[image: Execution Model]
Fig. 21 General form of the constituent templated functions of the
Execution Model

As shown in Fig. 21, the key elements of the functions
that comprise the Execution Model are:

	The Iteration Space: Indicated by the function suffix, used to
specify the mesh entities to traverse and operate upon, e.g. the
Nodes, Cells or Faces of the mesh.

	The Execution Policy: Specified as as the first, required, template
argument to the constituent functions of the Execution Model.
The Execution Policy specifies where and how the kernel is executed.

	The Execution Signature: Specified by a second, optional, template
argument to the constituent functions of the Execution Model.
The Execution Signature specifies the type of arguments supplied to
a given kernel.

	The Kernel: Supplied as an argument to the constituent functions of the
Execution Model. It defines the body of operations
performed on the supplied mesh.

See the Tutorial for code snippets that illustrate how to use
the Node Traversal Functions, Cell Traversal Functions and
Face Traversal Functions of the Execution Model.

Execution Policy

The Execution Policy is specifed as the first template argument and is
required by all of the constituent functions of the
Execution Model. Axom defines a set of high-level execution
spaces, summarized in the table below.

	Execution Policy

	Requirements

	Description

	SEQ_EXEC

	None.

	Sequential execution on
the CPU.

	OMP_EXEC

	RAJA [https://raja.readthedocs.io/en/main/index.html] + OpenMP

	Parallel execution on
the CPU using OpenMP.

	CUDA_EXEC< BLOCKSIZE >

	RAJA [https://raja.readthedocs.io/en/main/index.html] + CUDA +
Umpire [https://umpire.readthedocs.io/en/develop/] (memory management)

	Parallel execution on
CUDA-enabled GPUs.

	CUDA_EXEC< BLOCKSIZE, ASYNC >

	RAJA [https://raja.readthedocs.io/en/main/index.html] + CUDA +
Umpire [https://umpire.readthedocs.io/en/develop/] (memory management)

	Asynchronous parallel
execution on CUDA-enabled GPUs.

Internally, the implementation uses the axom::execution_space traits object
to map each execution space to corresponding RAJA [https://raja.readthedocs.io/en/main/index.html] execution policies and
bind the default memory space for a given execution space. For example, the
default memory space for the axom::CUDA_EXEC execution space is unified
memory, which can be accessed from both the host (CPU) and device (GPU).

Execution Signature

The Execution Signature is specified as the second, optional template
argument to the constituent functions of the Execution Model.
The Execution Signature indicates the list of arguments that are
supplied to the user-specified kernel.

Note

If not specified, the default Execution Signature is set to
mint::xargs::index, which indicates that the supplied kernel takes
a single argument that corresponds to the index of the corresponding
iteration space, i.e, the loop index.

The list of currently available Execution Signature options is based on
commonly employed access patterns found in various mesh processing and numerical
kernels. However, the Execution Model is designed such that it
can be extended to accomodate additional access patterns.

	
	mint::xargs::index

	
	Default Execution Signature to all functions of the
Execution Model

	Indicates that the supplied kernel takes a single argument that corresponds
to the index of the iteration space, i.e. the loop index.

	
	mint::xargs::ij/mint::xargs::ijk

	
	Applicable only with a Structured Mesh.

	Used with Node Traversal Functions (mint::for_all_nodes())
and Cell Traversal Functions (mint::for_all_cells()).

	Indicates that the supplied kernel takes the corresonding \((i,j)\)
or \((i,j,k)\) indices, in 2D or 3D respectively, as additional arguments.

	
	mint::xargs::x/mint::xargs::xy/mint::xargs::xyz

	
	Used with Node Traversal Functions (mint::for_all_nodes()).

	Indicates that the supplied kernel takes the corresponding nodal
coordinates, \(x\) in 1D, \((x,y)\) in 2D and \((x,y,z)\)
in 3D, in addition to the corresponding node index, nodeIdx.

	
	mint::xargs::nodeids

	
	Used with Cell Traversal Functions (mint::for_all_cells())
and Face Traversal Functions (mint::for_all_faces()).

	Indicates that the specified kernel is supplied the constituent node IDs
as an array argument to the kernel.

	
	mint::xargs::coords

	
	Used with Cell Traversal Functions (mint::for_all_cells()).
and Face Traversal Functions (mint::for_all_faces())

	Indicates that the specified kernel is supplied the constituent
node IDs and corresponding coordinates as arguments to the kernel.

	
	mint::xargs::faceids

	
	Used with the Cell Traversal Functions (mint::for_all_cells()).

	Indicates that the specified kernel is supplied an array consisting of
the constituent cell face IDs as an additional argument.

	
	mint::xargs::cellids

	
	Used with the Face Traversal Functions (mint::for_all_faces()).

	Indicates that the specified kernel is supplied the ID of the two abutting
Cells to the given. By conventions, tor external boundary
Faces, that are bound to a single cell, the second cell is set
to \(-1\).

Warning

Calling a traversal function with an unsupported Execution Signature
will result in a compile time error.

Finite Elements

The Finite Element Method (FEM) is a widely used numerical technique, employed
for the solution of partial differential equations (PDEs), arising in
structural engineering analysis and more broadly in the field of
continuum mechanics.

However, due to their generality and mathematically sound foundation,
Finite Elements, are often employed in the implementation of other numerical
schemes and for various computational operators, e.g. interpolation,
integration, etc.

Mint provides basic support for Finite Elements that consists:

	Lagrange Basis shape functions for commonly employed Cell Types

	Corresponding Quadratures (under development)

	Routines for forward/inverse Isoparametric Mapping, and

	Infrastructure to facilitate adding shape functions for
new Cell Types, as well as, to Add a New Finite Element Basis.

This functionality is collectively exposed to the application through the
mint::FiniteElement class. Concrete examples illustrating the usage of the
mint::FiniteElement class within an application code are provided in the
Finite Elements tutorial section.

A Finite Element Basis consists of a family of shape functions
corresponding to different Cell Types. Mint currently supports
Lagrange isoparametric Finite Elements.

Lagrange Basis

The Lagrange basis consists of Cell Types whose shape functions are
formed from products of the one-dimensional Lagrange polynomial. This
section provides a summary of supported Lagrange Basis Cell Types,
their associated shape functions, and summarize the process to
Add a New Lagrange Element.

Note

The shape functions of all Lagrange Cells in Mint, follow the
CGNS Numbering Conventions [https://cgns.github.io/CGNS_docs_current/sids/conv.html#unstructgrid.] and are defined within a reference coordinate
system, on the closed interval \(\hat{\xi} \in [0,1]\).

QUAD: Linear Quadrilateral

[image: Linear Lagrangian Quadrilateral Element]

\begin{array}{r c l c l}
 N_0 &=& (1 - \xi) &\times& (1 - \eta) \\
 N_1 &=& \xi &\times& (1 - \eta) \\
 N_2 &=& \xi &\times& \eta \\
 N_3 &=& (1 - \xi) &\times& \eta \\
\end{array}

QUAD9: Quadratic Quadrilateral

[image: Quadratic Lagrangian Quadrilateral Element]

 \begin{array}{r c l c l}
 N_0 &=& (\xi-1)(2\xi -1) &\times& (\eta-1)(2\eta-1) \\
 N_1 &=& \xi(2\xi-1) &\times& (\eta-1)(2\eta-1) \\
 N_2 &=& \xi(2\xi-1) &\times& \eta(2\eta-1) \\
 N_3 &=& (\xi-1)(2\xi -1) &\times& \eta(2\eta-1) \\
 \\
 N_4 &=& 4\xi(1-\xi) &\times& (\eta-1)(2\eta-1) \\
 N_5 &=& \xi(2\xi-1) &\times& 4\eta(1-\eta) \\
 N_6 &=& 4\xi(1-\xi) &\times& \eta(2\eta-1) \\
 N_7 &=& (\xi-1)(2\xi -1) &\times& 4\eta(1-\eta) \\
 \\
 N_8 &=& 4\xi(1-\xi) &\times& 4\eta(1-\eta) \\
\end{array}

TRIANGLE: Linear Triangle

[image: Linear Lagrangian Triangle Element]

\begin{array}{r c l}
 N_0 & = & 1 - \xi - \eta \\
 N_1 & = & \xi \\
 N_2 & = & \eta \\
\end{array}

HEX: Linear Hexahedron

[image: Linear Lagrangian Hexahedron Element]

\begin{array}{r c l c l c l}
 N_0 &=& (1-\xi) &\times& (1-\eta) &\times& (1-\zeta) \\
 N_1 &=& \xi &\times& (1-\eta) &\times& (1-\zeta) \\
 N_2 &=& \xi &\times& \eta &\times& (1-\zeta) \\
 N_3 &=& (1-\xi) &\times& \eta &\times& (1-\zeta) \\
 \\
 N_4 &=& (1-\xi) &\times& (1-\eta) &\times& \zeta \\
 N_5 &=& \xi &\times& (1-\eta) &\times& \zeta \\
 N_6 &=& \xi &\times& \eta &\times& \zeta \\
 N_7 &=& (1-\xi) &\times& \eta &\times& \zeta \\
\end{array}

HEX27: Quadratic Hexahedron

[image: Quadratic Lagrangian Hexahedron Element]

 \begin{array}{r c l c l c l}
 N_0 &=& (\xi-1)(2\xi-1) &\times& (\eta-1)(2\eta-1) &\times& (\zeta-1)(2\zeta-1) \\
 N_1 &=& \xi(2\xi-1) &\times& (\eta-1)(2\eta-1) &\times& (\zeta-1)(2\zeta-1) \\
 N_2 &=& \xi(2\xi-1) &\times& \eta(2\eta-1) &\times& (\zeta-1)(2\zeta-1) \\
 N_3 &=& (\xi-1)(2\xi-1) &\times& \eta(2\eta-1) &\times& (\zeta-1)(2\zeta-1) \\
 \\
 N_4 &=& (\xi-1)(2\xi-1) &\times& (\eta-1)(2\eta-1) &\times& \zeta(2\zeta-1) \\
 N_5 &=& \xi(2\xi-1) &\times& (\eta-1)(2\eta-1) &\times& \zeta(2\zeta-1) \\
 N_6 &=& \xi(2\xi-1) &\times& \eta(2\eta-1) &\times& \zeta(2\zeta-1) \\
 N_7 &=& (\xi-1)(2\xi-1) &\times& \eta(2\eta-1) &\times& \zeta(2\zeta-1) \\
 \\
 N_8 &=& 4\xi(1-\xi) &\times& (\eta-1)(2\eta-1) &\times& (\zeta-1)(2\zeta-1) \\
 N_9 &=& \xi(2\xi-1) &\times& 4\eta(1-\eta) &\times& (\zeta-1)(2\zeta-1) \\
N_{10} &=& 4\xi(1-\xi) &\times& \eta(2\eta-1) &\times& (\zeta-1)(2\zeta-1) \\
N_{11} &=& (\xi-1)(2\xi-1) &\times& 4\eta(1-\eta) &\times& (\zeta-1)(2\zeta-1) \\
 \\
N_{12} &=& 4\xi(1-\xi) &\times& (\eta-1)(2\eta-1) &\times& \zeta(2\zeta-1) \\
N_{13} &=& \xi(2\xi-1) &\times& 4\eta(1-\eta) &\times& \zeta(2\zeta-1) \\
N_{14} &=& 4\xi(1-\xi) &\times& \eta(2\eta-1) &\times& \zeta(2\zeta-1) \\
N_{15} &=& (\xi-1)(2\xi-1) &\times& 4\eta(1-\eta) &\times& \zeta(2\zeta-1) \\
 \\
N_{16} &=& (\xi-1)(2\xi-1) &\times& (\eta-1)(2\eta-1) &\times& 4\zeta(1-\zeta) \\
N_{17} &=& \xi(2\xi-1) &\times& (\eta-1)(2\eta-1) &\times& 4\zeta(1-\zeta) \\
N_{18} &=& \xi(2\xi-1) &\times& \eta(2\eta-1) &\times& 4\zeta(1-\zeta) \\
N_{19} &=& (\xi-1)(2\xi-1) &\times& \eta(2\eta-1) &\times& 4\zeta(1-\zeta) \\
 \\
N_{20} &=& (\xi-1)(2\xi-1) &\times& 4\eta(1-\eta) &\times& 4\zeta(1-\zeta) \\
N_{21} &=& \xi(2\xi-1) &\times& 4\eta(1-\eta) &\times& 4\zeta(1-\zeta) \\
N_{22} &=& 4\xi(1-\xi) &\times& (\eta-1)(2\eta-1) &\times& 4\zeta(1-\zeta) \\
N_{23} &=& 4\xi(1-\xi) &\times& \eta(2\eta-1) &\times& 4\zeta(1-\zeta) \\
N_{24} &=& 4\xi(1-\xi) &\times& 4\eta(1-\eta) &\times& (\zeta-1)(2\zeta-1) \\
N_{25} &=& 4\xi(1-\xi) &\times& 4\eta(1-\eta) &\times& \zeta(2\zeta-1) \\
 \\
N_{26} &=& 4\xi(1-\xi) &\times& 4\eta(1-\eta) &\times& 4\zeta(1-\zeta) \\
 \end{array}

PYRAMID: Linear Pyramid

[image: Linear Lagrangian Pyramid Element]

\begin{array}{r c l c l c l}
 N_0 &=& (1-\xi) &\times& (1-\eta) &\times& (1-\zeta) \\
 N_1 &=& \xi &\times& (1-\eta) &\times& (1-\zeta) \\
 N_2 &=& \xi &\times& \eta &\times& (1-\zeta) \\
 N_3 &=& (1-\xi) &\times& \eta &\times& (1-\zeta) \\
 N_4 &=& \zeta \\
\end{array}

PRISM: Linear Prism/Wedge

[image: Linear Lagrangian Prism Element]

 \begin{array}{r c l c l c l}
 N_0 &=& (1-\xi) - \eta &\times& (1-\zeta) \\
 N_1 &=& \xi &\times& (1-\zeta) \\
 N_2 &=& \eta &\times& (1-\zeta) \\
 N_3 &=& (1-\xi) - \eta &\times& \zeta \\
 N_4 &=& \xi &\times& \zeta \\
 N_5 &=& \eta &\times& \zeta \\
\end{array}

Add a New Lagrange Element

Warning

This section is under construction.

Isoparametric Mapping

Warning

This section is under construction.

Quadratures

Warning

Support for Quadratures in Mint is under development.

Add a New Finite Element Basis

Warning

This section is under construction.

Tutorial

The Tutorial section consists of simple examples and
code snippets that illustrate how to use Mint’s core classes and
functions to construct and operate on the various supported Mesh Types.
The examples presented herein aim to illustrate specific Mint concepts and
capabilities in a structured and simple format.
To quickly learn basic Mint concepts and capabilities through an illustrative
walk-through of a complete working code example, see the
Getting Started with Mint section. Additional code examples, based on
Mint mini-apps, are provided in the Examples section. For
thorough documentation of the interfaces of the various classes and functions
in Mint, developers are advised to consult the
Mint Doxygen API Documentation, in conjunction with this
Tutorial.

Create a Uniform Mesh

A Uniform Mesh is relatively the simplest Structured Mesh type,
but also, the most restrictive mesh out of all Mesh Types.
The constituent Nodes of the Uniform Mesh are uniformly spaced
along each axis on a regular lattice. Consequently, a Uniform Mesh can
be easily constructed by simply specifying the spatial extents of the domain
and desired dimensions, e.g. the number of Nodes along each dimension.

For example, a \(50 \times 50\) Uniform Mesh, defined on a bounded
domain given by the interval \(\mathcal{I}:[-5.0,5.0] \times [-5.0,5.0]\),
can be easily constructed as follows:

	1
2
3

	 const double lo[] = {-5.0, -5.0};
 const double hi[] = {5.0, 5.0};
 mint::UniformMesh mesh(lo, hi, 50, 50);

The resulting mesh is depicted in Fig. 22.

[image: Sample Uniform Mesh]
Fig. 22 Resulting Uniform Mesh.

Create a Rectilinear Mesh

A Rectilinear Mesh, also called a product mesh, is similar to a
Uniform Mesh. However, the constituent Nodes of a
Rectilinear Mesh are not uniformly spaced. The spacing between adjacent
Nodes can vary arbitrarily along each axis, but the Topology of
the mesh remains a regular Structured Mesh Topology. To allow for
this flexibility, the coordinates of the Nodes along each axis are
explicitly stored in separate arrays, i.e. \(x\), \(y\) and \(z\),
for each coordinate axis respectively.

The following code snippet illustrates how to construct a \(25 \times 25\)
Rectilinear Mesh where the spacing of the Nodes grows according
to an exponential stretching function along the \(x\) and \(y\) axis
respectively. The resulting mesh is depicted in
Fig. 23.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	 constexpr double beta = 0.1;
 const double expbeta = exp(beta);
 const double invf = 1 / (expbeta - 1.0);

 // construct a N x N rectilinear mesh
 constexpr axom::IndexType N = 25;
 mint::RectilinearMesh mesh(N, N);
 double* x = mesh.getCoordinateArray(mint::X_COORDINATE);
 double* y = mesh.getCoordinateArray(mint::Y_COORDINATE);

 // fill the coordinates along each axis
 x[0] = y[0] = 0.0;
 for(int i = 1; i < N; ++i)
 {
 const double delta = (exp(i * beta) - 1.0) * invf;
 x[i] = x[i - 1] + delta;
 y[i] = y[i - 1] + delta;
 }

[image: Sample Rectilinear Mesh]
Fig. 23 Resulting Rectilinear Mesh.

Create a Curvilinear Mesh

A Curvilinear Mesh, also called a body-fitted mesh, is the most
general of the Structured Mesh types. Similar to the Uniform Mesh
and Rectilinear Mesh types, a Curvilinear Mesh also has regular
Structured Mesh Topology. However, the coordinates of the
Nodes comprising a Curvilinear Mesh are defined explicitly,
enabling the use of a Structured Mesh discretization with more general
geometric domains, i.e., the domain may not be necessarily Cartesian.
Consequently, the coordinates of the Nodes are specified explicitly in
separate arrays, \(x\), \(y\), and \(z\).

The following code snippet illustrates how to construct a \(25 \times 25\)
Curvilinear Mesh. The coordinates of the Nodes follow from the
equation of a cylinder with a radius of \(2.5\). The resulting mesh is
depicted in Fig. 24.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

	 constexpr double R = 2.5;
 constexpr double M = (2 * M_PI) / 50.0;
 constexpr double h = 0.5;
 constexpr axom::IndexType N = 25;

 // construct the curvilinear mesh object
 mint::CurvilinearMesh mesh(N, N);

 // get a handle on the coordinate arrays
 double* x = mesh.getCoordinateArray(mint::X_COORDINATE);
 double* y = mesh.getCoordinateArray(mint::Y_COORDINATE);

 // fill the coordinates of the curvilinear mesh
 const axom::IndexType jp = mesh.nodeJp();
 for(axom::IndexType j = 0; j < N; ++j)
 {
 const axom::IndexType j_offset = j * jp;

 for(axom::IndexType i = 0; i < N; ++i)
 {
 const axom::IndexType nodeIdx = i + j_offset;

 const double xx = h * i;
 const double yy = h * j;
 const double alpha = yy + R;
 const double beta = xx * M;

 x[nodeIdx] = alpha * cos(beta);
 y[nodeIdx] = alpha * sin(beta);
 } // END for all i

 } // END for all j

[image: Resulting CurvilinearMesh]
Fig. 24 Resulting Curvilinear Mesh.

Create an Unstructured Mesh

An Unstructured Mesh with Single Cell Type Topology has
both explicit Topology and Geometry. However, the cell type
that the mesh stores is known a priori, allowing for an optimized
underlying Mesh Representation, compared to the more general
Mixed Cell Type Topology Mesh Representation.

Since both Geometry and Topology are explicit, an
Unstructured Mesh is created by specifying:

	the coordinates of the constituent Nodes, and

	the Cells comprising the mesh, defined by the cell-to-node
Connectivity

[image: Sample Unstructured Mesh with Single Cell Topology]
Fig. 25 Resulting Single Cell Type Topology Unstructured Mesh

The following code snippet illustrates how to create the simple
Unstructured Mesh depicted in Fig. 25.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	 constexpr int DIMENSION = 2;
 constexpr mint::CellType CELL_TYPE = mint::TRIANGLE;

 // Construct the mesh object
 mint::UnstructuredMesh<mint::SINGLE_SHAPE> mesh(DIMENSION, CELL_TYPE);

 // Append the mesh nodes
 const axom::IndexType n0 = mesh.appendNode(0.0, 0.0);
 const axom::IndexType n1 = mesh.appendNode(2.0, 0.0);
 const axom::IndexType n2 = mesh.appendNode(1.0, 1.0);
 const axom::IndexType n3 = mesh.appendNode(3.5, 1.0);
 const axom::IndexType n4 = mesh.appendNode(2.5, 2.0);
 const axom::IndexType n5 = mesh.appendNode(5.0, 0.0);

 // Append mesh cells
 const axom::IndexType c0[] = {n1, n3, n2};
 const axom::IndexType c1[] = {n2, n0, n1};
 const axom::IndexType c2[] = {n3, n4, n2};
 const axom::IndexType c3[] = {n1, n5, n3};

 mesh.appendCell(c0);
 mesh.appendCell(c1);
 mesh.appendCell(c2);
 mesh.appendCell(c3);

An Unstructured Mesh is represented by the mint::UnstructuredMesh
template class. The template argument of the class, mint::SINGLE_SHAPE
indicates the mesh has Single Cell Type Topology. The two arguments to the
class constructor correspond to the problem dimension and cell type, which
in this case, is \(2\) and mint::TRIANGLE respectively. Once the mesh
is constructed, the Nodes and Cells are appended to the mesh by
calls to the appendNode() and appendCell() methods respectively.
The resulting mesh is shown in Fig. 25.

Tip

The storage for the mint::UstructuredMesh will grow dynamically as new
Nodes and Cells are appended on the mesh. However, reallocations
tend to be costly operations. For best performance, it is advised the node
capacity and cell capacity for the mesh are specified in the constructor if
known a priori. Consult the Mint Doxygen API Documentation for more
details.

Create a Mixed Unstructured Mesh

Compared to the Single Cell Type Topology Unstructured Mesh, a
Mixed Cell Type Topology Unstructured Mesh has also explicit
Topology and Geometry. However, the cell type is not fixed.
Notably, the mesh can store different Cell Types, e.g. triangles and quads,
as shown in the simple 2D mesh depicted in Fig. 26.

[image: Sample Unstructured Mesh with Single Cell Topology]
Fig. 26 Sample Mixed Cell Type Topology Unstructured Mesh

As with the Single Cell Type Topology Unstructured Mesh, a
Mixed Cell Type Topology Unstructured Mesh is created by specifying:

	the coordinates of the constituent Nodes, and

	the Cells comprising the mesh, defined by the cell-to-node
Connectivity

The following code snippet illustrates how to create the simple
Mixed Cell Type Topology Unstructured Mesh depicted in
Fig. 26, consisting of \(2\) triangles and
\(1\) quadrilateral Cells.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	 constexpr int DIMENSION = 2;

 // Construct the mesh object
 mint::UnstructuredMesh<mint::MIXED_SHAPE> mesh(DIMENSION);

 // Append the mesh nodes
 const axom::IndexType n0 = mesh.appendNode(0.0, 0.0);
 const axom::IndexType n1 = mesh.appendNode(2.0, 0.0);
 const axom::IndexType n2 = mesh.appendNode(1.0, 1.0);
 const axom::IndexType n3 = mesh.appendNode(3.5, 1.0);
 const axom::IndexType n4 = mesh.appendNode(2.5, 2.0);
 const axom::IndexType n5 = mesh.appendNode(5.0, 0.0);

 // Append mesh cells
 const axom::IndexType c0[] = {n0, n1, n2};
 const axom::IndexType c1[] = {n1, n5, n3, n2};
 const axom::IndexType c2[] = {n3, n4, n2};

 mesh.appendCell(c0, mint::TRIANGLE);
 mesh.appendCell(c1, mint::QUAD);
 mesh.appendCell(c2, mint::TRIANGLE);

Similarly, a Mixed Cell Type Topology Unstructured Mesh is represented
by the mint::UnstructuredMesh template class. However, the template argument
to the class is mint::MIXED_SHAPE, which indicates that the mesh has
Mixed Cell Type Topology. In this case, the class constructor takes only a
single argument that corresponds to the problem dimension, i.e. \(2\).
Once the mesh is constructed, the constituent Nodes of the mesh are
specified by calling the appendNode() method on the mesh. Similarly, the
Cells are specified by calling the appendCell() method. However,
in this case, appendCell() takes one additional argument that specifies the
cell type, since that can vary.

Tip

The storage for the mint::UstructuredMesh will grow dynamically as new
Nodes and Cells are appended on the mesh. However, reallocations
tend to be costly operations. For best performance, it is advised the node
capacity and cell capacity for the mesh are specified in the constructor if
known a priori. Consult the Mint Doxygen API Documentation for more
details.

Working with Fields

A mesh typically has associated Field Data that store various numerical
quantities on the constituent Nodes, Cells and Faces of
the mesh.

Warning

Since a Particle Mesh is defined by a set of Nodes, it
can only store Field Data at its constituent Nodes. All
other supported Mesh Types can have Field Data associated with
their constituent Cells, Faces and Nodes.

Add Fields

Given a mint::Mesh instance, a field is created by specifying:

	The name of the field,

	The field association, i.e. centering, and

	Optionally, the number of components of the field, required if the field
is not a scalar quantity.

For example, the following code snippet creates the scalar density field,
den, stored at the cell centers, and the vector velocity field, vel,
stored at the Nodes:

	1
2

	 double* den = mesh->createField<double>("den", mint::CELL_CENTERED);
 double* vel = mesh->createField<double>("vel", mint::NODE_CENTERED, 3);

Note

If Sidre is used as the backend Mesh Storage Management substrate,
createField() will populate the Sidre tree hierarchy accordingly.
See Using Sidre for more information.

	Note, the template argument to the createField() method indicates the
underlying field type, e.g. double, int , etc. In this case, both
fields are of double field type.

	The name of the field is specified by the first required argument to the
createField() call.

	The field association, is specified by the second argument to the
createField() call.

	A third, optional, argument may be specified to indicate the number of
components of the corresponding field. In this case, since vel is a
vector quantity the number of components must be explicitly specified.

	The createField() method returns a raw pointer to the data corresponding
to the new field, which can be used by the application.

Note

Absence of the third argument when calling createField() indicates
that the number of components of the field defaults to \(1\) and thereby
the field is assumed to be a scalar quantity.

Request Fields by Name

Specific, existing fields can be requested by calling getFieldPtr() on
the target mesh as follows:

	1
2
3
4

	 double* den = mesh->getFieldPtr<double>("den", mint::CELL_CENTERED);

 axom::IndexType nc = -1; // number of components
 double* vel = mesh->getFieldPtr<double>("vel", mint::NODE_CENTERED, nc);

	As with the createField() method, the template argument indicates the
underlying field type, e.g. double, int , etc.

	The first argument specifies the name of the requested field

	The second argument specifies the corresponding association of the
requested field.

	The third argument is optional and it can be used to get back the number of
components of the field, i.e. if the field is not a scalar quantity.

Note

Calls to getFieldPtr() assume that the caller knows a priori the:

	Field name,

	Field association, i.e. centering, and

	The underlying field type, e.g. double, int, etc.

Check Fields

An application can also check if a field exists by calling hasField() on the
mesh, which takes as arguments the field name and corresponding field
association as follows:

	1
2

	 const bool hasDen = mesh->hasField("den", mint::CELL_CENTERED);
 const bool hasVel = mesh->hasField("vel", mint::NODE_CENTERED);

The hasField() method returns true or false indicating whether a
given field is defined on the mesh.

Remove Fields

A field can be removed from a mesh by calling removeField() on the target
mesh, which takes as arguments the field name and corresponding field
association as follows:

	1

	 bool isRemoved = mesh->removeField("den", mint::CELL_CENTERED);

The removeField() method returns true or false indicating whether
the corresponding field was removed successfully from the mesh.

Query Fields

In some cases, an application may not always know a priori the name or type
of the field, or, we may want to write a function to process all fields,
regardless of their type.

The following code snippet illustrates how to do that:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

	 const mint::FieldData* fieldData = mesh->getFieldData(FIELD_ASSOCIATION);

 const int numFields = fieldData->getNumFields();
 for(int ifield = 0; ifield < numFields; ++ifield)
 {
 const mint::Field* field = fieldData->getField(ifield);

 const std::string& fieldName = field->getName();
 axom::IndexType numTuples = field->getNumTuples();
 axom::IndexType numComponents = field->getNumComponents();

 std::cout << "field name: " << fieldName << std::endl;
 std::cout << "numTuples: " << numTuples << std::endl;
 std::cout << "numComponents: " << numComponents << std::endl;

 if(field->getType() == mint::DOUBLE_FIELD_TYPE)
 {
 double* data = mesh->getFieldPtr<double>(fieldName, FIELD_ASSOCIATION);
 data[0] = 42.0;
 // process double precision floating point data
 // ...
 }
 else if(field->getType() == mint::INT32_FIELD_TYPE)
 {
 int* data = mesh->getFieldPtr<int>(fieldName, FIELD_ASSOCIATION);
 data[0] = 42;
 // process integral data
 // ...
 }
 // ...

 } // END for all fields

	The mint::FieldData instance obtained by calling getFieldData() on the
target mesh holds all the fields with a field association given by
FIELD_ASSOCIATION.

	The total number of fields can be obtained by calling getNumFields() on
the mint::FieldData instance, which allows looping over the fields with
a simple for loop.

	Within the loop, a pointer to a mint::Field instance, corresponding to
a particular field, can be requested by calling getField() on the
mint::FieldData instance, which takes the field index, ifield,
as an argument.

	Given the pointer to a mint::Field instance, an application can query
the following field metadata:

	The field name, by calling getName,

	The number of tuples of the field, by calling getNumTuples()

	The number of components of the field, by calling getNumComponents()

	The underlying field type by calling getType()

	Given the above metadata, the application can then obtain a pointer to the
raw field data by calling getFieldPtr() on the target mesh, as shown in
the code snippet above.

Using External Storage

A Mint mesh may also be constructed from External Storage. In this
case, the application holds buffers that describe the constituent
Geometry, Topology and Field Data of the mesh, which are
wrapped in Mint for further processing.

The following code snippet illustrates how to use External Storage using
the Single Cell Type Topology Unstructured Mesh used to demonstrate
how to Create an Unstructured Mesh with Native Storage:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

	 constexpr axom::IndexType NUM_NODES = 6;
 constexpr axom::IndexType NUM_CELLS = 4;

 // application buffers
 double x[] = {0.0, 2.0, 1.0, 3.5, 2.5, 5.0};
 double y[] = {0.0, 0.0, 1.0, 1.0, 2.0, 0.0};

 axom::IndexType cell_connectivity[] = {
 1,
 3,
 2, // c0
 2,
 0,
 1, // c1
 3,
 4,
 2, // c2
 1,
 5,
 3 // c3
 };

 // cell-centered density field values
 double den[] = {0.5, 1.2, 2.5, 0.9};

 // construct mesh object with external buffers
 using MeshType = mint::UnstructuredMesh<mint::SINGLE_SHAPE>;
 MeshType* mesh =
 new MeshType(mint::TRIANGLE, NUM_CELLS, cell_connectivity, NUM_NODES, x, y);

 // register external field
 mesh->createField<double>("den", mint::CELL_CENTERED, den);

 // output external mesh to vtk
 mint::write_vtk(mesh, "tutorial_external_mesh.vtk");

 // delete the mesh, doesn't touch application buffers
 delete mesh;
 mesh = nullptr;

	The application has the following buffers:

	x and y buffers to hold the coordinates of the Nodes

	cell_connectivity, which stores the cell-to-node connectivity

	den which holds a scalar density field defined over the constituent
Cells of the mesh.

	The mesh is created by calling the mint::UnstructuredMesh class
constructor, with the following arguments:

	The cell type, i.e, mint::TRIANGLE,

	The total number of cells, NUM_CELLS,

	The cell_connectivity which specifies the Topology of the
Unstructured Mesh,

	The total number of nodes, NUM_NODES, and

	The x, y coordinate buffers that specify the Geometry of
the Unstructured Mesh.

	The scalar density field is registered with Mint by calling the
createField() method on the target mesh instance, as before, but also
passing the raw pointer to the application buffer in a third argument.

Note

The other Mesh Types can be similarly constructed using
External Storage by calling the appropriate constructor.
Consult the Mint Doxygen API Documentation for more details.

The resulting mesh instance points to the application’s buffers. Mint may be
used to process the data e.g., Output to VTK
etc. The values of the data may also be modified, however the mesh cannot
dynamically grow or shrink when using External Storage.

Warning

A mesh using External Storage may modify the values of the application
data. However, the data is owned by the application that supplied the
external buffers. Mint cannot reallocate external buffers to grow or shrink
the the mesh. Once the mesh is deleted, the data remains
persistent in the application buffers until it is deleted by the application.

Using Sidre

Mint can also use Sidre as the underlying Mesh Storage Management
substrate, thereby, facilitate the integration of packages or
codes within the overarching WSC [https://wci.llnl.gov/about-us/weapon-simulation-and-computing] software ecosystem. Sidre is another
component of the Axom Toolkit that provides a centralized data management
system that enables efficient coordination of data across the constituent
packages of a multi-physics application.

There are two primary operations a package/code may want to perform:

	Create a new Mesh in Sidre so that it can be shared with other packages.

	Import a Mesh from Sidre, presumably created by different package or code
upstream, to operate on, e.g. evaluate a new field on the mesh, etc.

Code snippets illustrating these two operations are presented in the following
sections using a simple Unstructured Mesh example. However, the basic
concepts extend to all supported Mesh Types.

Note

To use Sidre with Mint, the Axom Toolkit must be compiled with
Conduit [https://llnl-conduit.readthedocs.io/en/latest/index.html] support and Sidre must be enabled (default). Consult the
Axom Quick Start Guide for the details on how to build the
Axom Toolkit.

Create a new Mesh in Sidre

Creating a mesh using Sidre is very similar to creating a mesh that uses
Native Storage. The key difference is that when calling the mesh
constructor, the target sidre::Group, that will consist of the mesh, must
be specified.

Warning

The target sidre::Group supplied to the mesh constructor is expected
to be empty.

The following code snippet illustrates this capability using the
Single Cell Type Topology Unstructured Mesh used to demonstrate
how to Create an Unstructured Mesh with Native Storage. The key
differences in the code are highlighted below:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	 // create a Sidre Datastore to store the mesh
 sidre::DataStore ds;
 sidre::Group* group = ds.getRoot();

 // Construct the mesh object and populate the supplied Sidre Group
 mint::UnstructuredMesh<mint::SINGLE_SHAPE> mesh(2, mint::TRIANGLE, group);

 // Append the mesh nodes
 const axom::IndexType n0 = mesh.appendNode(0.0, 0.0);
 const axom::IndexType n1 = mesh.appendNode(2.0, 0.0);
 const axom::IndexType n2 = mesh.appendNode(1.0, 1.0);
 const axom::IndexType n3 = mesh.appendNode(3.5, 1.0);
 const axom::IndexType n4 = mesh.appendNode(2.5, 2.0);
 const axom::IndexType n5 = mesh.appendNode(5.0, 0.0);

 // Append mesh cells
 const axom::IndexType c0[] = {n1, n3, n2};
 const axom::IndexType c1[] = {n2, n0, n1};
 const axom::IndexType c2[] = {n3, n4, n2};
 const axom::IndexType c3[] = {n1, n5, n3};

 mesh.appendCell(c0);
 mesh.appendCell(c1);
 mesh.appendCell(c2);
 mesh.appendCell(c3);

 // create a cell-centered field
 double* den = mesh.createField<double>("den", mint::CELL_CENTERED);

 // set density values at each cell
 den[0] = 0.5; // c0
 den[1] = 1.2; // c1
 den[2] = 2.5; // c2
 den[3] = 0.9; // c3

Note

A similar construction follows for all supported Mesh Types. To
Create a new Mesh in Sidre the target sidre::Group that will consist
of the mesh is specified in the constructor in addition to any other
arguments. Consult the Mint Doxygen API Documentation for more details.

When the constructor is called, the target sidre::Group is populated
according to the Conduit [https://llnl-conduit.readthedocs.io/en/latest/index.html] Blueprint [https://llnl-conduit.readthedocs.io/en/latest/blueprint.html] mesh description. Any subsequent
changes to the mesh are reflected accordingly to the corresponding
sidre::Group. The Raw Sidre Data generated after the above code
snippet executes are included for reference in the Appendix.

However, once the mesh object goes out-of-scope the mesh description and any
data remains persisted in Sidre. The mesh can be deleted from Sidre using
the corresponding Sidre API calls.

Warning

A Mint mesh, bound to a Sidre Group, can only be deleted from Sidre
when the Group consisting the mesh is deleted from Sidre, or, when the
Sidre Datastore instance that holds the Group is deleted. When a mesh,
bound to a Sidre Group is deleted, its mesh representation and any data
remain persistent within the corresponding Sidre Group hierarchy.

Import a Mesh from Sidre

Support for importing an existing mesh from Sidre, that conforms to the
Conduit [https://llnl-conduit.readthedocs.io/en/latest/index.html] Blueprint [https://llnl-conduit.readthedocs.io/en/latest/blueprint.html] mesh description, is provided by the
mint::getMesh() function. The mint::getMesh() function takes the
sidre::Group instance consisting of the mesh as an argument and returns a
corresponding mint::Mesh instance. Notably, the returned mint:Mesh
instance can be any of the supported Mesh Types.

The following code snippet illustrates this capability:

	1
2
3
4
5
6
7
8

	 mint::Mesh* imported_mesh = mint::getMesh(group);
 std::cout << "Mesh Type: " << imported_mesh->getMeshType() << std::endl;
 std::cout << "hasSidre: " << imported_mesh->hasSidreGroup() << std::endl;

 mint::write_vtk(imported_mesh, "tutorial_imported_mesh.vtk");

 delete imported_mesh;
 imported_mesh = nullptr;

	The mesh is imported from Sidre by calling mint::getMesh(), passing
the sidre::Group consisting of the mesh as an argument.

	The mesh type of the imported mesh can be queried by calling the
getMeshType() on the imported mesh object.

	Moreover, an application can check if the mesh is bound to a Sidre group
by calling hasSidreGroup() on the mesh.

	Once the mesh is imported, the application can operate on it, e.g.
Output to VTK, etc., as illustrated in the above code snippet.

	Any subsequent changes to the mesh are reflected accordingly to the
corresponding sidre::Group

However, once the mesh object goes out-of-scope the mesh description and any
data remains persisted in Sidre. The mesh can be deleted from Sidre using
the corresponding Sidre API calls.

Warning

	When a Mint mesh bound to a Sidre Group is deleted, its mesh
representation and any data remain persistent within the corresponding
Sidre Group hierarchy.

	A Mint mesh, bound to a Sidre Group, is deleted from Sidre
by deleting the corresponding Sidre Group, or, when the
Sidre Datastore instance that holds the Group is deleted.

Node Traversal Functions

The Node Traversal Functions iterate over the constituent Nodes
of the mesh and apply a user-supplied kernel operation, often specified with a
Lambda Expression [https://www.cprogramming.com/c++11/c++11-lambda-closures.html]. The Node Traversal Functions are implemented by the
mint::for_all_nodes() family of functions, which take an
Execution Policy as the first template argument, and optionally, a
second template argument to indicate the Execution Signature of the
supplied kernel.

Note

If a second template argument is not specified, the
default Execution Signature is set to xargs::index, which indicates
that the supplied kernel takes a single argument corresponding to the index
of the iteration space, in this case the node index, nodeIdx.

Simple Loop Over Nodes

The following code snippet illustrates a simple loop over the Nodes of a
2D mesh that computes the velocity magnitude, vmag, given the corresponding
velocity components, vx and vy.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	 const double* vx = mesh.getFieldPtr<double>("vx", mint::NODE_CENTERED);
 const double* vy = mesh.getFieldPtr<double>("vy", mint::NODE_CENTERED);

 double* vmag = mesh.getFieldPtr<double>("vmag", mint::NODE_CENTERED);

 mint::for_all_nodes<exec_policy>(
 &mesh,
 AXOM_LAMBDA(IndexType nodeIdx) {
 const double vx2 = vx[nodeIdx] * vx[nodeIdx];
 const double vy2 = vy[nodeIdx] * vy[nodeIdx];
 vmag[nodeIdx] = sqrt(vx2 + vy2);
 });

Loop with Coordinates

The coordinates of a node are sometimes also required in addition to
its index. This additional information may be requested by supplying
xargs::x (in 1D), xargs::xy (in 2D) or xargs::xyz (in 3D),
as the second template argument to the for_all_nodes() method to
specify the Execution Signature for the kernel.

This capability is demonstrated by the following code snippet, consisting of
a kernel that updates the nodal velocity components, based on
old node positions, stored at the xold and yold node-centered fields,
respectively.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	 double invdt = 0.5;

 const double* xold = mesh.getFieldPtr<double>("xold", mint::NODE_CENTERED);
 const double* yold = mesh.getFieldPtr<double>("yold", mint::NODE_CENTERED);

 double* vx = mesh.getFieldPtr<double>("vx", mint::NODE_CENTERED);
 double* vy = mesh.getFieldPtr<double>("vy", mint::NODE_CENTERED);

 mint::for_all_nodes<exec_policy, mint::xargs::xy>(
 &mesh,
 AXOM_LAMBDA(IndexType nodeIdx, double x, double y) {
 vx[nodeIdx] = (x - xold[nodeIdx]) * invdt;
 vy[nodeIdx] = (y - yold[nodeIdx]) * invdt;
 });

Note

	The second template argument, mint::xargs::xy, indicates that the
supplied kernel expects the x and y node coordinates as arguments
in addition to its nodeIdx.

Loop with IJK Indices

When working with a Structured Mesh, it is sometimes required to expose
the regular Topology of the Structured Mesh to obtain higher
performance for a particular algorithm. This typically entails using the
logical IJK ordering of the Structured Mesh to implement
certain operations. The template argument, xargs::ij or xargs::ijk,
for 2D or 3D respectively, may be used as the second template argument to
the for_all_nodes() function to specify the Execution Signature of
the supplied kernel.

For example, the following code snippet illustrates how to obtain a node’s
i and j indices within a sample kernel that computes the linear index of
each node and stores the result in a node-centered field, ID.

	1
2
3
4
5
6
7
8

	 const IndexType jp = mesh.nodeJp();

 IndexType* ID = mesh.getFieldPtr<IndexType>("ID", mint::NODE_CENTERED);
 mint::for_all_nodes<exec_policy, mint::xargs::ij>(
 &mesh,
 AXOM_LAMBDA(IndexType nodeIdx, IndexType i, IndexType j) {
 ID[nodeIdx] = i + j * jp;
 });

Warning

In this case, the kernel makes use of the IJK indices and hence it is
only applicable for a Structured Mesh.

Cell Traversal Functions

The Cell Traversal Functions iterate over the constituent
Cells of the mesh and apply a user-supplied kernel operation, often
specified with a Lambda Expression [https://www.cprogramming.com/c++11/c++11-lambda-closures.html]. The Cell Traversal Functions
are implemented by the mint::for_all_cells() family of functions,
which take an Execution Policy as the first template argument, and
optionally, a second template argument to indicate the Execution Signature
of the supplied kernel.

Note

If a second template argument is not specified, the
default Execution Signature is set to xargs::index, which indicates
that the supplied kernel takes a single argument corresponding to the index
of the iteration space, in this case the cell index, cellIdx.

Simple Loop Over Cells

The following code snippet illustrates a simple loop over the constituent
Cells of the mesh that computes the cell density (den), given
corresponding mass (mass) and volume (vol) quantities.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	 const double* mass = mesh.getFieldPtr<double>("mass", mint::CELL_CENTERED);
 const double* vol = mesh.getFieldPtr<double>("vol", mint::CELL_CENTERED);

 double* den = mesh.getFieldPtr<double>("den", mint::CELL_CENTERED);

 mint::for_all_cells<exec_policy>(
 &mesh,
 AXOM_LAMBDA(IndexType cellIdx) {
 den[cellIdx] = mass[cellIdx] / vol[cellIdx];
 });

Loop with Node IDs

Certain operations may require the IDs of the constituent cell Nodes for
some calculation. The template argument, xargs::nodeids, may be used as
the second template argument to the for_all_cells() function to specify
the Execution Signature for the kernel. The xargs::nodeids indicates
that the supplied kernel also takes the the IDs of the constituent cell
Nodes as an argument.

This feature is demonstrated with the following code snippet, which averages
the node-centered velocity components to corresponding cell-centered fields:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	 const double* vx = mesh.getFieldPtr<double>("vx", mint::NODE_CENTERED);
 const double* vy = mesh.getFieldPtr<double>("vy", mint::NODE_CENTERED);

 double* cell_vx = mesh.getFieldPtr<double>("cell_vx", mint::CELL_CENTERED);
 double* cell_vy = mesh.getFieldPtr<double>("cell_vy", mint::CELL_CENTERED);

 mint::for_all_cells<exec_policy, mint::xargs::nodeids>(
 &mesh,
 AXOM_LAMBDA(IndexType cellIdx, const IndexType* nodeIDs, IndexType N) {
 // sum nodal contributions
 cell_vx[cellIdx] = 0.0;
 cell_vy[cellIdx] = 0.0;
 for(IndexType inode = 0; inode < N; ++inode)
 {
 cell_vx[cellIdx] += vx[nodeIDs[inode]];
 cell_vy[cellIdx] += vy[nodeIDs[inode]];
 } // END for all cell nodes

 // average at the cell center
 const double invf = 1.0 / static_cast<double>(N);
 cell_vx[cellIdx] *= invf;
 cell_vy[cellIdx] *= invf;
 });

Note

	xargs::nodeids indicates that the specified kernel takes three arguments:

	cellIdx, the ID of the cell,

	nodeIDs, an array of the constituent node IDs, and

	N, the number of Nodes for the given cell.

Loop with Coordinates

The coordinates of the constituent cell Nodes are often required in
some calculations. A cell’s node coordinates may be supplied to the specified
kernel as an argument using xargs::coords as the second template argument
to the for_all_cells() function, to specify the Execution Signature
of the supplied kernel.

This feature is demonstrated with the following code snippet, which computes
the cell centroid by averaging the coordinates of the constituent cell
Nodes:

Note

Since this kernel does not use the node IDs, the argument to the kernel
is annotated using the AXOM_NOT_USED macro to silence compiler
warnings.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	 double* xc = mesh.getFieldPtr<double>("xc", mint::CELL_CENTERED);
 double* yc = mesh.getFieldPtr<double>("yc", mint::CELL_CENTERED);

 mint::for_all_cells<exec_policy, mint::xargs::coords>(
 &mesh,
 AXOM_LAMBDA(IndexType cellIdx,
 const numerics::Matrix<double>& coords,
 const IndexType* AXOM_NOT_USED(nodeIdx)) {
 // sum nodal coordinates
 double xsum = 0.0;
 double ysum = 0.0;
 const int numNodes = coords.getNumColumns();
 for(int inode = 0; inode < numNodes; ++inode)
 {
 const double* node = coords.getColumn(inode);
 xsum += node[mint::X_COORDINATE];
 ysum += node[mint::Y_COORDINATE];
 } // end for all cell nodes

 // compute centroid by averaging nodal coordinates
 const double invf = 1.0 / static_cast<double>(numNodes);
 xc[cellIdx] = xsum * invf;
 yc[cellIdx] = ysum * invf;
 });

Note

	xargs::coords indicates that the specified kernel takes the following
arguments:

	cellIdx, the ID of the cell,

	coords, a matrix that stores the cell coordinates, such that:

	The number of rows corresponds to the problem dimension, and,

	The number of columns corresponds to the number of nodes.

	The \(ith\) column vector of the matrix stores the coordinates of the
\(ith\) node.

	nodeIdx array of corresponding node IDs.

Loop with Face IDs

The IDs of the constituent cell Faces are sometimes needed to access the
corresponding face-centered quantities for certain operations. The face IDs
can be obtained using xargs::faceids as the second template argument to
the for_all_faces() function, to specify the Execution Signature of
the supplied kernel.

This feature is demonstrated with the following code snippet, which computes
the perimeter of each cell by summing the pre-computed face areas:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	 const double* area = mesh.getFieldPtr<double>("area", mint::FACE_CENTERED);
 double* perimeter =
 mesh.getFieldPtr<double>("perimeter", mint::CELL_CENTERED);

 mint::for_all_cells<exec_policy, mint::xargs::faceids>(
 &mesh,
 AXOM_LAMBDA(IndexType cellIdx, const IndexType* faceIDs, IndexType N) {
 perimeter[cellIdx] = 0.0;
 for(IndexType iface = 0; iface < N; ++iface)
 {
 perimeter[cellIdx] += area[faceIDs[iface]];
 }
 });

Note

	xargs::faceids indicates that the specified kernel takes the following
arguments:

	cellIdx, the ID of the cell,

	faceIDs, an array of the constituent face IDs, and,

	N, the number of Faces for the given cell.

Loop with IJK Indices

As with the Node Traversal Functions, when working with a
Structured Mesh, it is sometimes required to expose the regular
Topology of the Structured Mesh to obtain higher performance
for a particular algorithm. This typically entails using the logical
IJK ordering of the Structured Mesh to implement certain operations.
The template argument, xargs::ij (in 2D) or xargs::ijk (in 3D) may be
used as the second template argument to the for_all_cells() function, to
specify the Execution Signature of the supplied kernel.

For example, the following code snippet illustrates to obtain a cell’s
i and j indices within a kernel that computes the linear index of each
cell and stores the result in a cell-centered field, ID.

	1
2
3
4
5
6
7
8

	 const IndexType jp = mesh.cellJp();

 IndexType* ID = mesh.getFieldPtr<IndexType>("ID", mint::CELL_CENTERED);
 mint::for_all_cells<exec_policy, mint::xargs::ij>(
 &mesh,
 AXOM_LAMBDA(IndexType cellIdx, IndexType i, IndexType j) {
 ID[cellIdx] = i + j * jp;
 });

Warning

In this case, the kernel makes use of the IJK indices and hence it is
only applicable for a Structured Mesh.

Face Traversal Functions

The Face Traversal Functions functions iterate over the constituent
Faces of the mesh and apply a user-supplied kernel operation,
often specified with a Lambda Expression [https://www.cprogramming.com/c++11/c++11-lambda-closures.html]. The Face Traversal Functions
are implemented by the mint::for_all_faces() family of functions.
which take an Execution Policy as the first template argument, and
optionally, a second template argument to indicate the Execution Signature
of the supplied kernel.

Note

If a second template argument is not specified, the
default Execution Signature is set to xargs::index, which indicates
that the supplied kernel takes a single argument corresponding to the index
of the iteration space, in this case the face index, faceIdx.

Simple Loop Over Faces

The following code snippet illustrates a simple loop over the constituent
Faces of a 2D mesh that computes an interpolated face-centered quantity
(temp) based on pre-computed interpolation coefficients t1 , t2
and w.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	 const double* t1 = mesh.getFieldPtr<double>("t1", mint::FACE_CENTERED);
 const double* t2 = mesh.getFieldPtr<double>("t2", mint::FACE_CENTERED);
 const double* w = mesh.getFieldPtr<double>("w", mint::FACE_CENTERED);

 double* temp = mesh.getFieldPtr<double>("temp", mint::FACE_CENTERED);
 mint::for_all_faces<exec_policy>(
 &mesh,
 AXOM_LAMBDA(IndexType faceIdx) {
 const double wf = w[faceIdx];
 const double a = t1[faceIdx];
 const double b = t2[faceIdx];

 temp[faceIdx] = wf * a + (1. - wf) * b;
 });

Loop with Node IDs

The IDs of the constituent face Nodes are sometimes needed to access
associated node-centered data for certain calculations. The template argument,
xargs::nodeids, may be used as the second template argument to the
for_all_faces() function to specify the Execution Signature of the
supplied kernel. The xargs::nodeids template argument indicates that the
supplied kernel also takes the IDs of the constituent face Nodes as an
argument.

This feature is demonstrated with the following code snippet which averages
the node-centered velocity components to corresponding face-centered
quantities:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	 const double* vx = mesh.getFieldPtr<double>("vx", mint::NODE_CENTERED);
 const double* vy = mesh.getFieldPtr<double>("vy", mint::NODE_CENTERED);

 double* face_vx = mesh.getFieldPtr<double>("face_vx", mint::FACE_CENTERED);
 double* face_vy = mesh.getFieldPtr<double>("face_vy", mint::FACE_CENTERED);

 mint::for_all_faces<exec_policy, mint::xargs::nodeids>(
 &mesh,
 AXOM_LAMBDA(IndexType faceIdx, const IndexType* nodeIDs, IndexType N) {
 // sum constituent face node contributions
 face_vx[faceIdx] = 0.0;
 face_vy[faceIdx] = 0.0;
 for(int inode = 0; inode < N; ++inode)
 {
 face_vx[faceIdx] += vx[nodeIDs[inode]];
 face_vy[faceIdx] += vy[nodeIDs[inode]];
 } // END for all face nodes

 // average
 const double invf = 1.0 / static_cast<double>(N);
 face_vx[faceIdx] *= invf;
 face_vy[faceIdx] *= invf;
 });

Note

	xargs::nodeids indicates that the specified kernel takes three arguments:

	faceIdx, the ID of the cell,

	nodeIDs, an array of the constituent node IDs, and

	N, the number of Nodes for the corresponding face.

Loop with Coordinates

The coordinates of the constituent face Nodes are often required in
some calculations. The constituent face node coordinates may be supplied to
the specified kernel as an argument using xargs::coords as the second
template argument to the for_all_faces() function, to specify the
Execution Signature of the supplied kernel.

This feature is demonstrated with the following code snippet, which computes
the face centroid by averaging the coordinates of the constituent face
Nodes:

Note

Since this kernel does not use the node IDs, the argument to the kernel
is annotated using the AXOM_NOT_USED macro to silence compiler
warnings.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	 double* fx = mesh.getFieldPtr<double>("fx", mint::FACE_CENTERED);
 double* fy = mesh.getFieldPtr<double>("fy", mint::FACE_CENTERED);

 mint::for_all_faces<exec_policy, mint::xargs::coords>(
 &mesh,
 AXOM_LAMBDA(IndexType faceIdx,
 const numerics::Matrix<double>& coords,
 const IndexType* AXOM_NOT_USED(nodeIdx)) {
 // sum nodal coordinates
 double xsum = 0.0;
 double ysum = 0.0;
 const int numNodes = coords.getNumColumns();
 for(int inode = 0; inode < numNodes; ++inode)
 {
 const double* node = coords.getColumn(inode);
 xsum += node[mint::X_COORDINATE];
 ysum += node[mint::Y_COORDINATE];
 } // end for all face nodes

 // compute centroid by averaging nodal coordinates
 const double invf = 1.0 / static_cast<double>(numNodes);
 fx[faceIdx] = xsum * invf;
 fy[faceIdx] = ysum * invf;
 });

Note

	xargs::coords indicates that the specified kernel takes the following
arguments:

	faceIdx, the ID of the cell,

	coords, a matrix that stores the cell coordinates, such that:

	The number of rows corresponds to the problem dimension, and,

	The number of columns corresponds to the number of nodes.

	The \(ith\) column vector of the matrix stores the coordinates of the
\(ith\) node.

	nodeIdx array of corresponding node IDs.

Loop with Cell IDs

The constituent Faces of a mesh can be bound to either one or two
Cells. The IDs of the Cells abutting a face are required in
order to obtain the corresponding cell-centered quantities, needed by some
calculations. The template argument, xargs::cellids, may be used as the
second template argument to the for_all_faces() function to specify the
Execution Signature of the supplied kernel. Thereby, indicate that the supplied kernel also takes the IDs of the two abutting cells as an argument.

Note

External boundary faces are only bound to one cell. By convention, the
ID of the second cell for external boundary faces is set to \(-1\).

This functionality is demonstrated with the following example that loops
over the constituent Faces of a mesh and marks external boundary
faces:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 constexpr IndexType ON_BOUNDARY = 1;
 constexpr IndexType INTERIOR = 0;

 IndexType* boundary =
 mesh.getFieldPtr<IndexType>("boundary", mint::FACE_CENTERED);

 mint::for_all_faces<exec_policy, mint::xargs::cellids>(
 &mesh,
 AXOM_LAMBDA(IndexType faceIdx, IndexType AXOM_NOT_USED(c1), IndexType c2) {
 boundary[faceIdx] = (c2 == -1) ? ON_BOUNDARY : INTERIOR;
 });

Note

	xargs::coords indicates that the specified kernel takes the following
arguments:

	faceIdx, the ID of the cell,

	c1, the ID of the first cell,

	c2, the ID of the second cell, set to a \(-1\) if the face is
an external boundary face.

Finite Elements

Mint provides basic support for Finite Elements consisting of
Lagrange Basis shape functions for commonly employed
Cell Types and associated operations, such as functions to evaluate the
Jacobian and compute the forward and inverse Isoparametric Mapping.

Warning

Porting and refactoring of Mint’s Finite Elements for GPUs is
under development. This feature will be available in future versions
of Mint.

Create a Finite Element Object

All associated functionality with Finite Elements is exposed to the
application through the mint::FiniteElement class. The following code
snippet illustrates how to Create a Finite Element Object using a Linear
Lagrangian Quadrilateral Finite Element as an example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	 constexpr bool ZERO_COPY = true;

 double coords[] = {
 0.0,
 0.0, // x1, y1
 5.0,
 0.0, // x2, y2
 5.0,
 5.0, // x3, y3,
 0.0,
 5.0 // x4, y4
 };

 numerics::Matrix<double> nodes_matrix(2, 4, coords, ZERO_COPY);
 mint::FiniteElement fe(nodes_matrix, mint::QUAD);

 // bind to FE basis, wires the shape function pointers
 mint::bind_basis<MINT_LAGRANGE_BASIS, mint::QUAD>(fe);

	The mint::FiniteElement constructor takes two arguments:

	An \(N \times M\) Matrix consisting of the cell coordinates, where,
\(N\) corresponds to physical dimension of the cell and \(M\)
corresponds to the number of constituent cell nodes. The cell coordinates
are organized in the matrix such that, each column vector stores the
coordinates of a corresponding node.

	The cell type, e.g. mint::QUAD

	Then, mint::bind_basis() is called to bind the Finite Element object
to the Lagrange Basis. Effectively, this step wires the pointers
to the Lagrange Basis shape functions for the particular
cell type.

A similar construction follows for different Cell Types and associated
supported shape functions.

The Finite Element object, once constructed and bound to a basis, it may be used
to perform the following operations:

	Given a point in reference space, \(\hat{\xi} \in \bar{\Omega}\):

	Evaluate Shape Functions, \(N_i(\xi)\), associated with each of
the constituent cell nodes, which are often used as
interpolation weights,

	Evaluate the Jacobian, \(J(\xi)\), and

	Compute the Forward Isoparametric Map
\(\vec{x}: \bar{\Omega} \rightarrow \Omega^e\)

	Given a point in physical space, \(\hat{x} \in \Omega\):

	Compute the Inverse Isoparametric Map, which attempts to evaluate
the corresponding reference coordinates of the point,
\(\hat{\xi} \in \bar{\Omega}\), with respect to the finite element,
\(\Omega^e\). This operation is only defined for points that are
inside the element (within some \(\epsilon\)).

Evaluate Shape Functions

The shape functions can be readily computed from any mint::FiniteElement
instance by calling the evaluateShapeFunctions() method on the finite element
object. The following code snippet illustrates how to Evaluate Shape Functions
at the isoparametric center of a quadrilateral element, given by
\(\xi=(0.5,0.5)^T\):

	1
2
3
4

	 // isoparametric center
 double xi[] = {0.5, 0.5};
 double N[4];
 fe.evaluateShapeFunctions(xi, N);

	The evaluateShapeFunctions() method takes two arguments:

	xi, an input argument corresponding to the reference coordinates of
the point, \(\hat{\xi}\), where the shape functions will be
evaluated, and

	N, an output argument which is an array of length equal to the number
of constituent cell Nodes, storing the corresponding
shape functions.

Evaluate the Jacobian

Similarly, for a reference point, \(\hat{\xi} \in \bar{\Omega}\), the
Jacobian matrix, consisting the sums of derivatives of shape functions
and the corresponding determinant of the Jacobian, can be readily computed
from the finite element object as follows:

	1
2
3
4
5

	 numerics::Matrix<double> J(2, 2);
 fe.jacobian(xi, J);

 const double jdet = numerics::determinant(J);
 std::cout << "jacobian determinant: " << jdet << std::endl;

	The Jacobian matrix is computed by calling the jacobian() method on the
finite element object, which takes two arguments:

	xi, an input argument corresponding to the reference coordinates of
the point, \(\hat{\xi}\), where the Jacobian will be evaluated, and

	A matrix, represented by the axom::numerics::Matrix class, to store
the resulting Jacobian.

Note

The Jacobian matrix is not necessarily a square matrix. It can have
\(N \times M\) dimensions, where, \(N\) corresponds to the
dimension in the reference \(xi\)-space and \(M\) is the physical
dimension. For example, a quadrilateral element is defined in a 2D
reference space, but it may be instantiated within a 3D ambient space.
Consequently, the dimensions of the corresponding Jacobian would be
\(2 \times 3\) in this case.

	The determinant of the Jacobian can then be computed by calling
axom::numerics::determinant(), with the Jacobian as the input argument.

Forward Isoparametric Map

Given a point in reference space, \(\hat{\xi} \in \bar{\Omega}\), the
corresponding physical point, \(\hat{x} \in \Omega^e\) is computed by
calling the computePhysicalCoords() method on the finite element
object as illustrated below:

	1
2
3
4
5

	 double xc[2];
 fe.computePhysicalCoords(xi, xc);
 std::cout << "xc: (";
 std::cout << xc[0] << ", " << xc[1];
 std::cout << ")\n";

The computePhysicalCoords() method takes two arguments:

	xi, an input argument corresponding to the reference coordinates of
the point, \(\hat{\xi}\), whose physical coordinates are computed, and

	xc, an output array argument that stores the computed physical
coordinates, \(\hat{x} \in \Omega^e\)

Inverse Isoparametric Map

Similarly, given a point in physical space, \(\hat{x} \in \Omega\),
a corresponding point in the reference space of the element,
\(\hat{\xi} \in \bar{\Omega}\), can be obtained by calling
the computeReferenceCoords() method on the finite element object
as illustrated by the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	 double xr[2];
 int status = fe.computeReferenceCoords(xc, xr);

 switch(status)
 {
 case mint::INVERSE_MAP_FAILED:
 std::cout << "Newton-Raphson failed!";
 break;
 case mint::OUTSIDE_ELEMENT:
 std::cout << "point is outside!\n";
 break;
 default:
 // found the reference coordinates!
 std::cout << "xr: (";
 std::cout << xr[0] << ", " << xr[1];
 std::cout << ")\n";
 }

The computeReferenceCoords() method takes two arguments:

	xc an input argument consisting of the physical point coordinates, whose
reference coordinates are computed, and

	xi an output array to store the computed reference coordinates, if
successful.

The Inverse Isoparametric Map typically requires an iterative, non-linear
solve, which is typically implemented with a Newton-Raphson. Moreover, the
Inverse Isoparametric Map is only defined for points within the element,
\(\Omega^e\). Consequently, the computeReferenceCoords() method
returns a status that indicates whether the operation was successful.
Specifically, computeReferenceCoords() can return the following
statuses:

	
	INVERSE_MAP_FAILED

	This typically indicates that the Newton-Raphson iteration did not converge,
e.g., negative Jacobian, etc.

	
	OUTSIDE_ELEMENT

	This indicates that the Newton-Raphson converged, but the point is outside
the element. Consequently, valid reference coordinates do not exist for the
given point with respect to the element.

	
	INSIDE_ELEMENT

	This indicates the the Newton-Raphson converged and the point is inside the
element

Output to VTK

Mint provides native support for writing meshes in the ASCII Legacy
VTK File Format [https://vtk.org/Wiki/images/5/51/VTK-File-Formats.pdf]. Legacy VTK files are popular due to their simplicity and
can be read by a variety of visualization tools, such as VisIt [https://wci.llnl.gov/simulation/computer-codes/visit] and
ParaView [https://www.paraview.org/]. Thereby, enable quick visualization of the various Mesh Types
and constituent Field Data, which can significantly aid in debugging.

Warning

The Legacy VTK File Format [https://vtk.org/Wiki/images/5/51/VTK-File-Formats.pdf] does not provide support for face-centered
fields. Consequently, the output consists of only the node-centered and
cell-centered fields of the mesh.

The functionality for outputting a mesh to VTK is provided by the
mint::write_vtk() function. This is a free function in the
axom::mint namespace, which takes two arguments: (1) a pointer to
a mint::Mesh object, and, (2) the filename of the target VTK file,
as illustrated in the code snippet below:

	1

	 mint::write_vtk(mesh, fileName);

This function can be invoked on a mint::Mesh object, which can correspond
to any of the supported Mesh Types. The concrete mesh type will be
reflected in the resulting VTK output file according to the VTK File Format [https://vtk.org/Wiki/images/5/51/VTK-File-Formats.pdf]
specification.

Note

Support for VTK output is primarily intended for debugging and quick
visualization of meshes. This functionality is not intended for routine
output or restart dumps from a simulation. Production I/O capabilities
in the Axom Toolkit are supported through Sidre. Consult the
Sidre documentation for the details.

Examples

Warning

This section is under development

FAQ

Warning

This section is under development.

Appendix

Mint Application Code Example

Below is the complete Mint Application Code Example presented in
the Getting Started with Mint section. The code can be found in the Axom
source code under src/axom/mint/examples/user_guide/mint_getting_started.cpp.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

	// sphinx_tutorial_walkthrough_includes_start

#include "axom/config.hpp" // compile time definitions
#include "axom/core/execution/execution_space.hpp" // for execution_space traits

#include "axom/mint.hpp" // for mint classes and functions
#include "axom/core/numerics/Matrix.hpp" // for numerics::Matrix

// sphinx_tutorial_walkthrough_includes_end

// namespace aliases
namespace mint = axom::mint;
namespace numerics = axom::numerics;
namespace xargs = mint::xargs;

using IndexType = axom::IndexType;

// compile-time switch for execution policy
#if defined(AXOM_USE_RAJA) && defined(AXOM_USE_CUDA)
constexpr int NUM_BLOCKS = 512;
using ExecPolicy = axom::CUDA_EXEC<NUM_BLOCKS>;
#elif defined(AXOM_USE_RAJA) && defined(AXOM_USE_OPENMP)
using ExecPolicy = axom::OMP_EXEC;
#else
using ExecPolicy = axom::SEQ_EXEC;
#endif

constexpr IndexType NUM_NODES_PER_CELL = 4;
constexpr double ONE_OVER_4 = 1. / static_cast<double>(NUM_NODES_PER_CELL);

/*!
 * \brief Holds command-line arguments
 */
static struct
{
 int res;
 bool useUnstructured;
} Arguments;

//--
// FUNCTION PROTOTYPES
//--
void parse_args(int argc, char** argv);
mint::Mesh* getUniformMesh();
mint::Mesh* getUnstructuredMesh();

//--
// PROGRAM MAIN
//--
int main(int argc, char** argv)
{
 parse_args(argc, argv);

 // sphinx_tutorial_walkthrough_set_memory_start
 // NOTE: use unified memory if we are using CUDA
 const int allocID = axom::execution_space<ExecPolicy>::allocatorID();
 axom::setDefaultAllocator(allocID);
 // sphinx_tutorial_walkthrough_set_memory_end

 // sphinx_tutorial_walkthrough_construct_mesh_start

 mint::Mesh* mesh =
 (Arguments.useUnstructured) ? getUnstructuredMesh() : getUniformMesh();

 // sphinx_tutorial_walkthrough_construct_mesh_end

 // sphinx_tutorial_walkthrough_add_fields_start

 // add a cell-centered and a node-centered field
 double* phi = mesh->createField<double>("phi", mint::NODE_CENTERED);
 double* hc = mesh->createField<double>("hc", mint::CELL_CENTERED);

 constexpr int NUM_COMPONENTS = 2;
 double* xc =
 mesh->createField<double>("xc", mint::CELL_CENTERED, NUM_COMPONENTS);

 // sphinx_tutorial_walkthrough_add_fields_end

 // sphinx_tutorial_walkthrough_compute_hf_start

 // loop over the nodes and evaluate Himmelblaus Function
 mint::for_all_nodes<ExecPolicy, xargs::xy>(
 mesh,
 AXOM_LAMBDA(IndexType nodeIdx, double x, double y) {
 const double x_2 = x * x;
 const double y_2 = y * y;
 const double A = x_2 + y - 11.0;
 const double B = x + y_2 - 7.0;

 phi[nodeIdx] = A * A + B * B;
 });

 // sphinx_tutorial_walkthrough_compute_hf_end

 // sphinx_tutorial_walkthrough_cell_centers_start

 // loop over cells and compute cell centers
 mint::for_all_cells<ExecPolicy, xargs::coords>(
 mesh,
 AXOM_LAMBDA(IndexType cellIdx,
 const numerics::Matrix<double>& coords,
 const IndexType* nodeIds) {
 // NOTE: A column vector of the coords matrix corresponds to a nodes coords

 // Sum the cell's nodal coordinates
 double xsum = 0.0;
 double ysum = 0.0;
 double hsum = 0.0;

 const IndexType numNodes = coords.getNumColumns();
 for(IndexType inode = 0; inode < numNodes; ++inode)
 {
 const double* node = coords.getColumn(inode);
 xsum += node[mint::X_COORDINATE];
 ysum += node[mint::Y_COORDINATE];

 hsum += phi[nodeIds[inode]];
 } // END for all cell nodes

 // compute cell centroid by averaging the nodal coordinate sums
 const IndexType offset = cellIdx * NUM_COMPONENTS;
 const double invnnodes = 1.f / static_cast<double>(numNodes);
 xc[offset] = xsum * invnnodes;
 xc[offset + 1] = ysum * invnnodes;

 hc[cellIdx] = hsum * invnnodes;
 });

 // sphinx_tutorial_walkthrough_cell_centers_end

 // sphinx_tutorial_walkthrough_vtk_start

 // write the mesh in a VTK file for visualization
 std::string vtkfile =
 (Arguments.useUnstructured) ? "unstructured_mesh.vtk" : "uniform_mesh.vtk";
 mint::write_vtk(mesh, vtkfile);

 // sphinx_tutorial_walkthrough_vtk_end

 delete mesh;
 mesh = nullptr;

 return 0;
}

//--
// FUNCTION PROTOTYPE IMPLEMENTATION
//--
void parse_args(int argc, char** argv)
{
 Arguments.res = 25;
 Arguments.useUnstructured = false;

 for(int i = 1; i < argc; ++i)
 {
 if(strcmp(argv[i], "--unstructured") == 0)
 {
 Arguments.useUnstructured = true;
 }

 else if(strcmp(argv[i], "--resolution") == 0)
 {
 Arguments.res = std::atoi(argv[++i]);
 }

 } // END for all arguments

 SLIC_ERROR_IF(
 Arguments.res < 2,
 "invalid mesh resolution! Please, pick a value greater than 2.");
}

//--
// sphinx_tutorial_walkthrough_construct_umesh_start
mint::Mesh* getUniformMesh()
{
 // construct a N x N grid within a domain defined in [-5.0, 5.0]
 const double lo[] = {-5.0, -5.0};
 const double hi[] = {5.0, 5.0};
 mint::Mesh* m = new mint::UniformMesh(lo, hi, Arguments.res, Arguments.res);
 return (m);
}
// sphinx_tutorial_walkthrough_construct_umesh_end

//--
mint::Mesh* getUnstructuredMesh()
{
 mint::Mesh* umesh = getUniformMesh();
 const IndexType umesh_ncells = umesh->getNumberOfCells();
 const IndexType umesh_nnodes = umesh->getNumberOfNodes();

 const IndexType ncells = umesh_ncells * 4; // split each quad into 4 triangles
 const IndexType nnodes = umesh_nnodes + umesh_ncells;

 constexpr int DIMENSION = 2;
 using MeshType = mint::UnstructuredMesh<mint::SINGLE_SHAPE>;
 MeshType* m = new MeshType(DIMENSION, mint::TRIANGLE, nnodes, ncells);
 m->resize(nnodes, ncells);

 double* x = m->getCoordinateArray(mint::X_COORDINATE);
 double* y = m->getCoordinateArray(mint::Y_COORDINATE);
 IndexType* cells = m->getCellNodesArray();

 // fill coordinates from uniform mesh
 mint::for_all_nodes<ExecPolicy, xargs::xy>(
 umesh,
 AXOM_LAMBDA(IndexType nodeIdx, double nx, double ny) {
 x[nodeIdx] = nx;
 y[nodeIdx] = ny;
 });

 // loop over cells, compute cell centers and fill connectivity
 mint::for_all_cells<ExecPolicy, xargs::coords>(
 umesh,
 AXOM_LAMBDA(IndexType cellIdx,
 const numerics::Matrix<double>& coords,
 const IndexType* nodeIds) {
 // NOTE: A column vector of the coords matrix corresponds to a nodes coords

 // Sum the cell's nodal coordinates
 double xsum = 0.0;
 double ysum = 0.0;
 for(IndexType inode = 0; inode < NUM_NODES_PER_CELL; ++inode)
 {
 const double* node = coords.getColumn(inode);
 xsum += node[mint::X_COORDINATE];
 ysum += node[mint::Y_COORDINATE];
 } // END for all cell nodes

 // compute cell centroid by averaging the nodal coordinate sums
 const IndexType nc = umesh_nnodes + cellIdx; /* centroid index */
 x[nc] = xsum * ONE_OVER_4;
 y[nc] = ysum * ONE_OVER_4;

 // triangulate
 const IndexType& n0 = nodeIds[0];
 const IndexType& n1 = nodeIds[1];
 const IndexType& n2 = nodeIds[2];
 const IndexType& n3 = nodeIds[3];

 const IndexType offset = cellIdx * 12;

 cells[offset] = n0;
 cells[offset + 1] = nc;
 cells[offset + 2] = n3;

 cells[offset + 3] = n0;
 cells[offset + 4] = n1;
 cells[offset + 5] = nc;

 cells[offset + 6] = n1;
 cells[offset + 7] = n2;
 cells[offset + 8] = nc;

 cells[offset + 9] = n2;
 cells[offset + 10] = n3;
 cells[offset + 11] = nc;
 });

 // delete uniform mesh
 delete umesh;
 umesh = nullptr;

 return (m);
}

AXOM_LAMBDA Macro

The AXOM_LAMBDA convenience macro expands to:

	[=] capture by value when the Axom Toolkit is compiled without CUDA.

	[=] __host__ __device__ when the Axom Toolkit is compiled with CUDA

Raw Sidre Data

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

	{
 "name": "",
 "groups":
 {
 "state":
 {
 "name": "state",
 "groups":
 {
 "t1":
 {
 "name": "t1",
 "views":
 {
 "block_id":
 {
 "name": "block_id",
 "schema": "{\"dtype\":\"int32\", \"number_of_elements\": 1, \"offset\": 0, \"stride\": 4, \"element_bytes\": 4, \"endianness\": \"little\"}",
 "value": "-1",
 "state": "SCALAR",
 "is_applied": 1
 },
 "partition_id":
 {
 "name": "partition_id",
 "schema": "{\"dtype\":\"int32\", \"number_of_elements\": 1, \"offset\": 0, \"stride\": 4, \"element_bytes\": 4, \"endianness\": \"little\"}",
 "value": "-1",
 "state": "SCALAR",
 "is_applied": 1
 }
 }
 }
 }
 },
 "coordsets":
 {
 "name": "coordsets",
 "groups":
 {
 "c1":
 {
 "name": "c1",
 "views":
 {
 "type":
 {
 "name": "type",
 "schema": "{\"dtype\":\"char8_str\", \"number_of_elements\": 9, \"offset\": 0, \"stride\": 1, \"element_bytes\": 1, \"endianness\": \"little\"}",
 "value": "\"explicit\"",
 "state": "STRING",
 "is_applied": 1
 }
 },
 "groups":
 {
 "values":
 {
 "name": "values",
 "views":
 {
 "x":
 {
 "name": "x",
 "schema": "{\"dtype\":\"float64\", \"number_of_elements\": 6, \"offset\": 0, \"stride\": 8, \"element_bytes\": 8, \"endianness\": \"little\"}",
 "value": "[0.0, 2.0, 1.0, 3.5, 2.5, 5.0]",
 "state": "BUFFER",
 "is_applied": 1
 },
 "y":
 {
 "name": "y",
 "schema": "{\"dtype\":\"float64\", \"number_of_elements\": 6, \"offset\": 0, \"stride\": 8, \"element_bytes\": 8, \"endianness\": \"little\"}",
 "value": "[0.0, 0.0, 1.0, 1.0, 2.0, 0.0]",
 "state": "BUFFER",
 "is_applied": 1
 }
 }
 }
 }
 }
 }
 },
 "topologies":
 {
 "name": "topologies",
 "groups":
 {
 "t1":
 {
 "name": "t1",
 "views":
 {
 "coordset":
 {
 "name": "coordset",
 "schema": "{\"dtype\":\"char8_str\", \"number_of_elements\": 3, \"offset\": 0, \"stride\": 1, \"element_bytes\": 1, \"endianness\": \"little\"}",
 "value": "\"c1\"",
 "state": "STRING",
 "is_applied": 1
 },
 "type":
 {
 "name": "type",
 "schema": "{\"dtype\":\"char8_str\", \"number_of_elements\": 13, \"offset\": 0, \"stride\": 1, \"element_bytes\": 1, \"endianness\": \"little\"}",
 "value": "\"unstructured\"",
 "state": "STRING",
 "is_applied": 1
 }
 },
 "groups":
 {
 "elements":
 {
 "name": "elements",
 "views":
 {
 "shape":
 {
 "name": "shape",
 "schema": "{\"dtype\":\"char8_str\", \"number_of_elements\": 4, \"offset\": 0, \"stride\": 1, \"element_bytes\": 1, \"endianness\": \"little\"}",
 "value": "\"tri\"",
 "state": "STRING",
 "is_applied": 1
 },
 "connectivity":
 {
 "name": "connectivity",
 "schema": "{\"dtype\":\"int32\", \"number_of_elements\": 12, \"offset\": 0, \"stride\": 4, \"element_bytes\": 4, \"endianness\": \"little\"}",
 "value": "[1, 3, 2, 2, 0, 1, 3, 4, 2, 1, 5, 3]",
 "state": "BUFFER",
 "is_applied": 1
 },
 "stride":
 {
 "name": "stride",
 "schema": "{\"dtype\":\"int32\", \"number_of_elements\": 1, \"offset\": 0, \"stride\": 4, \"element_bytes\": 4, \"endianness\": \"little\"}",
 "value": "3",
 "state": "SCALAR",
 "is_applied": 1
 }
 }
 }
 }
 }
 }
 },
 "fields":
 {
 "name": "fields",
 "groups":
 {
 "den":
 {
 "name": "den",
 "views":
 {
 "association":
 {
 "name": "association",
 "schema": "{\"dtype\":\"char8_str\", \"number_of_elements\": 8, \"offset\": 0, \"stride\": 1, \"element_bytes\": 1, \"endianness\": \"little\"}",
 "value": "\"element\"",
 "state": "STRING",
 "is_applied": 1
 },
 "volume_dependent":
 {
 "name": "volume_dependent",
 "schema": "{\"dtype\":\"char8_str\", \"number_of_elements\": 5, \"offset\": 0, \"stride\": 1, \"element_bytes\": 1, \"endianness\": \"little\"}",
 "value": "\"true\"",
 "state": "STRING",
 "is_applied": 1
 },
 "topology":
 {
 "name": "topology",
 "schema": "{\"dtype\":\"char8_str\", \"number_of_elements\": 3, \"offset\": 0, \"stride\": 1, \"element_bytes\": 1, \"endianness\": \"little\"}",
 "value": "\"t1\"",
 "state": "STRING",
 "is_applied": 1
 },
 "values":
 {
 "name": "values",
 "schema": "{\"dtype\":\"float64\", \"number_of_elements\": 4, \"offset\": 0, \"stride\": 8, \"element_bytes\": 8, \"endianness\": \"little\"}",
 "value": "[0.5, 1.2, 2.5, 0.9]",
 "state": "BUFFER",
 "is_applied": 1
 }
 }
 }
 }
 }
 }
}

Primal User Guide

Primal is a component of Axom that provides efficient and general purpose
algorithms and data structures for computational geometry. Primal provides:

	Classes to represent geometric primitives such as Point and Ray

	Functions operating on Primal’s classes to implement geometric operators,
including distance and intersection

This tutorial contains a collection of brief examples demonstrating
Primal primitives and operators. The examples instantiate geometric primitives
as needed and demonstrate geometric operators. These examples also show
representative overloads of each of the Primal operators (see the
API documentation
for more details).

API Documentation

Doxygen generated API documentation can be found here: API documentation

Contents

	Primitives

	Operators
	Clip triangle against bounding box

	Closest point query

	Compute bounding box

	Intersection

	Orientation

	Distance

Primitives

Primal includes the following primitives:

	Point

	Segment, Ray, Vector

	Plane, Triangle, Polygon

	Sphere

	Tetrahedron

	BoundingBox, OrientedBoundingBox

Primal also provides the NumericArray class, which implements arithmetic
operations on numerical tuples and supports Primal’s Point and Vector classes.
Classes in Primal are templated on coordinate type (double, float, etc.) and
dimension. The primitives do not inherit from a common base class. This was a
design choice in favor of simplicity and performance. Geometric primitives can
be tested for equality and can be printed to strings.

Primal also includes functions to merge a pair of BoundingBox or a pair of
OrientedBoundingBox objects and to create new OrientedBoundingBox objects
from a list of points.

The following includes header files for primal’s primitives
as well as some using directives and typedef statements that will be used in
the examples. Header files for operations will be shown next to code examples.
Although the examples #include separate class header files, it is easier and
less error-prone to write #include axom/primal.hpp.

// Axom primitives
#include "axom/primal/geometry/BoundingBox.hpp"
#include "axom/primal/geometry/OrientedBoundingBox.hpp"
#include "axom/primal/geometry/Point.hpp"
#include "axom/primal/geometry/Polygon.hpp"
#include "axom/primal/geometry/Ray.hpp"
#include "axom/primal/geometry/Segment.hpp"
#include "axom/primal/geometry/Triangle.hpp"
#include "axom/primal/geometry/Vector.hpp"

// "using" directives to simplify code
using namespace axom;
using namespace primal;

// almost all our examples are in 3D
constexpr int in3D = 3;

// primitives represented by doubles in 3D
typedef Point<double, in3D> PointType;
typedef Triangle<double, in3D> TriangleType;
typedef BoundingBox<double, in3D> BoundingBoxType;
typedef OrientedBoundingBox<double, in3D> OrientedBoundingBoxType;
typedef Polygon<double, in3D> PolygonType;
typedef Ray<double, in3D> RayType;
typedef Segment<double, in3D> SegmentType;
typedef Vector<double, in3D> VectorType;

Operators

Primal implements geometric operators with unbound functions. Currently, these include
the following:

	clip finds the polygon resulting from a bounding box clipping a triangle.

	closest_point takes a primitive P and a query point Q and returns the point
on P closest to Q.

	compute_bounding_box finds the bounding box for a given primitive.

	squared_distance computes the squared distance from a point to another primitive.

	orientation finds the side of a line segment or triangle where a query point lies.

	intersect predicate tests if two primitives intersect. Some of the combinations
also indicate the point of intersection of a 1D primitive with another primitive.

Note

Most use cases have low dimension, usually 2 or 3. Dimensionality has been
generalized to support other values where it does not interfere with the
common case, but some operators such as triangle intersection do not support
other dimensionality than 2 or 3.

Note

Many of the operations includes a tolerance parameter eps for improved
geometric robustness. For example, orientation() considers a
point to be on the boundary (OrientationResult::ON_BOUNDARY) when the
point is within eps of the plane. This parameter is explicitly exposed
in the primal API for some operations (e.g. some versions of intersect()),
but not others (e.g. orientation()).

	Clip triangle against bounding box

	Closest point query

	Compute bounding box

	Intersection

	Orientation

	Distance

Clip triangle against bounding box

The clip operator clips a triangle against a bounding box, returning the
resulting polygon. The figure shows the triangle in blue and the polygon
resulting from clip() in grey.

[image: A polygon is produced by clipping a triangle.]

#include "axom/primal/operators/clip.hpp"

 TriangleType tri(PointType::make_point(1.2, 0, 0),
 PointType::make_point(0, 1.8, 0),
 PointType::make_point(0, 0, 1.4));

 BoundingBoxType bbox(PointType::make_point(0, -0.5, 0),
 PointType::make_point(1, 1, 1));

 PolygonType poly = clip(tri, bbox);

Closest point query

The closest point operator finds the point on a triangle that is closest to a
query point. Query point \(o\) (shown in dark blue), at the origin, is
closest to point \(o'\) (light blue), which lies in the triangle’s interior.
Query point \(a\) (olive) is closest to point \(a'\) (yellow), which
lies on the triangle’s edge at a vertex.

[image: Diagram showing the closest point query.]

#include "axom/primal/operators/closest_point.hpp"

 TriangleType tri(PointType::make_point(1, 0, 0),
 PointType::make_point(0, 1, 0),
 PointType::make_point(0, 0, 1));

 PointType pto = PointType::make_point(0, 0, 0);
 PointType pta = PointType::make_point(-1, 2, 1);

 // Query point o lies at the origin. Its closest point lies in the
 // interior of tri.
 PointType cpto = closest_point(pto, tri);

 // Query point a lies farther from the triangle. Its closest point
 // is on tri's edge.
 int lcpta = 0;
 PointType cpta = closest_point(pta, tri, &lcpta);

As the code example shows, closest_point() can take a pointer to an int
as an optional third parameter. If supplied, the function writes a value into
the int that indicates which of the triangle’s vertices or sides contains
the closest point (or the interior).

Compute bounding box

Primal’s bounding boxes are rectangular right prisms. That is, they are boxes
where neighboring walls are at right angles.

The BoundingBox class represents an axis-aligned bounding box, which has two
walls perpendicular to the X-axis, two perpendicular to the Y-axis, and two
perpendicular to the Z-axis. This is sufficient for many computations; range
and intersection operations tend to be fast.

The OrientedBoundingBox class can be oriented in any way with respect to the
coordinate axes. This can provide a tighter fit to the bounded data, but
construction, intersection, and range calculation are more costly.

Here a group of points is used to create both an (axis-aligned) BoundingBox
and an OrientedBoundingBox. The points are drawn in blue, the BoundingBox in
black, and the OrientedBoundingBox in orange.

[image: Diagram showing (axis-aligned) BoundingBox and OrientedBoundingBox objects bounding the same set of points.]

#include "axom/primal/operators/compute_bounding_box.hpp"

 // An array of Points to include in the bounding boxes
 const int nbr_points = 6;
 PointType data[nbr_points];
 data[0] = PointType::make_point(0.6, 1.2, 1.0);
 data[1] = PointType::make_point(1.3, 1.6, 1.8);
 data[2] = PointType::make_point(2.9, 2.4, 2.3);
 data[3] = PointType::make_point(3.2, 3.5, 3.0);
 data[4] = PointType::make_point(3.6, 3.2, 4.0);
 data[5] = PointType::make_point(4.3, 4.3, 4.5);

 // A BoundingBox constructor takes an array of Point objects
 BoundingBoxType bbox(data, nbr_points);
 // Make an OrientedBoundingBox
 OrientedBoundingBoxType obbox = compute_oriented_bounding_box(data, nbr_points);

Primal also provides a merge_boxes() function to produce a bounding box that
contains two input bounding boxes. This is available for client codes to use and
also supports the operation of the BVHTree class.

Intersection

The intersection test is provided by intersect(). It takes two primitives
and returns a boolean indicating if the primitives intersect. Some overloads
return the point of intersection in an output argument. The overloads for
intersect() are summarized in the table below.

	Arg 1

	Arg 2

	Additional arguments and notes

	Triangle

	Triangle

	include boundaries 1
(default false)

	Ray

	Segment

	return intersection point. 2D only.

	Segment

	BoundingBox

	return intersection point

	Ray

	BoundingBox

	return intersection point

	BoundingBox

	BoundingBox

	

	Sphere

	Sphere

	specify tolerance

	Triangle

	BoundingBox

	

	Triangle

	Ray

	return parameterized intersection
point (on Ray), return barycentric
intersection point (on Triangle)

	Triangle

	Segment

	return parameterized intersection
point (on Segment), return barycentric
intersection point (on Triangle)

	OrientedBoundingBox

	OrientedBoundingBox

	specify tolerance

	1

	By default, the triangle intersection algorithm considers only the
triangles’ interiors, so that non-coplanar triangles that share two
vertices are not reported as intersecting. The caller to
intersect() can specify an optional argument to include triangle
boundaries in the intersection test.

The example below tests for intersection between two triangles, a ray, and a
BoundingBox.

[image: Diagram showing intersection tests.]

#include "axom/primal/operators/intersect.hpp"

 // Two triangles
 TriangleType tri1(PointType::make_point(1.2, 0, 0),
 PointType::make_point(0, 1.8, 0),
 PointType::make_point(0, 0, 1.4));

 TriangleType tri2(PointType::make_point(0, 0, 0.5),
 PointType::make_point(0.8, 0.1, 1.2),
 PointType::make_point(0.8, 1.4, 1.2));

 // tri1 and tri2 should intersect
 if(intersect(tri1, tri2))
 {
 std::cout << "Triangles intersect as expected." << std::endl;
 }
 else
 {
 std::cout << "There's an error somewhere..." << std::endl;
 }

 // A vertical ray constructed from origin and point
 RayType ray(SegmentType(PointType::make_point(0.4, 0.4, 0),
 PointType::make_point(0.4, 0.4, 1)));

 // t will hold the intersection point between ray and tri1,
 // as parameterized along ray.
 double rt1t = 0;
 // rt1b will hold the intersection point barycentric coordinates,
 // and rt1p will hold the physical coordinates.
 PointType rt1b, rt1p;

 // The ray should intersect tri1 and tri2.
 if(intersect(tri1, ray, rt1t, rt1b) && intersect(tri2, ray))
 {
 // Retrieve the physical coordinates from barycentric coordinates
 rt1p = tri1.baryToPhysical(rt1b);
 // Retrieve the physical coordinates from ray parameter
 PointType rt1p2 = ray.at(rt1t);
 std::cout << "Ray intersects tri1 as expected. Parameter t: " << rt1t
 << std::endl
 << " Intersection point along ray: " << rt1p2 << std::endl
 << " Intersect barycentric coordinates: " << rt1b << std::endl
 << " Intersect physical coordinates: " << rt1p << std::endl
 << "Ray also intersects tri2 as expected." << std::endl;
 }
 else
 {
 std::cout << "There's an error somewhere..." << std::endl;
 }

 // A bounding box
 BoundingBoxType bbox(PointType::make_point(0.1, -0.23, 0.1),
 PointType::make_point(0.8, 0.5, 0.4));

 // The bounding box should intersect tri1 and ray but not tr2.
 PointType bbtr1;
 if(intersect(ray, bbox, bbtr1) && intersect(tri1, bbox) &&
 !intersect(tri2, bbox))
 {
 std::cout << "As hoped, bounding box intersects tri1 at " << bbtr1
 << " and ray, but not tri2." << std::endl;
 }
 else
 {
 std::cout << "There is at least one error somewhere..." << std::endl;
 }

In the diagram, the point where the ray enters the bounding box is shown as the
intersection point (not the exit point or some point inside the box). This is because
if a ray intersects a bounding box at more than one point,
the first intersection point along the ray (the intersection closest to the ray’s
origin) is reported as the intersection.
If a ray originates inside a bounding box, the ray’s origin will be reported as the point
of intersection.

Orientation

Axom contains two overloads of orientation(). The 3D case tests a point against
a triangle and reports which side it lies on; the 2D case tests a point against a
line segment. Here is an example of the 3D point-triangle orientation test.

[image: Diagram showing 3D point-triangle orientation test.]

#include "axom/primal/operators/orientation.hpp"

 // A triangle
 TriangleType tri(PointType::make_point(1.2, 0, 0),
 PointType::make_point(0, 1.8, 0),
 PointType::make_point(0, 0, 1.4));

 // Three points:
 // one on the triangle's positive side,
 PointType pos = PointType::make_point(0.45, 1.5, 1);
 // one coplanar to the triangle, the centroid,
 PointType cpl =
 PointType::lerp(PointType::lerp(tri[0], tri[1], 0.5), tri[2], 1. / 3.);
 // and one on the negative side
 PointType neg = PointType::make_point(0, 0, 0.7);

 // Test orientation
 if(orientation(pos, tri) == ON_POSITIVE_SIDE &&
 orientation(cpl, tri) == ON_BOUNDARY &&
 orientation(neg, tri) == ON_NEGATIVE_SIDE)
 {
 std::cout << "As expected, point pos is on the positive side," << std::endl
 << " point cpl is on the boundary (on the triangle),"
 << std::endl
 << " and point neg is on the negative side." << std::endl;
 }
 else
 {
 std::cout << "Someone wrote this wrong." << std::endl;
 }

The triangle is shown with its normal vector pointing out of its centroid. The
triangle’s plane divides space into a positive half-space, pointed into by the
triangle’s normal vector, and the opposing negative half-space. The test point
on the \(z\) axis, labelled \(N\), is on the negative side of the
triangle. The centroid lies in the triangle, on the boundary between the two
half-spaces. The remaining test point, labelled \(P\), is on the triangle’s
positive side.

Distance

The various overloads of squared_distance() calculate the squared
distance between a query point and several different primitives:

	another point,

	a BoundingBox,

	a Segment,

	a Triangle.

[image: Diagram showing 3D point-triangle orientation test.]

#include "axom/primal/operators/squared_distance.hpp"

 // The point from which we'll query
 PointType q = PointType::make_point(0.75, 1.2, 0.4);

 // Find distance to:
 PointType p = PointType::make_point(0.2, 1.4, 1.1);
 SegmentType seg(PointType::make_point(1.1, 0.0, 0.2),
 PointType::make_point(1.1, 0.5, 0.2));
 TriangleType tri(PointType::make_point(0.2, -0.3, 0.4),
 PointType::make_point(0.25, -0.1, 0.3),
 PointType::make_point(0.3, -0.3, 0.35));
 BoundingBoxType bbox(PointType::make_point(-0.3, -0.2, 0.7),
 PointType::make_point(0.4, 0.3, 0.9));

 double dp = squared_distance(q, p);
 double dseg = squared_distance(q, seg);
 double dtri = squared_distance(q, tri);
 double dbox = squared_distance(q, bbox);

The example shows the squared distance between the query point, shown in black
in the figure, and four geometric primitives. For clarity, the diagram also shows
the projection of the query point and its closest points to the XY plane.

Quest User Guide

The Quest component of Axom provides several spatial operations and queries
on a mint::Mesh.

	Operations

	Read a surface mesh from an STL file

	Check for some common mesh errors; deduplicate vertices

	vertex welding: merge vertices closer than a specified distance
“epsilon”

	find self-intersections and degenerate triangles in a surface mesh

	watertightness test: is a surface mesh a watertight manifold?

	Point queries

	Surface mesh point queries in C or
in C++

	in/out query: is a point inside or outside a surface mesh?

	signed distance query: find the minimum distance from a query point
to a surface mesh

	Point in cell query: for a query point, find the
cell of the mesh that holds the point and the point’s isoparametric
coordinates within that cell

	All nearest neighbors: given a list of point
locations and regions, find all neighbors of each point in a different
region

API Documentation

Doxygen generated API documentation can be found here: API documentation

Contents

	Reading in a mesh

	Check and repair a mesh
	Check for watertightness

	Surface mesh point queries: C API
	In/out C API

	Signed Distance query C API

	Surface mesh point queries: C++ API
	In/out Octree

	Signed Distance

	Point-in-cell query

	All nearest neighbors query

Reading in a mesh

Applications commonly need to read a mesh file from disk. Quest provides the
STLReader class, which can read binary or ASCII STL [https://en.wikipedia.org/wiki/STL_(file_format)] files, as well as the
PSTLReader class for use in parallel codes. STL (stereolithography)
is a common file format for triangle surface meshes. The STL reader classes
will read the file from disk and build a mint::Mesh object.

The code examples are excerpts from the file <axom>/src/tools/mesh_tester.cpp.

We include the STL reader header

#include "axom/quest/stl/STLReader.hpp"

and also the mint Mesh and UnstructuredMesh headers.

#include "axom/mint/mesh/Mesh.hpp"
#include "axom/mint/mesh/UnstructuredMesh.hpp"

For convenience, we use typedefs in the axom namespace.

using namespace axom;

using UMesh = mint::UnstructuredMesh<mint::SINGLE_SHAPE>;

The following example shows usage of the STLReader class:

 // Read file
 SLIC_INFO("Reading file: '" << params.stlInput << "'...\n");
 quest::STLReader* reader = new quest::STLReader();
 reader->setFileName(params.stlInput);
 reader->read();

 // Get surface mesh
 UMesh* surface_mesh = new UMesh(3, mint::TRIANGLE);
 reader->getMesh(surface_mesh);

 // Delete the reader
 delete reader;
 reader = nullptr;

 SLIC_INFO("Mesh has " << surface_mesh->getNumberOfNodes() << " vertices and "
 << surface_mesh->getNumberOfCells() << " triangles.");

After reading the STL file, the STLReader::getMesh method gives access to the
underlying mesh data. The reader may then be deleted.

Check and repair a mesh

The STL file format specifies triangles without de-duplicating their
vertices. Vertex welding is needed for several mesh algorithms that
require a watertight manifold. Additionally, mesh files often contain
errors and require some kind of cleanup.
The following code examples are excerpts from the file
<axom>/src/tools/mesh_tester.cpp.

Quest provides a function to weld vertices within a distance of some
specified epsilon. This function takes arguments
mint::UnstructuredMesh< mint::SINGLE_SHAPE > **surface_mesh and
double epsilon, and modifies surface_mesh. In addition to
the mint Mesh and UnstructuredMesh headers (see previous page), we
include the headers declaring the functions for checking and repairing
surface meshes.

#include "axom/quest/MeshTester.hpp"

The function call itself:

 quest::weldTriMeshVertices(&surface_mesh, params.weldThreshold);

One problem that can occur in a surface mesh is self-intersection. A
well-formed mesh will have each triangle touching the edge of each of its
neighbors. Intersecting or degenerate triangles can cause problems for some
spatial algorithms. To detect such problems using Quest, we first make
containers to record defects that might be found.

 std::vector<std::pair<int, int>> collisions;
 std::vector<int> degenerate;

Then, we call the function to detect self-intersections and degenerate
triangles.

 // Use a uniform grid spatial index
 quest::findTriMeshIntersections(surface_mesh,
 collisions,
 degenerate,
 params.resolution,
 params.intersectionThreshold);

After calling findTriMeshIntersections, collisions will hold
the indexes of each pair of intersecting triangles and degenerate will
contain the index of each degenerate triangle. The user code can then address or
report any triangles found. Mesh repair beyond welding close vertices is
beyond the scope of the Quest component.

Check for watertightness

Before using Quest’s surface point queries, a mesh must be watertight, with
no cracks or holes. Quest provides a function to test for watertightness,
declared in the same header file as the tests self-intersection and an enum
indicating watertightness of a mesh.
If the code is working with a mesh read in from an STL file,
weld the vertices (see above) before checking for watertightness!

 quest::WatertightStatus wtstat = quest::isSurfaceMeshWatertight(surface_mesh);

This routine builds the face relation of the supplied triangle surface mesh.
The face of a triangle is a one-dimensional edge. If the mesh is
big, building the face relation may take some time. Once built, the routine
queries face relation: each edge
of every triangle must be incident in two triangles. If the mesh has a
defect where more than two triangles share an edge, the routine returns
CHECK_FAILED. If the mesh has a hole, at least one triangle edge
is incident in only one triangle and the routine returns NOT_WATERTIGHT.
Otherwise, each edge is incident in two triangles, and the routine returns
WATERTIGHT.

After testing for watertightness, report the result.

 switch(wtstat)
 {
 case quest::WatertightStatus::WATERTIGHT:
 std::cout << "The mesh is watertight." << std::endl;
 break;
 case quest::WatertightStatus::NOT_WATERTIGHT:
 std::cout << "The mesh is not watertight: at least one "
 << "boundary edge was detected." << std::endl;
 break;
 default:
 std::cout << "An error was encountered while checking." << std::endl
 << "This may be due to a non-manifold mesh." << std::endl;
 break;
 }

After an STL mesh has

	been read in with STLReader,

	had vertices welded using weldTriMeshVertices(),

	contains no self-intersections as reported by findTriMeshIntersections(),

	and is watertight as reported by isSurfaceMeshWatertight(),

the in-out and distance field queries will work as designed.

Surface mesh point queries: C API

Quest provides the in/out and distance field queries to test a point against
a surface mesh. These queries take a mesh composed of triangles in 3D
and a query point. The in/out query tests whether the point is contained within
the surface mesh. The distance query calculates the signed distance from
the query point to the mesh.

[image: ../../../../_images/surface_mesh_queries.png]
Fig. 27 Types of point-vs-surface-mesh queries provided by Quest.
Left: In/out query, characterizing points as inside or outside the mesh.
Points that lie on the boundary might or might not be categorized as
inside the mesh.
Right: Distance query, calculating the signed distance from each
query point to its closest point on the mesh. A negative result indicates an
interior query point.

The following examples show Quest’s C interface to these queries. The general
pattern is to set some query parameters, then pass a mint::Mesh * or file
name string to an initialization function, call an evaluate function
for each query point, then clean up with a finalize function.

In/out C API

The in/out query operates on a 3D surface mesh, that is, triangles forming a
watertight surface enclosing a 3D volume. The in/out API utilizes integer-valued
return codes with values quest::QUEST_INOUT_SUCCESS and
quest::QUEST_INOUT_FAILED to indicate the success of each operation.
These examples are excerpted from <axom>/src/axom/quest/examples/quest_inout_interface.cpp.

To get started, we first include some header files.

#include "axom/quest/interface/inout.hpp"

#ifdef AXOM_USE_MPI
 #include <mpi.h>
#endif

Before initializing the query, we can set some parameters, for example,
to control the logging verbosity and to set a threshold for welding vertices
of the triangle mesh while generating the spatial index.

 // -- Set quest_inout parameters
 rc = quest::inout_set_verbose(isVerbose);
 if(rc != quest::QUEST_INOUT_SUCCESS)
 {
 cleanAbort();
 }

 rc = quest::inout_set_vertex_weld_threshold(weldThresh);
 if(rc != quest::QUEST_INOUT_SUCCESS)
 {
 cleanAbort();
 }

By default, the verbosity is set to false and the welding threshold is
set to 1E-9.

We are now ready to initialize the query.

#ifdef AXOM_USE_MPI
 rc = quest::inout_init(fileName, MPI_COMM_WORLD);
#else
 rc = quest::inout_init(fileName);
#endif

The variable fileName is a std::string that indicates a triangle
mesh file. Another overload of quest::inout_init() lets a user code pass
a reference to a mint::Mesh* to query meshes that were previously read in
or built up. If initialization succeeded (returned
quest::QUEST_INOUT_SUCCESS), the code can

	Query the mesh bounds with quest::inout_mesh_min_bounds(double[3]) and
quest::inout_mesh_max_bounds(double[3]).

	Find mesh center of mass with quest::inout_mesh_center_of_mass(double[3]).

	Test if a query point is inside the mesh surface. In this example pt
is a double[3] and numInside is a running total.

 const double x = pt[0];
 const double y = pt[1];
 const double z = pt[2];

 const bool ins = quest::inout_evaluate(x, y, z);
 numInside += ins ? 1 : 0;

Once we are done, we clean up with the following command:

 quest::inout_finalize();

Signed Distance query C API

Excerpted from <axom>/src/axom/quest/examples/quest_signed_distance_interface.cpp.

Quest header:

#include "axom/quest.hpp"

Before initialization, a code can set some parameters for the distance query.

	Passing true to quest::signed_distance_set_closed_surface(bool)
lets the user read in a non-closed “terrain mesh” that divides
its bounding box into “above” (positive distance to the surface mesh)
and “below” (negative distance).

	quest::signed_distance_set_max_levels() and
quest::signed_distance_set_max_occupancy() control options for the
BVH tree spatial index used to accelerate signed distance queries.

	If the SLIC logging environment is in use, passing true to
quest::signed_distance_set_verbose() will turn on verbose logging.

	Use of MPI-3 shared memory can be enabled by passing true to
quest::signed_distance_use_shared_memory().

The distance query must be initialized before use. In this example,
Arguments is a POD struct containing parameters to the executable.
As with the in/out query, a user code may pass either a file name or a
reference to a mint::Mesh * to quest::signed_distance_init().

 int rc = quest::signed_distance_init(args.fileName, global_comm);

Once the query is initialized, the user code may retrieve mesh bounds
with quest::signed_distance_get_mesh_bounds(double* lo, double* hi).
Test query points against the mesh with quest::signed_distance_evaluate().
Here, pt is a double[3], phi is a double array, and inode
is an integer.

 phi[inode] = quest::signed_distance_evaluate(pt[0], pt[1], pt[2]);

Finally, clean up.

 quest::signed_distance_finalize();

Surface mesh point queries: C++ API

Codes written in C++ may use the object-oriented C++ APIs to perform in/out and
signed distance queries. In addition to language choice, the C++ API lets a code work
with more than one mesh at the same time. Unlike the C API, the C++ API for
in/out and signed distance queries has no initializer taking a file name:
readying the mesh is a separate, prior step.

In/out Octree

The C++ in/out query is provided by the quest::InOutOctree class, from the
following header. See <axom>/src/axom/quest/tests/quest_inout_octree.cpp.

#include "axom/quest/InOutOctree.hpp"

Some type aliases are useful for the sake of brevity. The class is templated on
the dimensionality of the mesh. Currently, only meshes in 3D are supported;
here DIM equals 3.

using Octree3D = axom::quest::InOutOctree<DIM>;

using GeometricBoundingBox = Octree3D::GeometricBoundingBox;
using SpacePt = Octree3D::SpacePt;

Instantiate the object using GeometricBoundingBox bbox and a mesh, and
generate the index.

 Octree3D octree(bbox, mesh);
 octree.generateIndex();

Test a query point.

SpacePt pt = SpacePt::make_point(2., 3., 1.);
bool inside = octree.within(pt);

All cleanup happens when the index object’s destructor is called
(in this case, when the variable octree goes out of scope).

Signed Distance

The C++ signed distance query is provided by the quest::SignedDistance class,
which wraps an instance of primal::BVHTree.
Examples from <axom>/src/axom/quest/tests/quest_signed_distance.cpp.

Class header:

#include "axom/primal/geometry/Point.hpp"

#include "axom/quest/SignedDistance.hpp" // quest::SignedDistance

The constructor takes several arguments. Here, surface_mesh is a pointer to
a triangle surface mesh. The second argument indicates the mesh is a watertight
mesh, a manifold. The signed distance from a point to a manifold is
mathematically well-defined. When the input is not a closed surface mesh, the
mesh must span the entire computational mesh domain, dividing it into two regions.
The third and fourth arguments are used to build the underlying BVH tree
spatial index. They indicate that BVH tree buckets will be split after 25 objects
and that the BVH tree will contain at most 10 levels. These are safe default
values and can be adjusted if application benchmarking shows a need. Note that
the second and subsequent arguments to the constructor correspond to
quest::signed_distance_set functions in the C API.

As with the InOutOctree, the class is templated on the dimensionality
of the mesh, with only 3D meshes being supported.

 constexpr bool is_watertight = true;
 constexpr int max_objects = 25;
 constexpr int max_levels = 10;
 constexpr bool compute_signs = true;
 axom::quest::SignedDistance<3> signed_distance(surface_mesh,
 is_watertight,
 max_objects,
 max_levels,
 compute_signs);

Test a query point.

axom::primal::Point< double,3 > pt =
 axom::primal::Point< double,3 >::make_point(2., 3., 1.);
double signedDistance = signed_distance.computeDistance(pt);

The object destructor takes care of all cleanup.

Point-in-cell query

The point-in-cell query is particularly useful with high-order meshes.
It takes a 2D quad or 3D hex mesh and locates a query point in that mesh,
reporting both the cell containing the point and the isoparametric coordinates
of the query point within the cell.

Note

If a query point lies on the boundary in more than one cell, the
point-in-cell query will return the cell with the lowest index.

If the point lies outside of any cell, the query returns the special
value quest::PointInCellTraits<mesh_tag>::NO_CELL or using the
MeshTraits typedef, MeshTraits::NO_CELL.

[image: ../../../../_images/pic.png]
Fig. 28 Point-in-cell query, identifying the cell that contains a physical point and
finding the point’s isoparametric coordinates within the cell.

The point-in-cell query is currently implemented using MFEM, so to use this query
Axom must be compiled with MFEM as a dependency. The following example
(from <axom>/src/tests/quest_point_in_cell_mfem.cpp) shows
the use of the query, beginning with inclusion of required header files.

#include "axom/quest/PointInCell.hpp"

#ifdef AXOM_USE_MFEM
 #include "axom/quest/detail/PointInCellMeshWrapper_mfem.hpp"
#else
 #error "Quest's PointInCell tests on mfem meshes requires mfem library."
#endif

We use typedefs for the sake of brevity. The class is templated on
a struct (provided by Quest, referred to as mesh_tag) that is used to
select MFEM as the backend implementation for
point location. To implement a new backend, a developer must declare a new
(empty) struct and provide a specialization of the PointInCellTraits
and PointInCellMeshWrapper templated on the new struct that fulfill the
interface documented for those classes.

 typedef axom::primal::Point<int, DIM> GridCell;

 typedef axom::quest::quest_point_in_cell_mfem_tag mesh_tag;
 typedef axom::quest::PointInCellTraits<mesh_tag> MeshTraits;

 typedef axom::quest::PointInCell<mesh_tag> PointInCellType;

Instantiate the object using an MFEM mesh and a spatial index 25 bins on a side.

 PointInCellType spatialIndex(m_mesh, GridCell(25).data());

Test a query point. Here idx receives the ID of the cell that contains
queryPoint and isoPar is a primal::Point that receives the
isoparametric coordinates of queryPoint within cell idx.

 int idx = spatialIndex.locatePoint(queryPoint.data(), isoPar.data());

From cell ID and isoparametric coordinates, reconstruct the input physical
coordinates.

 SpacePt untransformPt;
 spatialIndex.reconstructPoint(idx, isoPar.data(), untransformPt.data());

The destructor of the index object cleans up resources used
(in this case, when the variable spatialIndex goes out of scope).

All nearest neighbors query

Some applications need to work with the interaction of points that are close
to each other. For example, in one technique used for additive manufacturing,
the particles in a powder bed are melted using a laser. Particle behavior
against nearby particles determines droplet formation. The all-nearest-neighbors
query takes as input a list of point positions and regions and a maximum radius.
For each point, using the L2 norm as the distance measure, the query calculates
the nearest neighbor point not in the same region, as shown in the figure.

[image: ../../../../_images/AllNearestNeighbors.png]
Fig. 29 All nearest neighbors query. Here, points belong to one of four
regions. Given a maximum search radius, the query finds
the closest neighbor to each point in another region.

Here is an example of query usage, from
<axom>/src/axom/quest/tests/quest_all_nearest_neighbors.cpp.

First, include the header.

#include "axom/quest/AllNearestNeighbors.hpp"

Query input consists of the points’ x, y, and z positions and region IDs,
the point count, and the search radius.

 double x[] = {-1.2, -1.0, -0.8, -1.0, 0.8, 1.0, 1.2, 1.0};
 double y[] = {0.0, -0.2, 0.0, 0.2, 0.0, -0.2, 0.0, 0.2};
 double z[] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
 int region[] = {0, 0, 0, 0, 1, 1, 1, 1};
 int n = 8;
 double limit = 1.9;

For each input point, the output arrays give the point’s neighbor index and
squared distance from the point to that neighbor.

 axom::quest::all_nearest_neighbors(x, y, z, region, n, limit, neighbor, dsq);

Sidre User Guide

The Sidre (Simulation data repository) component of Axom provides tools to
centralize data management in HPC applications: data description, allocation,
access, and so forth. The goal of Sidre is efficient coordination and sharing
of data: across physics packages in integrated applications, and between
applications and tools that provide capabilities such as file I/O, in situ
visualization, and analysis.

The design of Sidre is based on substantial experience with current LLNL
applications and requirements identified for new codes to run on future
architectures. All of these codes must carefully manage data allocation and
placement to run efficiently. Related capabilities in existing codes were
typically developed independently for each code with little regard to sharing.
In contrast, Sidre is designed from inception to be shared by different
applications.

API Documentation

Doxygen generated API documentation can be found here: API documentation

Introduction

Sidre provides simple application-level semantics to describe,
allocate/deallocate, and provide access to data. Currently supported
capabilities include:

	Separate data description and allocation operations. This allows applications
to describe their data and then decide how best to place the data in memory.

	Multiple different “views” into a chunk of (shared) data. A Sidre view
includes description semantics to define data type, number of elements,
offset, stride, etc. Thus, a chunk of data in memory can be interpreted
conceptually in different ways using different views into it.

	Externally-owned “opaque” or described data. Sidre can accept a pointer to
externally-allocated data and provide access to it by name. When
external data is described to Sidre, it can be processed in the same ways
as data that Sidre owns. When data is not described (i.e., it is “opaque”),
Sidre can provide access to the data via a pointer, but the consumer of the
pointer must know type information to do anything substantial with the data.

	Attributes, or metadata associated with a Sidre view. This metadata is
available to user code to facilitate program logic and is also used
in Axom to enable selective writing data sets to files.

	Tree-structured data hierarchies. Many mesh-based application codes
organize data into hierarchies of contexts (e.g., domains, regions, blocks,
mesh centerings, subsets of elements containing different materials, etc.).
Sidre supports hierarchical, tree-based organizations in a simple, flexible
way that aligns with the data organization in many applications.

	APIs for C++, C, and Fortran along with mechanisms to ensure inter-language
data consistency.

So far, Sidre development has focused on designing and building flexible and
powerful concepts to build on. The Sidre API includes five main concepts:

	Datastore. The main access point to data managed by Sidre; it contains
a collection of Buffers, a collection of default Attributes, and a tree
structure of Groups.

	Buffer. Describes and holds a chunk of data in memory owned by Sidre.

	Group. Defines a tree structure like a filesystem, where Groups are like
folders and Views are like files.

	View. Describes a conceptual layout of data in memory. Each View
has a collection of its explicitly-set Attributes.

	Attribute. Provides an item of metadata describing a View.

These concepts will be described in more detail in later sections.

At this point, Sidre supports simple data types such as scalars, strings, and
(multidimensional) arrays of scalars. Fundamentally, Sidre does not preclude
the use of more complex data structures, but does not currently support them
directly. Future Sidre development will expand core functionality to support
additional features such as:

	Mechanisms to associate data with memory spaces and transfer data between
spaces.

	Support for more complex data types.

	Complex queries and actions involving Attributes.

Support for these enhancements and others will be added based on application
needs and use cases.

Contents

	An introductory example

	Core concepts
	DataStore

	Buffer

	Group

	View

	Attribute

	Serial File I/O
	File I/O using Group class

	Parallel File I/O
	Introduction

	Parallel I/O using IOManager class

	IOManager class use

	User-specified data in the root file

	Sidre Interaction with Conduit
	Mesh Blueprint

	Data Visualization

An introductory example

As an introduction to the core concepts in Sidre and how they work, here is an
example where we construct the Sidre Datastore shown in the following figure:

[image: diagram of an example datastore]

	Symbol

	Sidre class

	[image: ../../../../_images/roundrectangle.png]

	Group

	[image: ../../../../_images/rectangle.png]

	View

	[image: ../../../../_images/hexagon.png]

	Attribute

The diagram represents a Datastore, which contains all Sidre objects and
provides the main interface to access those objects.
Rounded rectangles represent Sidre Group objects. Each Group has a name and
one parent Group, except for the root Group (i.e. “/”) which has no parent.
A Group may have zero or more child Groups (indicated by an
arrow from the parent to each child). The Datastore provides exactly one
root Group (i.e. “/”) which is created when a Datastore object is constructed;
thus, an application does not create the root. Each Group also owns zero or
more View objects, which are shown as rectangles. An arrow points from a Group
to each View it owns.

A Sidre View object has a name and, typically, some data associated with it.
This example shows various types of data that can be described by a View,
including scalars, strings, and data in arrays (both externally allocated
and owned by Sidre Buffer objects). Each array View has a data pointer and
describes data in terms of data type, number of elements, offset, and stride.
Data pointers held by array Views are shown as dashed arrows.

A Datastore contains a collection of Buffer objects, shown as segmented
rectangles.

A Datastore contains a list of Attributes. Each Attribute is outlined
with a hexagon and defines a metadata label and a default value associated
with that label. In this example, the Datastore has Attributes “vis” (with
default value 0) and “restart” (with default value 1). Default Attributes
apply to all Views unless explicitly set for individual Views. In this
example, the Views “temp” and “rho” have the Attribute “vis” set to 1.

Various aspects of Sidre usage are illustrated in the C++ code shown next.
Sidre provides full C and Fortran APIs that can also be used to generate
the same result.

First, we create a Datastore object, define some Attributes along with their
default values, and add some child Groups to the root Group.

 // Create Sidre datastore object and get root group
 DataStore* ds = new DataStore();
 Group* root = ds->getRoot();

 // Create two attributes
 ds->createAttributeScalar("vis", 0);
 ds->createAttributeScalar("restart", 1);

 // Create group children of root group
 Group* state = root->createGroup("state");
 Group* nodes = root->createGroup("nodes");
 Group* fields = root->createGroup("fields");

The Group::createViewScalar() method lets an application store scalar
values in Views owned by a Group.

 // Populate "state" group
 state->createViewScalar("cycle", 25);
 state->createViewScalar("time", 1.2562e-2);
 state->createViewString("name", "sample_20171206_a");

This example stores (x, y, z) node position data in one array.
The array is managed through a Buffer object and three Views point into it.
C++ Sidre operations that create Buffers, Groups, and Views, as shown in the
following code, return a pointer to the object that is created. This allows
chaining operations. (Chaining is supported in the C++ API but not in C or
Fortran.)

 int N = 16;
 int nodecount = N * N * N;
 int eltcount = (N - 1) * (N - 1) * (N - 1);

 // Populate "nodes" group
 //
 // "x", "y", and "z" are three views into a shared Sidre buffer object that
 // holds 3 * nodecount doubles. These views might describe the location of
 // each node in a 16 x 16 x 16 hexahedron mesh. Each view is described by
 // number of elements, offset, and stride into that data.
 Buffer* buff = ds->createBuffer(sidre::DOUBLE_ID, 3 * nodecount)->allocate();
 nodes->createView("x", buff)->apply(sidre::DOUBLE_ID, nodecount, 0, 3);
 nodes->createView("y", buff)->apply(sidre::DOUBLE_ID, nodecount, 1, 3);
 nodes->createView("z", buff)->apply(sidre::DOUBLE_ID, nodecount, 2, 3);

The last two integral arguments to the ‘createView()’ method specify the
offset from the beginning of the array and the stride of the data. Thus,
the x, y, z values for each position are stored contiguously with the
x values, y values, and z values each offset from each other by a stride of
three in the array.

The next snippet creates two views (“temp” and “rho”) and allocates each of
their data as an array of type double with length ‘eltcount’. Then, it sets
an Attribute (“vis”) on each of those Views with a value of 1. Lastly, it
creates a Group (“ext”) that has a View that holds an external pointer
(“region”). The ‘apply()’ method describes the View data as an array of
integer type and length ‘eltcount’. Note that it is the responsibility of
the caller to ensure that the allocation to which the “region” pointer
references is adequate to contain that data description.

 // Populate "fields" group
 //
 // "temp" is a view into a buffer that is not shared with another View.
 // In this case, the data Buffer is allocated directly through the View
 // object. Likewise with "rho." Both Views have the default offset (0)
 // and stride (1). These Views could point to data associated with
 // each of the 15 x 15 x 15 hexahedron elements defined by the nodes above.
 View* temp = fields->createViewAndAllocate("temp", sidre::DOUBLE_ID, eltcount);
 View* rho = fields->createViewAndAllocate("rho", sidre::DOUBLE_ID, eltcount);

 // Explicitly set values for the "vis" Attribute on the "temp" and "rho"
 // buffers.
 temp->setAttributeScalar("vis", 1);
 rho->setAttributeScalar("vis", 1);

 // The "fields" Group also contains a child Group "ext" which holds a pointer
 // to an externally owned integer array. Although Sidre does not own the
 // data, the data can still be described to Sidre.
 Group* ext = fields->createGroup("ext");
 // int * region has been passed in as a function argument. As with "temp"
 // and "rho", view "region" has default offset and stride.
 ext->createView("region", region)->apply(sidre::INT_ID, eltcount);

The next code example shows various methods to retrieve Groups and data out
of Views in the Group hierarchy.

 // Retrieve Group pointers
 Group* root = ds->getRoot();
 Group* state = root->getGroup("state");
 Group* nodes = root->getGroup("nodes");
 Group* fields = root->getGroup("fields");

 // Accessing a Group that is not there gives a null pointer
 // Requesting a nonexistent View also gives a null pointer
 Group* goofy = root->getGroup("goofy");
 if(goofy == nullptr)
 {
 std::cout << "no such group: goofy" << std::endl;
 }
 else
 {
 std::cout << "Something is very wrong!" << std::endl;
 }

 // Access items in "state" group
 int cycle = state->getView("cycle")->getScalar();
 double time = state->getView("time")->getScalar();
 const char* name = state->getView("name")->getString();

 // Access some items in "nodes" and "fields" groups
 double* y = nodes->getView("y")->getArray();
 int ystride = nodes->getView("y")->getStride();
 double* temp = fields->getView("temp")->getArray();
 int* region = fields->getView("ext/region")->getArray();

 // Nudge the 3rd node, adjust temp and region of the 3rd element
 y[2 * ystride] += 0.0032;
 temp[2] *= 1.0021;
 region[2] = 6;

In the last section, the code accesses the arrays associated with the views
“y”, “temp”, and “region”. While “temp” and “region” have the default offset
(0) and stride (1), “y” has offset 1 and stride 3 (as described earlier).
The pointer returned by View::getPointer() always points to the first
data element described by the View (the View takes care of the offset),
but use of a stride other than 1 must be done by the code itself.

Unix-style path syntax using the slash (“/”) delimiter is supported for
traversing Sidre Group and View hierarchies and accessing their contents.
However, ‘..’ and ‘.’ syntax (up-directory and current directory) is not
supported. This usage is shown in the last call to getView() in the code
example above. The method call retrieves the View named “region” in the Group
“ext” that is a child of the “fields” Group. Character sequences before the
first slash and between two consecutive slashes are assumed to be Group names
(describing parent-child relationships). For this method, and others dealing
with Views, the sequence following the last slash is assumed to be the name of
a View. Similar path syntax can be used to retrieve Groups, create Groups and
Views, and so forth.

Core concepts

Sidre provides five main classes: Datastore, Buffer, Group, View, and
Attribute. In combination, these classes implement a data store with a tree
structure to organize data in a hierarchy:

	DataStore is the main interface to access a data hierarchy.

	Buffer describes and holds data in memory.

	Group defines parent-child relationships in a hierarchical tree data structure and provides access to file I/O operations.

	View provides a virtual description of data and access to it.

	Attribute allows a program to attach metadata to View objects for processing data selectively.

The following sections summarize the main interface features and functionality
of these Sidre classes.

Note

Interfaces for each of these classes are provided natively in C++,
C, and Fortran.

	DataStore

	Buffer

	Group
	Methods to Operate on Groups

	Methods to Operate on Views

	Group I/O Operations

	View
	View Property Operations

	Data Association Queries

	Data State Queries

	Data Description Queries

	Data Management Operations

	Data Access Methods

	Attribute Methods

	I/O Operations

	Attribute

DataStore

A Sidre DataStore object provides the main access point for Sidre contents,
including the data managed by Sidre. In particular, a DataStore maintains the
group at the root of the Sidre group hierarchy, a collection of
Buffer objects, and a collection of Attribute objects. Generally, the first
thing a Sidre user does is create a DataStore; this operation also creates
the root group. Apart from providing access to the root group, a DataStore
object provides methods to interact with Buffer and Attribute objects.

Note

Buffer and Attribute objects can only be created and destroyed
using DataStore methods noted below. Their constructors and
destructors are private.

DataStore methods for Buffers support the following operations:

	Create, destroy, and allocate data in Buffer objects

	Query the number of Buffers that exist

	Query whether a Buffer exists with given id

	Retrieve Buffer with given id

	Iterate over the set of Buffers in a DataStore

Please see Buffer for more information about using Buffer objects.

DataStore methods for Attributes support the following operations:

	Create and destroy Attributes

	Query the number of Attributes that exist

	Query whether an Attribute exists with given name or id

	Retrieve Attribute with given name or id

	Iterate over the set of Attributes in a DataStore

Please see Attribute for more information about using Attribute
objects.

Buffer

A Sidre Buffer object holds an array of data described by a data type and
length. The data owned by a Buffer is unique to that Buffer object; i.e.,
Buffer objects do not share data.

A Buffer can be created without a data description and then described
later in a separate operation, or it can be described when it is created.
In either case, data description and allocation are distinct operations. This
allows an application to create buffers it needs, then assess the types and
amount of data they will hold before deciding how and when to allocate data.

Note

	Buffer objects can only be created and destroyed using DataStore
methods. The Buffer constructor and destructor are private
(see DataStore).

	Each Buffer object has a unique integer identifier generated when it
is created. If you want to interact with a Buffer object directly,
you must keep a pointer to it or note its id so that you can
retrieve it from the DataStore when needed.

Buffer objects are used to hold data for Sidre View objects in most cases.
Each Buffer object maintains references to the Views that refer to its data.
These references are created when a Buffer object is attached to a View, or
data is allocated through a View. Data stored in a Buffer may be accessed
through a View object or through the Buffer directly. See View
for more information about Views.

The Buffer interface includes the following operations:

	Retrieve the unique id of the Buffer object.

	Query whether a Buffer is described or allocated.

	Describe Buffer data (type and number of elements).

	Allocate, reallocate, deallocate Buffer data.

	Copy a given number of bytes of data from a given pointer to a Buffer
allocation.

	Get data held by a Buffer as a pointer or conduit::Node::Value type.

	Get information about data held by a Buffer: type, number of elements,
total number of bytes, number of bytes per element, etc.

	Retrieve the number of Views the Buffer is attached to.

	Copy Buffer description and its data to/from a conduit::Node.

Group

Sidre Group objects are used to define a tree-like hierarchical organization
for application data, such as meshes and fields used in a simulation. Each
Group has a name and one parent Group (except for the root Group) and contains
zero or more child Groups and zero or more Views. A Sidre DataStore has
exactly one root Group which is created when the DataStore object
is created. The root Group’s name is initially the empty string.
See DataStore for more information.

A Group hierarchy is constructed by creating Groups that are children of the
root Group, children of those Groups, and so on. All Groups in a subtree
rooted at a particular Group are considered descendants of that Group. View
objects can be created in Groups to hold or provide access to data.

Note

Group and View objects can only be created and destroyed using
Group methods provided for this. The Group and View constructors
and destructors are private.

A Group or View object is owned by the Group that created it; i.e., its parent
Group or owning Group, respectively. Groups and Views maintain pointers to
their parent/owning Group. Thus, one may walk up or down a Group hierarchy
to access different Groups and Views in it.

Note

	The name (string) of a Group or View must be unique within its
parent/owning Group.

	A Group or View has a unique integer identifier within its
parent/owning group, which is generated when it is created.

	Views and child Groups in a Group can be accessed by name or
integer id.

A Group object can be moved or copied to another Group. When a Group is moved
to another Group, it is removed from its original parent and the Group to
which it is moved becomes its parent. This implies that the entire subtree
of Groups and Views within the moved Group is moved as well and can no longer
be accessed via the original parent Group. When a Group is copied to another
Group, a copy of the entire Group subtree rooted at the copied Group is added
to the Group to which it is copied. A shallow copy is performed for the
data in each View; i.e., a new View object is created in the destination, but
the data is shared by the original and new View.

Note

View copy operations perform shallow copies of the View data.

Some methods for creating, destroying, querying, and retrieving Groups and
Views take a string with path syntax, where parent and child Group names
are joined with the path separator character, ‘/’.
Other methods take the name of an
immediate child of a Group. Methods that require the name of a direct child
are marked with ‘Child’ in their name, such as hasChildView() and
hasChildGroup(). When a path string is passed to a method that accepts
path syntax, the last item in the path indicates the item to be created,
destroyed, accessed, etc. For example,:

View* view = group->createView("foo/bar/baz");

is equivalent to:

View* view = group->createGroup("foo")->createGroup("bar")->createView("baz");

In particular, intermediate Groups “foo” and “bar” will be created in this
case if they don’t already exist. The path syntax is similar to a Unix
filesystem, but the path string may not contain the parent entry
(such as “../foo”).

Methods to Operate on Groups

The following lists summarize Group methods that support operations related to
Group objects.

Note

	Methods that access Groups by index only work with the direct
children of the current Group because an id has no meaning
outside of the indexing of the current group. None of these methods
is marked with ‘Child’ in its name.

	When Groups are created, destroyed, copied, or moved,
ids of other Views and Groups in parent Group objects may
become invalid. This is analogous to iterator invalidation for
containers when the container contents change.

Create, Modify, and Destroy Groups

	Create a child Group given a name (child) or path (other descendant).
If a path is given, intermediate Groups in path are created, if needed.

	Rename a Group. A Group cannot be renamed to the empty string, to
a string containing the path separator character, or to the name of
another Group or View owned by the same parent.

	Destroy a descendant Group with given id (child), or name/path (child or
other descendant).

	Destroy all child groups in a Group.

Note

When a Group is destroyed, all Groups and Views in the subtree
rooted at the destroyed Group are also destroyed. However, the
data associated with those Views will remain intact.

Group Properties

	Retrieve the name or id of a Group object.

	Retrieve the full path name from the root of the tree to a Group object.

	Get a pointer to the parent Group of a Group.

	Query the number of child Groups of a Group.

	Query whether a Group has a descendant Group with a given name or path.

	Query whether a Group has a child Group with a given integer id.

	Query the name of a child Group with a given id, or the id of a child Group
with a given name.

	Get a pointer to the DataStore that owns the hierarchy in which a Group
resides.

Group Access

	Retrieve an immediate child Group with a given name or id, or a descendant
Group with a given path.

	Iterate over the set of child Groups in a Group.

Move and Copy Groups

	Move a Group, and its associated subtree, from its parent Group and make it
a child of another Group.

	Create a copy of Group subtree rooted at some Group and make it a child of
another Group.

	Query whether Group subtree is equivalent to another; i.e., identical
subtree structures with same names for all Groups and Views, and Views are
also equivalent (see View Property Operations).

Methods to Operate on Views

The Group methods that support operations related to View objects are
summarized below. For more details on View concepts and operations, please
see View.

Note

Methods that access Views by index work only with the
Views owned by the current Group because an id has no meaning
outside of the indexing of the current group. None of these methods
is marked with ‘Child’ in its name.

Create Views

	Create a View in the Group with a name only.

	Create a View in the Group with a name and data description.

	Create a View in the Group with a name and with a Buffer attached. The
View may or may not have a data description.

	Create a View in the Group with a name and an external data pointer. The
data may or may not be described.

	Create a View in the Group with a name and data description, and allocate
the data. Implicitly the data is held in a Buffer that is attached to the
View.

	Create a View in the Group with a name holding a given scalar or string.

Destroy Views

	Destroy View with given id (child), or name/path (View in the Group or some
descendant Group), and leave View data intact.

	Destroy all Views in the Group, and leave their data intact.

	Destroy View with given id, or name/path, and destroy their data.

	Destroy all Views in the Group and destroy their data.

View Queries

	Query the number of Views in a Group.

	Query whether a Group subtree has a View with a given name or path.

	Query whether a Group has a View with a given integer id.

	Query the name of a View with a given id, or the id of a View with a given
name.

View Access

	Retrieve a View with a given name or id, or a descendant View (somewhere
in the subtree) with a given path.

	Iterate over the set of Views in a Group.

Move and Copy Views

	Move a View from its owning Group to another Group (removed from original
owning Group).

	Copy a View to another Group. Note that this is shallow copy of the
View data; i.e., it is shared by the original and new View.

Group I/O Operations

The Group interface provides methods to perform data I/O operations on Views
in the Group subtree rooted at any Group.

	Copy a description of a Group subtree to a conduit::Node.

	Create native and external data layouts in conduit::Node hierarchies
(used mainly for I/O operations)

	Save and load Group subtrees, including data in associated Views, to and
from files. A variety of methods are provided to support different I/O
operations, different I/O protocols, etc.

I/O methods on the Group class use Conduit [https://github.com/LLNL/conduit]
to write the data (sub)tree rooted in a Group to a
file, HDF5 [https://www.hdfgroup.org/HDF5/] handle, or other
Conduit protocol, or to an in-memory Conduit data structure. An application may
provide an Attribute to the method call, so only Views with that Attribute
explicitly set will be written. See Parallel File I/O for more
information.

View

A Sidre View describes data and provides access to it. A View can describe
a (portion) of a data allocation in any way that is compatible with the
allocation. Specifically, the allocation must contain enough bytes to support
the description. In particular, the data type of a View description need
not match the types associated with the allocation employed by other Views
into that data.

Note

View objects can only be created and destroyed using Group methods
provided for this. The View constructor and destructor are private.

Each View object has a name and is owned by one Group in a Sidre Group
hierarchy; its owning Group. A View maintains a pointer to the Group that
owns it.

Note

	The name (string) of a View must be unique within its
owning Group.

	A View has a unique integer identifier within its owning group,
which is generated when the View is created.

	Views in a Group can be accessed by name or integer id.

A View object can describe and provide access to data referenced by a
pointer in one of four ways described below. In that case, a View data
description includes: a data type, a length (number of elements), an offset
and a stride (based on the pointer address and data type).

	A View can describe (a subset of) data owned by a pre-existing Buffer.
In this case, the Buffer is manually attached to the View and the
View’s data description is applied to the Buffer data. Buffer data can be
(re)allocated or deallocated by the View if and only if it is the only
View attached to the Buffer. In general, a Buffer can be attached
to more than one View.

	A View description can be used to allocate data for View using a View
allocate() method similar to Buffer data description and allocation
(see Buffer). In this case, the View is usually exclusively
associated with a Buffer and no other View is allowed to (re)allocate or
deallocate the data held by the Buffer.

	A View can describe data associated with a pointer to an external
data allocation. In this case, the View cannot (re)allocate or deallocate
the data. However, all other View operations can be applied to the data
in essentially the same ways as the previous two cases.

	A View can hold a pointer to an undescribed (opaque) data pointer. In
this case, the View knows nothing about the type or structure of the data;
it can only provide access to it. A user is entirely responsible for
casting the pointer to a proper type, knowing the size of the data, etc.

A View may also refer to a scalar quantity or a string. Such Views hold their
data differently than the pointer cases described above.

Before we describe the Sidre View interface, we present some View concepts
that describe various states a View can be in at any given time. Hopefully,
this will provide some useful context for the method descriptions that follow.

The key View concepts that users should be aware of are:

	View data description (data type, number of elements, stride, offset, etc.)

	View data association (data lives in an attached Sidre Buffer object,
accessed via external pointer, or is a scalar or string owned by the View)

	Whether the View data description is applied to the data

The table below summarizes View data associations (rows) and View states with
respect to that data (columns).

[image: ../../../../_images/sidre-view-states.png]
Fig. 30 This table summarizes Sidre View data associations and data states.
Each row is a data association and each column refers to a data state.
The True/False entries in the cells indicate return values of the
View methods at the tops of the columns. The circumstances under which those
values are returned are noted as well.

The three View data state methods at the tops of columns and their return
values are:

	isDescribed() returns true if a View has a data description, and
false otherwise.

	isAllocated() returns true if a View is associated with data, such as
a non-null pointer, and false otherwise.

	isApplied() returns true if the View has a data description and is
associated with data that is compatible with that description, and the
description has been applied to the data; otherwise false is returned.

The rows indicate data associations; the View interface has methods to query
these as well; e.g., isEmpty(), hasBuffer(), etc. The associations are:

	EMPTY. A View with no associated data; the View may or may not have
a data description.

	BUFFER. A View with an attached buffer; the View may or may not have
a data description and the Buffer may or may not be allocated and the
description (if View has one) may or may not be applied to the Buffer data
(if allocated).

	EXTERNAL. A View has a non-null pointer to external data; the View
may or may not have a data description and the description (if View has one)
may or may not be applied to the external data.

	SCALAR. View was created to hold a scalar value; such a View always
has a valid data description, is allocated, and description is applied.

	STRING. View was created to hold a string; such a View always
has a valid data description, is allocated, and description is applied.

Note that there are specific consequences that follow from each particular
association/state that a View is in. For example, an EMPTY View cannot have an
attached Buffer. Neither can an EXTERNAL, SCALAR or STRING View. A View that
is EMPTY, BUFFER, SCALAR, or STRING cannot be EXTERNAL. Etc.

The following lists summarize the parts of the View interface:

Note

Most View methods return a pointer to the View object on which the
method is called. This allows operations to be chained; e.g.,

View* view = ...;
view->describe(...)->allocate(...)->apply();

View Property Operations

	Retrieve the name or id of the View object.

	Retrieve the View path name from the root of the tree or the path to the
Group that owns it.

	Get a pointer to the Group that owns the View.

	Is View equivalent to another View; i.e., are names and data descriptions
the same?

	Rename a View.

Data Association Queries

	Is View empty?

	Does View have a Buffer attached?

	Is View associated with external data?

	Is it a scalar View?

	Is it a string View?

Data State Queries

	Does View have a data description?

	Is View data allocated?

	Is View data description applied to data?

	Is View opaque; i.e., it has an external pointer and no description?

Data Description Queries

	Get type of data.

	Get total number of bytes.

	Get number of elements (total bytes / size of type).

	Get number of bytes per data element (for type).

	Get data offet.

	Get data stride.

	Get number of dimensions and shape of multi-dimensional data.

	Get a conduit::Schema object that contains the View data description.

Data Management Operations

	Allocate, reallocate, and deallocate View data.

	Attach Buffer to View (with or without data description),
and detach Buffer from View.

	Apply current View description to data or apply a new description.

	Set View scalar value.

	Set View string.

	Set external data pointer, with or without a data description.

Data Access Methods

	Get a pointer to View data, actual type or void*.

	Get scalar value for a scalar View.

	Retrieve pointer to Buffer attached to View.

	Get a conduit::Node object that holds the View data.

Attribute Methods

	Query whether View has an Attribute with given id or name.

	Get Attribute associated with a View by id or name.

	Query whether Attribute has been set explicitly for View.

	Reset Attribute with given id or name to its default value.

	Set Attribute with given id or name to a given scalar value or string.

	Retrieve scalar value or string of an Attribute.

	Iterate over Attributes of a View.

I/O Operations

	Copy View data description to a conduit::Node.

Attribute

Sidre Attributes enable attaching metadata (strings and values) to Sidre
Views to support queries (e.g., search for Views with a given attribute name),
outputting data for a subset of Views to files, and other ways an application
may need to selectively process Views in a Sidre DataStore hierarchy.

An Attribute is created with a string name and a default scalar or string value.
A default value can be changed later as needed.

Note

	Attribute objects can only be created and destroyed using DataStore
methods. The Attribute constructor and destructor are private
(see DataStore).

	Each Attribute has a unique name and integer identifier. Either can
be used to retrieve it from the DataStore.

Each Sidre View inherits all Attributes contained in the DataStore at their
default strings or values. Then, an application may explicitly set any
Attribute on a View. The application may also query the value of a View
Attribute, query whether the Attribute was explicitly set, or set the
Attribute back to its default value. See View
for more information about Views.

The Attribute interface includes the following operations:

	Retrieve the name and unique id of the Attribute object.

	Set the scalar or string value of an Attribute.

	Get the type of an Attribute’s scalar value.

Serial File I/O

Sidre provides for file I/O to HDF5 files and file handles and to JSON files.
Serial I/O is accomplished using methods of the Group class; parallel I/O is done
using the IOManager class.

HDF5 is an optional dependency for Sidre. Sidre APIs that rely on HDF5 will be
available only if Sidre was compiled with HDF5 support. The symbol that controls
dependency on HDF5 is AXOM_USE_HDF5, defined in the source file axom/config.hpp.

File I/O using Group class

The Group class contains the save(), load(), and
loadExternalData() methods. Each method can be called with a file
name or an HDF5 handle. The save() and load() methods
allow the code to specify a protocol, specifying how the
operation should be performed and what file format should be used. The
loadExternalData() method takes no protocol argument since it is only used with
the sidre_hdf5 protocol. The save() method can also take a pointer to an
Attribute object. If that Attribute pointer is null, all Views are saved, but
if an Attribute pointer is provided, only Views with that Attribute explicitly
set will be saved.

Insert a link to Doxygen for Group, and mention that protocols are listed here.

The load() method retrieves the hierarchical data structure stored in the file
or pointer, and instantiates Groups, Views and Attributes to represent the
structure rooted in this Group. By default, the contents of this Group are
destroyed prior to reading the file’s contents. This can be suppressed by
passing true as the preserve_contents argument to load(), resulting in the
current Group’s subtree being merged with the file’s contents.

Usage of save() and load() is shown in the following example.

 // Save the data store to a file,
 // saving all Views
 ds->getRoot()->save(filename, protocol);
 // Delete the data hierarchy under the root, then load it from the file
 ds->getRoot()->load(filename, protocol);
 Group* additional = ds->getRoot()->createGroup("additional");
 additional->createGroup("yetanother");
 // Load another copy of the data store into the "additional" group
 // without first clearing all its contents
 std::string groupname;
 additional->load(filename, protocol, true, groupname);

The loadExternalData() method is used to read “external” data from an HDF5 file
created with the sidre_hdf5 protocol. This is data referred to by Views that is
not stored in Sidre Buffers but in a raw pointer.

The overloads of save() and load() that take HDF5 handles and the
loadExternalData() method are public APIs that are used to implement parallel
I/O through the IOManager class.

Parallel File I/O

The Sidre IOManager class provides
an interface to manage parallel I/O of the data managed by Sidre. It
enables the writing of data from parallel runs and can
be used for the purposes of restart or visualization.

Introduction

The IOManager class provides parallel I/O services to Sidre.
IOManager relies on the fact that Sidre’s Group and View objects are
capable of saving and loading themselves. These I/O operations in Sidre are
inherently serial, so IOManager coordinates the I/O operations of multiple
Sidre objects that exist across the MPI ranks of a parallel run.

	The internal details of the I/O of individual Sidre objects are opaque to
IOManager, which needs only to make calls to the I/O methods in Sidre’s public
API.

	Sidre data is written from M ranks to N files (M >= N), and the files can
be read to restart a run on M ranks.

	When saving output, a root file is created that contains some bookkeeping
data that is used to coordinate a subsequent restart read.

	The calling code can also add extra data to the root file to provide
metadata that gives necessary instructions to visualization tools.

Parallel I/O using IOManager class

To accomplish parallel I/O, Sidre provides the IOManager class. This class is
instantiated with an MPI communicator and provides several overloads of the
write() and read() methods. These methods save a Group in parallel
to a set of files and read a Group from existing files.
IOManager optionally uses the SCR library for scalable I/O
management (such as using burst buffers if available).

In typical usage, a run that calls read() on a certain set of files
should be executed on the same number of MPI ranks as the run that created
those files with a write() call. However, if using the “sidre_hdf5”
protocol, there are some usage patterns that do not have this limitation.

A read() call using “sidre_hdf5” will work when called from a greater
number of processors. If write() was executed on N ranks and read()
is called while running on M ranks (M > N), then data will be read into ranks
0 to N-1, and all ranks higher than N-1 will receive no data.

If read() is called using “sidre_hdf5” to read data that was created on
a larger number of processors, this will work only in the case that the data
was written in a file-per-processor mode (M ranks to M files). In this case
the data in the Group being filled with file input will look a bit different
than in other usage patterns, since a Group on one rank will end up with data
from multiple ranks. An integer scalar View named reduced_input_ranks
will be added to the Group with the value being the number of ranks that
wrote the files. The data from each output rank will be read into subgroups
located at rank_{%07d}/sidre_input in the input Group’s data hierarchy.

Warning

If read() is called to read data that was created on a larger
number of processors than the current run with files produced in M-to-N
mode (M > N), an error will occur. Support for this type of usage is
intended to be added in future releases.

In the following example, an IOManager is created and used to write the contents
of the Group “root” in parallel.

First include needed headers.

#include "axom/config.hpp" // for AXOM_USE_HDF5

#include "conduit_blueprint.hpp"

#include "conduit_relay.hpp"

#ifdef AXOM_USE_HDF5
 #include "conduit_relay_io_hdf5.hpp"
#endif

#include "axom/sidre/core/sidre.hpp"
#include "axom/sidre/spio/IOManager.hpp"
#include "fmt/fmt.hpp"

#include "mpi.h"

Then use IOManager to save in parallel.

 /*
 * Contents of the DataStore written to files with IOManager.
 */
 int num_files = num_output;
 axom::sidre::IOManager writer(MPI_COMM_WORLD);

 const std::string file_name = "out_spio_parallel_write_read";

 writer.write(root, num_files, file_name, PROTOCOL, "tree_%07d");

 std::string root_name = file_name + ROOT_EXT;

Loading data in parallel is easy:

 /*
 * Create another DataStore that holds nothing but the root group.
 */
 DataStore* ds2 = new DataStore();

 /*
 * Read from the files that were written above.
 */
 IOManager reader(MPI_COMM_WORLD);

 reader.read(ds2->getRoot(), root_name);

IOManager class use

An IOManager
is constructed with an MPI communicator and does I/O operations on all ranks
associated with that communicator

The core functionality of IOManager is contained in the write() and read() methods.

void write(sidre::DataGroup * group,
 int num_files,
 const std::string& file_string,
 const std::string& protocol);

write() is called in parallel with each rank passing in a Group pointer
for its local data. The calling code specifies the number of output files,
and IOManager organizes the output so that each file receives data from a
roughly equal number of ranks. The files containing the data from the group
will have names of the format “file_string/file_string_*******.suffix”, with a
7-digit integer value identifying the files from 0 to num_files-1, and the
suffix indicating the file format according to the protocol argument.
Additionally write() will produce a root file with the name file_string.root
that holds some bookkeeping data about the other files and can also receive
extra user-specified data.

void read(sidre::DataGroup * group,
 const std::string& root_file);

read() is called in parallel with the root file as an argument. It must be
called on a run with the same processor count as the run that called write().
The first argument is a pointer to a group that contains no child groups or
views, and the information in the root file is used to identify the files that
each processor will read to load data into the argument group.

The write() and read() methods above are sufficient to do a restart save/load
when the data is the group is completely owned by the Sidre data structures.
If Sidre is used to manage data that is externally allocated, the loading
procedure requires some additional steps to restore data in the same
externally-allocated state.

First the read() method is called, and the full hierarchy structure of the
group is loaded into the Sidre Group, but no data is allocated for Views
identified as external. Then the calling code can examine the group and
allocate data for the external Views. View::setExternalDataPtr() is used
to associate the pointer with the view. Once this is done, IOManager’s
loadExternalData() can be used to load the data from the file into the
user-allocated arrays.

Below is a code example for loading external data. We assume that this code
somehow has knowledge that the root group contains a single external view at
the location “fields/external_array” describing an array of doubles. See the
Group and View documentation for information about how to query the Sidre data
structures for this type of information when the code does not have a priori
knowledge.

// Construct a DataStore with an empty root group.
DataStore * ds = new DataStore();
DataGroup * root = ds->getRoot();

// Read from file into the root group. The full Sidre hierarchy is built,
// but the external view is created without allocating a data buffer.
IOManager reader(MPI_COMM_WORLD);
reader.read(root, "checkpoint.root");

// Get a pointer to the external view.
DataView * external_view = root->getView("fields/external_array");

// Allocate storage for the array and associate it with the view.
double * external_array = new double[external_view->getNumElements()];
external_view->setExternalDataPtr(external_array);

// Load the data values from file into the external view.
reader.loadExternalData(root, "checkpoint.root");

User-specified data in the root file

The root file is automatically created to provide the IOManager with
bookkeeping information that is used when reading data, but it can also
be used to store additional data that may be useful to the calling code or
is needed to allow other tools to interact with the data in the output files,
such as for visualization. For example, Conduit’s blueprint index can be
stored in a DataGroup written to the root file
to provide metadata about the
mesh layout and data fields that can be visualized from the output files.

void writeGroupToRootFile(sidre::DataGroup * group,
 const std::string& file_name);

void writeGroupToRootFileAtPath(sidre::DataGroup * group,
 const std::string& file_name,
 const std::string& group_path);

void writeViewToRootFileAtPath(sidre::DataView * view,
 const std::string& file_name,
 const std::string& group_path);

The above methods are used to write this extra data to the root file. The
first simply writes data from the given group to the top of the root file,
while the latter two methods write their Sidre objects to a path that must
already exist in the root file.

Sidre Interaction with Conduit

Internally, Sidre uses the in-memory data description capabilities of
Conduit [https://github.com/LLNL/conduit]. Sidre also leverages Conduit
to facilitate data exchange, demonstrated here as applied to visualization.
The following discussion gives a basic overview of Sidre’s capabilities
when combined with Conduit. Please see the reference documentation for
more details.

Mesh Blueprint

The Mesh Blueprint [http://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html]
is a data exchange protocol supported by Conduit, consisting of a
properly-structured Datastore saved as an HDF5 or JSON file and a Conduit index
file. The Blueprint can accomodate structured or unstructured meshes, with
node- or element-centered fields. The following example shows how to create a
Blueprint-conforming Datastore containing two unstructured adjacent hexahedrons
with one node-centered field and one element-centered field. In the diagram,
nodes are labeled in black, the node-centered field values are in blue, and
the element-centered field values are in green.

[image: ../../../../_images/tiny_mesh.png]
A simulation organizes its Sidre data as the code design dictates.
Here is a simple example.

[image: ../../../../_images/ds.png]
Here is the code to create that Dataset ds.

 DataStore* ds = new DataStore();

 int nodecount = 12;
 int elementcount = 2;

 // Create views and buffers to hold node positions and field values
 Group* nodes = ds->getRoot()->createGroup("nodes");
 View* xs = nodes->createViewAndAllocate("xs", sidre::DOUBLE_ID, nodecount);
 View* ys = nodes->createViewAndAllocate("ys", sidre::DOUBLE_ID, nodecount);
 View* zs = nodes->createViewAndAllocate("zs", sidre::DOUBLE_ID, nodecount);

 Group* fields = ds->getRoot()->createGroup("fields");
 View* nodefield =
 fields->createViewAndAllocate("nodefield", sidre::INT_ID, nodecount);
 View* eltfield =
 fields->createViewAndAllocate("eltfield", sidre::DOUBLE_ID, elementcount);

 // Set node position for two adjacent hexahedrons
 double* xptr = xs->getArray();
 double* yptr = ys->getArray();
 double* zptr = zs->getArray();
 for(int pos = 0; pos < nodecount; ++pos)
 {
 xptr[pos] = ((pos + 1) / 2) % 2;
 yptr[pos] = (pos / 2) % 2;
 zptr[pos] = pos / 4;
 }

 // Assign a value to the node field
 int* nf = nodefield->getArray();
 for(int pos = 0; pos < nodecount; ++pos)
 {
 nf[pos] = static_cast<int>(xptr[pos] + yptr[pos] + zptr[pos]);
 }
 // and to the element field.
 double* ef = eltfield->getArray();
 // There are only two elements.
 ef[0] = 2.65;
 ef[1] = 1.96;

 return ds;

To use the Mesh Blueprint, make a new Group tinymesh conforming to the protocol.
The structure of the conforming Group is shown below (summarizing
the Mesh Blueprint [http://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html]
documentation).

First build top-level groups required by the Blueprint.

[image: ../../../../_images/cds.png]
 // Conduit needs a specific hierarchy.
 // We'll make a new DataStore with that hierarchy, pointing at the
 // application's data.
 std::string mesh_name = "tinymesh";

 // The Conduit specifies top-level groups:
 Group* mroot = ds->getRoot()->createGroup(mesh_name);
 Group* coords = mroot->createGroup("coordsets/coords");
 Group* topos = mroot->createGroup("topologies");
 // no material sets in this example
 Group* fields = mroot->createGroup("fields");
 // no adjacency sets in this (single-domain) example

Add the node coordinates. The Views under tinymesh will point to the
same Buffers that were created for the Views under nodes
so that tinymesh can use the data without any new allocation or copying.

[image: ../../../../_images/cdscoords.png]
 // Set up the coordinates as Mesh Blueprint requires
 coords->createViewString("type", "explicit");
 // We use prior knowledge of the layout of the original datastore
 View* origv = ds->getRoot()->getView("nodes/xs");
 Group* conduitval = coords->createGroup("values");
 conduitval->createView("x",
 sidre::DOUBLE_ID,
 origv->getNumElements(),
 origv->getBuffer());
 origv = ds->getRoot()->getView("nodes/ys");
 conduitval->createView("y",
 sidre::DOUBLE_ID,
 origv->getNumElements(),
 origv->getBuffer());
 origv = ds->getRoot()->getView("nodes/zs");
 conduitval->createView("z",
 sidre::DOUBLE_ID,
 origv->getNumElements(),
 origv->getBuffer());

Arrange the nodes into elements. Each simulation has its own knowledge of
topology. This tiny example didn’t previously encode topology,
so we must explicitly specify it.

[image: ../../../../_images/cdstopo.png]
 // Sew the nodes together into the two hexahedra, using prior knowledge.
 Group* connmesh = topos->createGroup("mesh");
 connmesh->createViewString("type", "unstructured");
 connmesh->createViewString("coordset", "coords");
 Group* elts = connmesh->createGroup("elements");
 elts->createViewString("shape", "hex");

 // We have two eight-node hex elements, so we need 2 * 8 = 16 ints.
 View* connectivity =
 elts->createViewAndAllocate("connectivity", sidre::INT_ID, 16);

 // The Mesh Blueprint connectivity array for a hexahedron lists four nodes on
 // one face arranged by right-hand rule to indicate a normal pointing into
 // the element, then the four nodes of the opposite face arranged to point
 // the normal the same way (out of the element). This is the same as for
 // a VTK_HEXAHEDRON. See
 // https://www.vtk.org/wp-content/uploads/2015/04/file-formats.pdf.

 int* c = connectivity->getArray();

 // First hex. In this example, the Blueprint node ordering matches the
 // dataset layout. This is fortuitous but not required.
 c[0] = 0;
 c[1] = 1;
 c[2] = 2;
 c[3] = 3;
 c[4] = 4;
 c[5] = 5;
 c[6] = 6;
 c[7] = 7;

 // Second and last hex
 c[8] = 4;
 c[9] = 5;
 c[10] = 6;
 c[11] = 7;
 c[12] = 8;
 c[13] = 9;
 c[14] = 10;
 c[15] = 11;

Link the fields into tinymesh. As with the node positions, the Views
point to the existing Buffers containing the field data.

[image: ../../../../_images/cdsfields.png]
 // Set up the node-centered field
 // Get the original data
 View* origv = ds->getRoot()->getView("fields/nodefield");
 Group* nodefield = fields->createGroup("nodefield");
 nodefield->createViewString("association", "vertex");
 nodefield->createViewString("type", "scalar");
 nodefield->createViewString("topology", "mesh");
 nodefield->createView("values",
 sidre::INT_ID,
 origv->getNumElements(),
 origv->getBuffer());

 // Set up the element-centered field
 // Get the original data
 origv = ds->getRoot()->getView("fields/eltfield");
 Group* eltfield = fields->createGroup("eltfield");
 eltfield->createViewString("association", "element");
 eltfield->createViewString("type", "scalar");
 eltfield->createViewString("topology", "mesh");
 eltfield->createView("values",
 sidre::DOUBLE_ID,
 origv->getNumElements(),
 origv->getBuffer());

Conduit includes a verify method to test if the structure
of the tinymesh conforms to the Mesh Blueprint. This is valuable for writing and
debugging data adapters.
Once the Datastore is properly structured, save it, then use Conduit to save the
index file (ending with .root). This toy data set is small enough that we can
choose to save it as JSON.

 conduit::Node info, mesh_node, root_node;
 ds->getRoot()->createNativeLayout(mesh_node);
 std::string bp_protocol = "mesh";
 if(conduit::blueprint::verify(bp_protocol, mesh_node[mesh_name], info))
 {
 // Generate the Conduit index
 conduit::Node& index = root_node["blueprint_index"];
 conduit::blueprint::mesh::generate_index(mesh_node[mesh_name],
 mesh_name,
 1,
 index[mesh_name]);

 std::string root_output_path = mesh_name + ".root";
 std::string output_path = mesh_name + ".json";

 root_node["protocol/name"] = "json";
 root_node["protocol/version"] = "0.1";
 root_node["number_of_files"] = 1;
 root_node["number_of_trees"] = 1;
 root_node["file_pattern"] = output_path;
 root_node["tree_pattern"] = "/";

 // Now save both the index and the data set
 conduit::relay::io::save(root_node, root_output_path, "json");
 conduit::relay::io::save(mesh_node, output_path, "json");
 }
 else
 {
 std::cout << "does not conform to Mesh Blueprint: ";
 info.print();
 std::cout << std::endl;
 }

The code listed above produces the files tinymesh.json and tinymesh.root.
Any code that uses Mesh Blueprint can open and use this pair of files.

The DataStore also contains a method that can automatically generate the
Blueprint index within a Sidre Group rather than calling directly into
Conduit. Set up a mesh similarly to the example above.

 // Conduit needs a specific hierarchy.
 // We'll make a new Group with that hierarchy, pointing at the
 // application's data.
 std::string domain_name = "domain";
 std::string domain_location = "domain_data/" + domain_name;
 std::string mesh_name = "mesh";
 std::string domain_mesh = domain_location + "/" + mesh_name;

 Group* mroot = ds->getRoot()->createGroup(domain_location);
 Group* coords = mroot->createGroup(mesh_name + "/coordsets/coords");
 Group* topos = mroot->createGroup(mesh_name + "/topologies");
 // no material sets in this example
 Group* fields = mroot->createGroup(mesh_name + "/fields");
 // no adjacency sets in this (single-domain) example

Then use DataStore::generateBlueprintIndex to generate the index within
a Group held by the DataStore. Then additional data needed in the root file
can be added and saved using Sidre I/O calls.

 conduit::Node info, mesh_node, root_node;
 ds->getRoot()->createNativeLayout(mesh_node);
 std::string bp_protocol = "mesh";
 if(conduit::blueprint::verify(bp_protocol, mesh_node[domain_mesh], info))
 {
 std::string bp("rootfile_data/blueprint_index/automesh");

 ds->generateBlueprintIndex(domain_mesh, mesh_name, bp, 1);

 Group* rootfile_grp = ds->getRoot()->getGroup("rootfile_data");
 rootfile_grp->createViewString("protocol/name", "json");
 rootfile_grp->createViewString("protocol/version", "0.1");
 rootfile_grp->createViewScalar("number_of_files", 1);
 rootfile_grp->createViewScalar("number_of_trees", 1);
 rootfile_grp->createViewScalar("file_pattern", "bpgen.json");
 rootfile_grp->createViewScalar("tree_pattern", "/domain");
 rootfile_grp->save("bpgen.root", "json");

 ds->getRoot()->getGroup("domain_data")->save("bpgen.json", "json");
 }
 else
 {
 std::cout << "does not conform to Mesh Blueprint: ";
 info.print();
 std::cout << std::endl;
 }

Additionally, the Sidre Parallel I/O (SPIO) class IOManager provides a
method that both generates a Blueprint index and adds it to a root file.
Using the same mesh data from the last example, first write out all of the
parallel data using IOManager::write. This will output to files all of
the data for all domains, and will also create a basic root file. Then
IOManager::writeBlueprintIndexToRootFile can be used to generate the
Blueprint index and add it to the root file. This is currently only
implemented to work with the sidre_hdf5 I/O protocol.

 IOManager writer(MPI_COMM_WORLD);

 conduit::Node info, mesh_node, root_node;
 ds->getRoot()->createNativeLayout(mesh_node);
 std::string bp_protocol = "mesh";
 if(conduit::blueprint::verify(bp_protocol, mesh_node[domain_mesh], info))
 {
 #if defined(AXOM_USE_HDF5)
 std::string protocol = "sidre_hdf5";
 #else
 std::string protocol = "sidre_json";
 #endif
 std::string bp_rootfile("bpspio.root");

 writer.write(ds->getRoot()->getGroup(domain_location), 1, "bpspio", protocol);

 writer.writeBlueprintIndexToRootFile(ds, domain_mesh, bp_rootfile, mesh_name);
 }

Data Visualization

The VisIt [http://visitusers.org/] tool can read in a Blueprint, interpret
the index file, and sensibly display the data contained in the data file.
Starting from version 2.13.1, VisIt can open a .root file just like any other
data file. VisIt produced the following image from the Mesh Blueprint file saved above.

[image: ../../../../_images/tiny_mesh_rendered.png]
Conduit is also a foundational building block for the
Ascent [http://ascent.readthedocs.io/] project, which provides a powerful
data analytics and visualization facility (without copying memory) to
distributed-memory simulation codes.

Slam User Guide

Axom’s Set-theoretic Lightweight API for Meshes (SLAM) component provides high performance
building blocks for distributed-memory mesh data structures in HPC simulation codes.

API Documentation

Doxygen generated API documentation can be found here: API documentation

Introduction

Simulation codes have a broad range of requirements for their mesh data structures,
spanning the complexity gamut from structured Cartesian grids to fully unstructured
polyhedral meshes. Codes also need to support features like dynamic topology changes,
adaptive mesh refinement (AMR), submesh elements and ghost/halo layers, in
addition to other custom features.

Slam targets the low level implementation of these distributed mesh data structures and is
aimed at developers who implement mesh data structures within HPC applications.

Set-theoretic abstraction

Slam’s design is motivated by the observation that despite vast differences in the high
level features of such mesh data structures, many of the core concepts are shared at a
lower level, where we need to define and process mesh entities and their associated data
and relationships.

Slam provides a simple, intuitive, API centered around a set-theoretic abstraction for
meshes and associated data. Specifically, it models three core set-theoretic concepts:

	Sets of entities (e.g. vertices, cells, domains)

	Relations among a pair of sets (e.g. incidence, adjacency and containment relations)

	Maps defining fields and attributes on the elements of a given set.

The goal is for users to program against Slam’s interface without having to be aware of
different design choices, such as the memory layout and underlying data containers. The
exposed API is intended to feel natural to end users (e.g. application developers and
domain scientists) who operate on the meshes that are built up from Slam’s abstractions.

See Core concepts for more details.

Policy-based design

There is considerable variability in how these abstractions can be implemented and user
codes make many different design choices. For example, we often need different data
structures to support dynamic meshes than we do for static meshes. Similarly, codes
might choose different container types for their arrays (e.g. STL vectors vs. raw C-arrays
vs. custom array types).

Performance considerations can also come in to play. For example, in some cases, a code
has knowledge of some fixed parameters (e.g. the stride between elements in a relation).
Specifying this information at compile-time allows the compiler to better optimize the
generated code than specifying it at runtime.

Slam uses a Policy-based design to orthogonally decompose the feature space without
sacrificing performance. This makes it easier to customize the behavior of Slam’s sets,
relations and maps and to extend support for custom features extend the basic interface.

See Policy-based design for more details.

Current limitations

	Slam is under active development with many features planned.

	Support for GPUs in Slam is under development.

	Slam’s policy-based design enable highly configurable classes which are explicitly
defined via type aliases. We are investigating ways to simplify this set up
using Generator classes where enumerated strings can define related types
within a mesh configuration.

Contents

	An introductory example
	Type aliases and variables

	Constructing the mesh

	Traversing the mesh

	Core concepts
	Set

	Relation

	Map

	Implementation details
	Policy-based design

	Simplifying mesh setup

An introductory example

This file contains an introductory example to define and traverse a simple quadrilateral
mesh. The code for this example can be found in
axom/src/axom/slam/examples/UserDocs.cpp.

[image: A quad mesh with five elements]
Fig. 31 An unstructured mesh with eleven vertices (red circles) and five elements
(quadrilaterals bounded by black lines)

We first import the unified Slam header, which includes all necessary files for working
with slam:

#include "axom/slam.hpp"

Note

All code in slam is in the axom::slam namespace.
For convenience, we add the following namespace declaration to our example to allow us
to directly use the slam namespace:

namespace slam = axom::slam;

Type aliases and variables

We begin by defining some type aliases for the Sets, Relations and Maps in our mesh.
These type aliases would typically be found in a configuration file or in class header
files.

We use the following types throughout this example:

 using ArrayIndir = slam::policies::ArrayIndirection<PosType, ElemType>;

Sets

Our mesh is defined in terms of two sets: Vertices and Elements, whose entities are
referenced by integer-valued indices. Since both sets use a contiguous range of indices
starting from 0, we use slam::PositionSet to represent them.

We define the following type aliases:

 using PosType = slam::DefaultPositionType;
 using ElemType = slam::DefaultElementType;
 using VertSet = slam::PositionSet<PosType, ElemType>;
 using ElemSet = slam::PositionSet<PosType, ElemType>;

and declare them as:

 VertSet verts; // The set of vertices in the mesh
 ElemSet elems; // The set of elements in the mesh

For other available set types, see Set.

Relations

We also have relations describing the incidences between the mesh vertices and elements.

The element-to-vertex boundary relation encodes the indices of the vertices in the
boundary of each element. Since this is a quad mesh and there are always four vertices in
the boundary of a quadrilateral, we use a ConstantCardinality policy with a
CompileTimeStride set to 4 for this StaticRelation.

 // Type aliases for element-to-vertex boundary relation
 enum
 {
 VertsPerElem = 4
 };
 using CTStride = slam::policies::CompileTimeStride<PosType, VertsPerElem>;
 using ConstCard = slam::policies::ConstantCardinality<PosType, CTStride>;
 using ElemToVertRelation =
 slam::StaticRelation<PosType, ElemType, ConstCard, ArrayIndir, ElemSet, VertSet>;

The vertex-to-element coboundary relation encodes the indices of all elements incident
in each of the vertices. Since the cardinality of this relation changes for different
vertices, we use a VariableCardinality policy for this StaticRelation.

 // Type aliases for vertex-to-element coboundary relation
 using VarCard = slam::policies::VariableCardinality<PosType, ArrayIndir>;
 using VertToElemRelation =
 slam::StaticRelation<PosType, ElemType, VarCard, ArrayIndir, VertSet, ElemSet>;

We declare them as:

 ElemToVertRelation bdry; // Boundary relation from elements to vertices
 VertToElemRelation cobdry; // Coboundary relation from vertices to elements

For other available set types, see Relation.

Maps

Finally, we have some maps that attach data to our sets.

The following defines a type alias for the positions of the mesh vertices.
It is templated on a point type (Point2) that handles simple operations on 2D points.

 using BaseSet = slam::Set<PosType, ElemType>;
 using ScalarMap = slam::Map<BaseSet, Point2>;
 using PointMap = slam::Map<BaseSet, Point2>;
 using VertPositions = PointMap;

It is declared as:

 VertPositions position; // vertex position

Constructing the mesh

This example uses a very simple fixed mesh, which is assumed to not change after it has
been initialized.

Sets

The sets are created using a constructor that takes the number of elements.

 verts = VertSet(11); // Construct vertex set with 11 vertices
 elems = ElemSet(5); // Construct the element set with 5 elements

The values of the vertex indices range from 0 to verts.size()-1 (and similarly
for elems).

Note

All sets, relations and maps in Slam have internal validity checks using
the isValid() function:

 SLIC_ASSERT_MSG(verts.isValid(), "Vertex set is not valid.");
 SLIC_ASSERT_MSG(elems.isValid(), "Elment set is not valid.");

Relations

The relations are constructed by binding their associated sets and arrays of data to the
relation instance. In this example, we use an internal helper class RelationBuilder.

We construct the boundary relation by attaching its two sets (elems for its
fromSet and verts for its toSet) and an array of indices for the relation’s
data.

 // construct boundary relation from elements to vertices
 using RelationBuilder = ElemToVertRelation::RelationBuilder;
 bdry = RelationBuilder().fromSet(&elems).toSet(&verts).indices(
 RelationBuilder::IndicesSetBuilder()
 .size(static_cast<int>(evInds.size()))
 .data(evInds.data()));

The Coboundary relation requires an additional array of offsets (begins) to indicate
the starting index in the relation for each vertex:

 // construct coboundary relation from vertices to elements
 using RelationBuilder = VertToElemRelation::RelationBuilder;
 cobdry = RelationBuilder()
 .fromSet(&verts)
 .toSet(&elems)
 .begins(RelationBuilder::BeginsSetBuilder()
 .size(verts.size())
 .data(veBegins.data()))
 .indices(RelationBuilder::IndicesSetBuilder()
 .size(static_cast<int>(veInds.size()))
 .data(veInds.data()));

Since these are static relations, we used data that was constructed elsewhere.
Note that these relations are lightweight wrappers over the underlying data – no data is
copied. To iteratively build the relations, we would use the DynamicConstantRelation
and DynamicVariableRelation classes.

See Simplifying mesh setup for more details about Slam’s Builder classes for sets,
relations and maps.

Maps

We define the positions of the mesh vertices as a Map on the verts set.
For this example, we set the first vertex to lie at the origin, and the remaining
vertices line within an annulus around the unit circle.

 // construct the position map on the vertices
 position = VertPositions(&verts);

 // first vertex is at origin
 position[0] = Point2(0., 0.);

 // remaining vertices lie within annulus around unit disk
 // in cw order, starting at angleOffset
 constexpr double rInner = 0.8;
 constexpr double rOuter = 1.2;
 constexpr double angleOffset = 0.75;
 const double N = verts.size() - 1;

 for(int i = 1; i < verts.size(); ++i)
 {
 const double angle = -(i - 1) / N * 2 * M_PI + angleOffset;
 const double mag = axom::utilities::random_real(rInner, rOuter);

 position[i] = Point2(mag * std::cos(angle), mag * std::sin(angle));
 }

Traversing the mesh

Now that we’ve constructed the mesh, we can start traversing the mesh connectivity
and attaching more fields.

Computing a derived field

Our first traversal loops through the vertices and computes a derived field on the
position map. For each vertex, we compute its distance to the origin.

 // Create a Map of scalars over the vertices
 ScalarMap distances(&verts);

 for(int i = 0; i < distances.size(); ++i) // <-- Map::size()
 {
 auto vID = verts[i]; // <-- Set::operator[]
 const Point2& pt = position[vID]; // <-- Map::operator[]

 distances[i] = std::sqrt(pt[0] * pt[0] // <-- Map::operator[]
 + pt[1] * pt[1]);
 }

Computing element centroids

Our next example uses element-to-vertex boundary relation to compute the
centroids of each element as the average of its vertex positions.

 // Create a Map of Point2 over the mesh elements
 using ElemCentroidMap = PointMap;
 ElemCentroidMap centroid = ElemCentroidMap(&elems);

 // for each element...
 for(int eID = 0; eID < elems.size(); ++eID) // <-- Set::size()
 {
 Point2 ctr;

 auto elVerts = bdry[eID]; // <-- Relation::operator[]

 // find average position of incident vertices
 for(int i = 0; i < elVerts.size(); ++i) // <-- Set::size()
 {
 auto vID = elVerts[i]; // <-- Set::operator[]
 ctr += position[vID]; // <-- Map::operator[]
 }
 ctr /= elVerts.size(); // <-- Set::size())
 centroid[eID] = ctr; // <-- Map::operator[]
 }

Perhaps the most interesting line here is when we call the relation’s subscript
operator (bdry[eID]). This function takes an element index
(eID) and returns the set of vertices that are incident in this element.
As such, we can use all functions in the Set API on this return type, e.g. size()
and the subscript operator.

Outputting mesh to disk

As a final example, we highlight several different ways to iterate through the
mesh’s Sets, Relations and Maps as we output the mesh to disk (in the vtk format).

This is a longer example, but the callouts
(left-aligned comments of the form // <-- message) point to
different iteration patterns.

 std::ofstream meshfile;
 meshfile.open("quadMesh.vtk");
 std::ostream_iterator<PosType> out_it(meshfile, " ");

 // write header
 meshfile << "# vtk DataFile Version 3.0\n"
 << "vtk output\n"
 << "ASCII\n"
 << "DATASET UNSTRUCTURED_GRID\n\n"
 << "POINTS " << verts.size() << " double\n";

 // write positions
 for(auto pos : position) // <-- Uses range-based for on position map
 {
 meshfile << pos[0] << " " << pos[1] << " 0\n";
 }

 // write elem-to-vert boundary relation
 meshfile << "\nCELLS " << elems.size() << " " << 5 * elems.size();
 for(auto e : elems) // <-- uses range-based for on element set
 {
 meshfile << "\n4 ";
 std::copy(bdry.begin(e), // <-- uses relation's iterators
 bdry.end(e),
 out_it);
 }

 // write element types (9 == VKT_QUAD)
 meshfile << "\n\nCELL_TYPES " << elems.size() << "\n";
 for(int i = 0; i < elems.size(); ++i)
 {
 meshfile << "9 ";
 }

 // write element ids
 meshfile << "\n\nCELL_DATA " << elems.size() << "\nSCALARS cellIds int 1"
 << "\nLOOKUP_TABLE default \n";
 for(int i = 0; i < elems.size(); ++i)
 {
 meshfile << elems[i] << " "; // <-- uses size() and operator[] on set
 }

 // write vertex ids
 meshfile << "\n\nPOINT_DATA " << verts.size() << "\nSCALARS vertIds int 1"
 << "\nLOOKUP_TABLE default \n";
 for(int i = 0; i < verts.size(); ++i)
 {
 meshfile << verts[i] << " ";
 }
 meshfile << "\n";

Core concepts

Describe Slam concepts, what they mean, how they are used, etc.

[image: Sets, relations and maps in slam]
Fig. 32 A relation (blue lines) between two sets (ovals with red and green dots, as elements)
and a map of scalar values (brown) on the second set.

Set

	Taxonomy of set types (OrderedSet, IndirectionSet, Subset, static vs. dynamic)

	Simple API (including semantics of operator[] and iterators)

	Example to show how we iterate through a set

Relation

	Relational operator (from element of Set A to set of elements in Set B)

	
	Taxonomy:

	
	Cardinality: Fixed vs Variable number of elements per relation

	Mutability: Static vs. Dynamic relation

	Storage: Implicit vs. Explicit (e.g. product set)

	Simple API (including semantics of operator[])

	
	Three ways to iterate through a relations

	
	Double subscript

	Separate subscripts

	Iterators

Map

	Data associated with all members of a set

	Simple API (including semantics of operator[])

Implementation details

Policy-based design

Handling the combinatorial explosion of features; avoid paying for what we don’t need

	SizePolicy, StridePolicy, OffsetPolicy (compile time vs. runtime)

	IndirectionPolicy (none, C-array, std::vector, custom, e.g. mfem::Array)

	SubsettingPolicy (none, virtual parent, concrete parent)

	OwnershipPolicy (local, sidre, other repository)

Feature diagram of OrderedSet policies (subset).

[image: Feature diagram for slam's ordered set]

The figure shows how certain these policies interact with the subscript operator.

Simplifying mesh setup

	
	Builder classes

	
	Chained initialization using named-parameter idiom

	Generator classes to simplify types

Slic User Guide

Slic provides a light-weight, modular and extensible logging
infrastructure that simplifies logging application messages.

API Documentation

Doxygen generated API documentation can be found here: API documentation

Key Features

	Interoperability across the constituent libraries of an
application. Messages logged by an application and any of its libraries
using Slic have a unified format and routed to a centralized output
destination.

	Customizable Log Message Format to suit application requirements.

	Customizable handling and filtering of log messages by extending the
Log Stream base class.

	Built-In Log Streams to support common logging use cases, e.g., log to
a file or console.

	Native integration with Lumberjack for logging and filtering of messages
at scale.

	Fortran bindings that provide an idiomatic API for Fortran applications.

Requirements

Slic is designed to be light-weight and self-contained. The only requirement
for using Slic is a C++11 compliant compiler. However, to use Slic in the
context of a distributed parallel application and in conjunction with
Lumberjack, support for building with MPI is provided.

For further information on how to build the Axom Toolkit,
consult the Axom Quick Start Guide.

About this Guide

This guide presents core concepts, key capabilities, and guiding design
principles of Slic’s Component Architecture. To get started with
using Slic quickly within an application, see the
Getting Started with Slic section. For more detailed information on
the interfaces of the various classes and functions in Slic, developers
are advised to consult the Slic Doxygen API.

Additional questions, feature requests or bug reports on Slic can be submitted
by creating a new issue on Github [https://github.com/LLNL/axom/issues]
or by sending e-mail to the Axom Developers mailing list at axom-dev@llnl.gov.

Contents

	Getting Started with Slic
	Step 1: Add Header Includes

	Step 2: Initialize Slic

	Step 3: Set the Message Format

	Step 4: Set Severity Level

	Step 5: Register a Log Stream

	Step 5: Log Messages

	Step 6: Finalize Slic

	Step 7: Run the Example

	Component Architecture
	Log Message Level

	Log Stream
	Log Message Format

	Default Message Format

	Built-In Log Streams
	Generic Output Stream

	Synchronized Output Stream

	Lumberjack Stream

	Add a Custom Log Stream
	Create a LogStream Subclass

	Implement LogStream::append()

	Register the new class with Slic

	Wrapping Slic in Macros

	Appendix
	Slic Application Code Example

	axom::utilities::processAbort()

	Slic Macros Used in Axom
	SLIC_INFO

	SLIC_INFO_IF

	SLIC_ERROR

	SLIC_ERROR_IF

	SLIC_WARNING

	SLIC_WARNING_IF

	SLIC_DEBUG

	SLIC_DEBUG_IF

	SLIC_ASSERT

	SLIC_ASSERT_MSG

	SLIC_CHECK

	SLIC_CHECK_MSG

Getting Started with Slic

This section illustrates some of the key concepts and capabilities of Slic by
presenting a short walk-through of a C++ application. The complete
Slic Application Code Example is included in the
Appendix section and is also available within the Slic source
code, under src/axom/slic/examples/basic/logging.cpp.

This example illustrates the following concepts:

	Initializing the Slic Logging Environment,

	Prescribing the Log Message Format,

	Basic logging to the console using the Generic Output Stream, and,

	Using some of the various Slic Macros Used in Axom to log messages.

Step 1: Add Header Includes

First, the Slic header must be included to make all the Slic
functions and classes accessible to an application:

	1
2

	// Slic includes
#include "axom/slic.hpp"

Note

All the classes and functions in Slic are encapsulated within the
axom::slic namespace.

Step 2: Initialize Slic

Prior to logging any messages, the Slic Logging Environment is initialized
by the following:

	1

	 slic::initialize();

This creates the root logger instance. However, in order to log messages,
an application must first specify an output destination and optionally,
prescribe the format of the log messages. These steps are demonstrated in
the following sections.

Step 3: Set the Message Format

The Log Message Format is specified as a string consisting of keywords,
enclosed in < ... >, that Slic knows how to interpret when assembling
the log message.

	1
2
3

	 std::string format = std::string("<TIMESTAMP>\n") +
 std::string("[<LEVEL>]: <MESSAGE> \n") + std::string("FILE=<FILE>\n") +
 std::string("LINE=<LINE>\n\n");

For example, the format string in the code snippet above indicates that
the resulting log messages will have the following format:

	A line with the message time stamp

	A line consisting of the Log Message Level, enclosed in
brackets [], followed by the user-supplied message,

	A third line with the name of the file where the message was emitted and

	The corresponding line number location within the file, in the fourth line.

The format string is used in Step 5: Register a Log Stream. Specifically, it is passed
as an argument to the Generic Output Stream object constructor to
prescribe the format of the messages.

See the Log Message Format section for the complete list of keyword options
available that may be used to customize the format of the messsages.

Note

This step is optional. If the format is not specified, a
Default Message Format will be used to assemble the message.

Step 4: Set Severity Level

The severity of log messages to be captured may also be adjusted at runtime to
the desired Log Message Level by calling slic::setLoggingMsgLevel().
This provides another knob that the application can use to filter the type and
level of messages to be captured.

All log messages with the specified severity level or higher are captured.
For example, the following code snippet sets the severity level to debug.

	1

	 slic::setLoggingMsgLevel(slic::message::Debug);

This indicates that all log messages that are debug or higher
are captured otherwise, the messages are ignored. Since debug is the lowest
severity level, all messages will be captured in this case.

Step 5: Register a Log Stream

Log messages can have one or more output destination. The output destination
is specified by registering a corresponding Log Stream object to each
Log Message Level.

The following code snippet uses the Generic Output Stream object,
one of the Built-In Log Streams provided by Slic, to specify std::cout
as the output destination for messages at each Log Message Level.

	1

	 slic::addStreamToAllMsgLevels(new slic::GenericOutputStream(&std::cout, format));

Note

Instead of calling slic::addStreamToAllMsgLevels() an application
may use slic::addStreamToMsgLevel() that allows more fine grain
control of how to bind Log Stream objects to each
Log Message Level. Consult the Slic Doxygen API Documentation
for more information.

The Generic Output Stream, takes two arguments in its constructor:

	A C++ std::ostream object that specifies the destination
of messages. Consequently, output of messages can be directed to the console,
by passing std::cout or std::cerr, or to a file by passing a C++
std::ofstream object. In this case, std::cout is specified as the
output destination.

	A string corresponding to the Log Message Format, discussed in
Step 3: Set the Message Format.

Note

Slic maintains ownership of all registered Log Stream instances and
will deallocate them when slic::finalize() is called.

Step 5: Log Messages

Once the output destination of messages is specified, messages can be logged
using the Slic Macros Used in Axom, as demonstrated in the code snippet
below.

	1
2
3
4

	 SLIC_DEBUG("Here is a debug message!");
 SLIC_INFO("Here is an info mesage!");
 SLIC_WARNING("Here is a warning!");
 SLIC_ERROR("Here is an error message!");

Note

By default, SLIC_ERROR() will print the specified message and a stacktrace
to the corresponding output destination and call axom::utilities::processAbort() to
gracefully abort the application. This behavior can be toggled by calling
slic::disableAbortOnError(). See the Slic Doxygen API Documentation
for more details.

Step 6: Finalize Slic

Before the application terminates, the Slic Logging Environment must be
finalized, as follows:

	1

	 slic::finalize();

Calling slic::finalize() will properly deallocate the registered
Log Stream objects and terminate the Slic Logging Environment.

Step 7: Run the Example

After building the Axom Toolkit the Slic Application Code Example may be
run from within the build space directory as follows:

> ./example/slic_logging_ex

The resulting output should look similar to the following:

Fri Apr 26 14:29:53 2019
[DEBUG]: Here is a debug message!
FILE=/Users/zagaris2/dev/AXOM/source/axom/src/axom/slic/examples/basic/logging.cpp
LINE=44

Fri Apr 26 14:29:53 2019
[INFO]: Here is an info mesage!
FILE=/Users/zagaris2/dev/AXOM/source/axom/src/axom/slic/examples/basic/logging.cpp
LINE=45

Fri Apr 26 14:29:53 2019
[WARNING]: Here is a warning!
FILE=/Users/zagaris2/dev/AXOM/source/axom/src/axom/slic/examples/basic/logging.cpp
LINE=46

Fri Apr 26 14:29:53 2019
[ERROR]: Here is an error message!
** StackTrace of 3 frames **
Frame 1: axom::slic::logErrorMessage(std::__1::basic_string<char, std::__1::char_traits<char>,
std::__1::allocator<char> > const&, std::__1::basic_string<char, std::__1::char_traits<char>,
std::__1::allocator<char> > const&, int)
Frame 2: main
Frame 3: start
=====

FILE=/Users/zagaris2/dev/AXOM/source/axom/src/axom/slic/examples/basic/logging.cpp
LINE=47

Abort trap: 6

Component Architecture

Slic provides a simple and easy to use logging interface for applications.

[image: Slic Components Architecture]
Fig. 33 Basic Component Architecture of Slic.

The basic component architecture of Slic, depicted in
Fig. 33, consists of three main components:

	A static logger API. This serves as the primary interface to the application.

	One or more Logger object instances. In addition to the root logger, which
is created when Slic is initialized, an application may create additional
loggers. However, at any given instance, there is only a single active
logger to which all messages are logged.

	A Logger consists of four log message levels: ERROR,
WARNING, INFO and DEBUG.

	Each Log Message Level can have one or more Log Stream instances,
which, specify the output destination, format and filtering of
messages.

	One or more Log Stream instances, bound to a particular logger, that
can be shared between log message levels.

The application logs messages at an appropriate Log Message Level, i.e.,
ERROR, WARNING, INFO, or, DEBUG using the static API.
Internally, the Logger routes the message to the corresponding
Log Stream instances that are bound to the associated
Log Message Level.

The following sections discuss some of these concepts in more detail.

Log Message Level

The Log Message Level indicates the severity of a message. Slic provides
four levels of messages ranked from highest to lowest as follows:

	Message Level

	Usage Description

	ERROR

	Indicates that the application encountered a critical
error or a faulty state. Includes also stacktrace.

	WARNING

	Indicates that the application encountered an error,
but, the application should proceed.

	INFO

	General information reported by an application.

	DEBUG

	Information useful to application developers.

Note

ERROR messages by default will cause the application to abort. This
behavior may be toggled by calling slic::enableAbortOnError() and
slic::disableAbortOnError(). See the Slic Doxygen API Documentation
for more details.

An application may adjust at runtime the severity level of messages to capture
by calling slic::setLoggingMsgLevel(). For example, the following code
snippet, sets the severity level to WARNING

slic::setLoggingMsgLevel(slic::message::Warning);

This indicates that all messages with a level of severity of WARNING and
higher will be captured, namely WARNING and ERROR messages. Thereby,
enable the application to filter out messages with lower severity.

Log Stream

The Log Stream class, is an abstract base class that facilitates the
following:

	Specifying the Log Message Format and output destination of log messages.

	Implementing logic for handling and filtering messages.

	Defines a pure abstract interface for all Log Stream instances.

Since Log Stream is an abstract base class, it cannot be instantiated
and used directly. Slic provides a set of Built-In Log Streams, which provide
concrete implementations of the Log Stream base class that support
common use cases for logging, e.g., logging to a file or output to
the console.

Applications requiring custom functionality, may extend the Log Stream
class and provide a concrete Log Stream instance implementation that
implements the abstract interface defined by the Log Stream base class.
See the Add a Custom Log Stream section for details.

A concrete Log Stream instance can be attached to one or more
Log Message Level by calling slic::addStreamToMsgLevel() and
slic::addStreamToAllMsgLevels(). See the Slic Doxygen API Documentation
for more details.

Log Message Format

The Log Message Format is specified as a string consisting of keywords
that are encapsulated in <...>, which, Slic knows to interpret when
assembling the log message.

The list of keywords is summarized in the table below.

	keyword

	Replaced With

	<TIMESTAMP>

	A textual representation of the time a message is
logged, as returned by std::asctime().

	<LEVEL>

	The Log Message Level, i.e., ERROR,
WARNING, INFO, or DEBUG.

	<MESSAGE>

	The supplied message that is being logged.

	<FILE>

	The file from where the message was emmitted.

	<LINE>

	The line location where the message was emmitted.

	<TAG>

	A string tag associated with a given message, e.g., for
filtering during post-processing, etc.

	<RANK>

	The MPI rank that emmitted the message. Only applicable
when the Axom Toolkit is compiled with MPI enabled
and with MPI-aware Log Stream instances, such as,
the Synchronized Output Stream and
Lumberjack Stream.

These keywords can be combined in a string to specify a template for a log
message.

For example, the following code snippet, specifies that all reported log
messages consist of the level, enclosed in brackets followed by the
user-supplied log message.

std::string format = "[<LEVEL>]: <MESSAGE>";

To get the file and line location within the file where the message was
emitted, the format string above could be amended with the following:

std::string format = "[<LEVEL>]: <MESSAGE> \n\t<FILE>:<LINE>";

This indicates that the in addition to the level and user-supplied, the
resulting log messages will have an additional line consisting of the file
and line where the message was emitted.

Default Message Format

If the Log Message Format is not specified, the Log Stream base class
defines a default format that is set to the following:

std::string DEFAULT_FORMAT = "*****\n[<LEVEL>]\n\n <MESSAGE> \n\n <FILE>\n<LINE>\n****\n"

Built-In Log Streams

The Built-In Log Streams provided by Slic are summarized in the following
table, followed by a brief description for each.

	Log Stream

	Use & Availability

	Generic Output Stream

	Always available. Used in serial applications,
or, for logging on rank zero.

	Synchronized Output Stream

	Requires MPI. Used with MPI applications.

	Lumberjack Stream

	Requires MPI. Used with MPI applications.

Generic Output Stream

The Generic Output Stream, is a concrete implementation of the
Log Stream base class, that can be constructed by specifying:

	A C++ std::ostream object instance, e.g., std::cout`, ``std::cerr for
console output, or to a file by passing a C++ std::ofstream object, and,

	Optionally, a string that specifies the Log Message Format.

For example, the following code snippet registers a Generic Output Stream
object that is bound to the the std::cout.

slic::addStreamToAllMsgLevels(
 new slic::GenericOutputStream(&std::cout, format));

Similarly, the following code snippet, registers a Generic Output Stream
object that is bound to a file.

std::ofstream log_file;
log_file.open("logfile.dat");

slic::addStreamToAllMsgLevels(
 new slic::GenericOutputStream(&log_file, format));

Synchronized Output Stream

The Synchronized Output Stream is intended to be used with parallel MPI
applications, primarily for debugging. The Synchronized Output Stream
provides similar functionality to the Generic Output Stream, however, the
log messages are synchronized across the MPI ranks of the specified
communicator.

Similar to the Generic Output Stream the Synchronized Output Stream
is constructed by specifying:

	A C++ std::ostream object instance, e.g., std::cout`, ``std::cerr for
console output, or to a file by passing a C++ std::ofstream object.

	The MPI communicator, and,

	Optionally, a string that specifies the Log Message Format.

The following code snippet illustrates how to register a
Synchronized Output Stream object with Slic to log messages to
std::cout.

slic::addStreamToAllMsgLevels(
 new slic::SynchronizedOutputStream(&std::cout, mpi_comm, format));

Note

Since, the Synchronized Output Stream works across MPI ranks, logging
messages using the Slic Macros Used in Axom or the static API directly
only logs the messages locally. To send the messages to the output destination
the application must call slic::flushStreams() explicitly, which, in
this context is a collective call.

Lumberjack Stream

The Lumberjack Stream, is intended to be used with parallel MPI
applications. In contrast to the Synchronized Output Stream, which logs
messages from all ranks, the Lumberjack Stream uses Lumberjack
internally to filter out duplicate messages that are emitted from multiple
ranks.

The Lumberjack Stream is constructed by specifying:

	A C++ std::ostream object instance, e.g., std::cout`, ``std::cerr for
console output, or to a file by passing a C++ std::ofstream object.

	The MPI communicator,

	An integer that sets a limit on the number of duplicate messsages reported
per rank, and,

	Optionally, a string that specifies the Log Message Format.

The following code snippet illustrates how to register a Lumberjack Stream
object with Slic to log messages to std::cout.

slic::addStreamToAllMsgLevels(
 new slic::LumberjackStream(&std::cout, mpi_comm, 5, format));

Note

Since, the Lumberjack Stream works across MPI ranks, logging
messages using the Slic Macros Used in Axom or the static API directly
only logs the messages locally. To send the messages to the output destination
the application must call slic::flushStreams() explicitly, which, in
this context is a collective call.

Add a Custom Log Stream

Slic can be customized by implementing a new subclass of the Log Stream.
This section demonstrates the basic steps required to Add a Custom Log Stream
by walking through the implementation of a new Log Stream instance, which
we will call MyStream.

Note

MyStream provides the same functionality as the Generic Output Stream.
The implementation presented herein is primarily intended for demonstrating
the basic process for extending Slic by providing a custom Log Stream.

Create a LogStream Subclass

First, we create a new class, MyStream, that is a subclass of the
Log Stream class, as illustrated in the code snippet below.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	class MyStream : public LogStream
{
 public:

 MyStream() = delete;
 MyStream(std::ostream* os, const std::string& format);

 virtual ~MyStream();

 /// \see LogStream::append
 virtual void append(message::Level msgLevel,
 const std::string& message,
 const std::string& tagName,
 const std::string& fileName,
 int line,
 bool filter_duplicates);
 private:
 std::ostream* m_stream;

 // disable copy & assignment
 MyStream(const MyStream &) = delete;
 MyStream& operator=(const MyStream&) = delete;

 // disable move & assignment
 MyStream(const MyStream&&) = delete;
 MyStream& operator=(const MyStream&&) = delete;
};

The class has a pointer to a C++ std::ostream object as a private class
member. The std::ostream object holds a reference to the output destination
for log messages, which can be any std::ostream instance, e.g., std::cout,
std::cerr, or a file std::ofstream, etc.

The reference to the std::ostream is specified in the class constructor and
is supplied by the application when a MyStream object is instantiated.

Since MyStream is a concrete instance of the Log Stream base class,
it must implement the append() method, which is a pure virtual method.

Implement LogStream::append()

The MyStream class implements the LogStream::append() method of the
Log Stream base class, as demonstrated in the code snippet below.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	 void MyStream::append(message::Level msgLevel,
 const std::string& message,
 const std::string& tagName,
 const std::string& fileName,
 int line,
 bool AXOM_NOT_USED(filtered_duplicates))
{
 assert(m_stream != nillptr);

 (*m_stream) << this->getFormatedMessage(message::getLevelAsString(msgLevel),
 message,
 tagName,
 "",
 fileName,
 line);
}

The append() method takes all the metadata associated with a message through
its argument list:

	The Log Message Level

	The user-specified message

	A tag associated with the message, may be set MSG_IGNORE_TAG

	The file where the message was emitted

	The line location within the file where the message was emitted

The append() method calls LogStream::getFormatedMessage(), a method
implemented in the Log Stream base class, which, applies the
Log Message Format according to the specified format string supplied
to the MyStream class constructor, when the class is instantiated.

Register the new class with Slic

The new Log Stream class may be used with Slic in a similar manner to
any of the Built-In Log Streams, as demonstrated in the code snippet below:

slic::addStreamToAllMsgLevels(new MyStream(&std::cout, format));

Wrapping Slic in Macros

The recommended way of integrating Slic into an application is to wrap the
Slic API for logging messages into a set of convenience application macros that
are used throughout the application code.

This allows the application code to:

	Centralize all use of Slic behind a thin macro layer,

	Insulate the application from API changes in Slic,

	Customize and augment the behavior of logging messages if needed, e.g.,
provide macros that are only active when the code is compiled with debug
symbols etc.

The primary function used to log messages is slic::logMessage(), which in
its most basic form takes the following arguments:

	The Log Message Level associated with the message

	A string corresponding to the user-supplied message

	The name of the file where the message was emitted

	The corresponding line number within the file where the message was emitted

There are additional variants of the slic::logMessage() function that
allow an application to specify a TAG for different types of messages, etc.
Consult the Slic Doxygen API Documentation for more details.

For example, an application, MYAPP, may want to define macros to log
DEBUG, INFO, WARNING and ERROR messages as illustrated below

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	#define MYAPP_LOGMSG(LEVEL, msg) \
{ \
 std::ostringstream oss; \
 oss << msg; \
 slic::logMessage(LEVEL, oss.str(), __FILE__, __LINE__); \
}

#define MYAPP_ERROR(msg) MYAPP_LOGMSG(slic::message::Error, msg)
#define MYAPP_WARNING(msg) MYAPP_LOGMSG(slic::message::Warning, msg)
#define MYAPP_INFO(msg) MYAPP_LOGMSG(slic::message::Info, msg)
#define MYAPP_DEBUG(msg) MYAPP_LOGMSG(slic::message::Debug, msg)

These macros can then be used in the application code as follows:

MYAPP_INFO("this is an info message")
MYAPP_ERROR("this is an error message");
...

Note

Another advantage of encapsulating the Slic API calls in macros is that this
approach alleviates the burden from application developers to have to
pass the __FILE__ and __LINE__ to the logMessage() function
each time.

The Slic Macros Used in Axom provide a good resource for the type of macros that an
application may want to adopt and extend. Although these macros are tailored
for use within the Axom Toolkit, these are also callable by application code.

Appendix

Slic Application Code Example

Below is the complete Slic Application Code Example presented in
the Getting Started with Slic section. The code can be found in the Axom
source code under src/axom/slic/examples/basic/logging.cpp.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

	// SPHINX_SLIC_INCLUDES_BEGIN
// Slic includes
#include "axom/slic.hpp"
// SPHINX_SLIC_INCLUDES_END

using namespace axom;

//--
int main(int AXOM_NOT_USED(argc), char** AXOM_NOT_USED(argv))
{
 // SPHINX_SLIC_INIT_BEGIN

 slic::initialize();

 // SPHINX_SLIC_INIT_END

 slic::disableAbortOnError();

 // SPHINX_SLIC_FORMAT_MSG_BEGIN

 std::string format = std::string("<TIMESTAMP>\n") +
 std::string("[<LEVEL>]: <MESSAGE> \n") + std::string("FILE=<FILE>\n") +
 std::string("LINE=<LINE>\n\n");

 // SPHINX_SLIC_FORMAT_MSG_END

 // SPHINX_SLIC_SET_SEVERITY_BEGIN

 slic::setLoggingMsgLevel(slic::message::Debug);

 // SPHINX_SLIC_SET_SEVERITY_END

 // SPHINX_SLIC_SET_STREAM_BEGIN
 slic::addStreamToAllMsgLevels(new slic::GenericOutputStream(&std::cout, format));

 // SPHINX_SLIC_SET_STREAM_END

 // SPHINX_SLIC_LOG_MESSAGES_BEGIN

 SLIC_DEBUG("Here is a debug message!");
 SLIC_INFO("Here is an info mesage!");
 SLIC_WARNING("Here is a warning!");
 SLIC_ERROR("Here is an error message!");

 // SPHINX_SLIC_LOG_MESSAGES_END

 // SPHINX_SLIC_FINALIZE_BEGIN

 slic::finalize();

 // SPHINX_SLIC_FINALIZE_END

 return 0;
}

axom::utilities::processAbort()

The axom::utilities::processAbort() function gracefully aborts the application by:

	Calling abort() if it is a serial application.

	Calls MPI_Abort() if the Axom Toolkit is compiled with MPI and the
application has initialized MPI, i.e., it’s a distributed MPI application.

Slic Macros Used in Axom

Slic provides a set of convenience macros that can be used to streamline
logging within an application.

Note

The Slic Macros Used in Axom are not the only interface
to log messages with Slic. They are used within the Axom Toolkit for
convenience. Applications or libraries that adopt Slic, typically, use the
C++ API directly, e.g., call slic::logMessage() and wrap the
functionality in application specific macros to better suit the requirements
of the application.

SLIC_INFO

The SLIC_INFO macro logs INFO messages that consist general
information reported by an application.

The following code snippet illustrates the usage of the SLIC_INFO macro:

SLIC_INFO("Total number of mesh cells:" << N);

SLIC_INFO_IF

The SLIC_INFO_IF macro provides the same functionality with the
SLIC_INFO macro, however, it takes one additional argument,
a boolean expression, that allows the application to conditionally log an
INFO message depending on the value of the boolean expression.

For example, the following code snippet illustrates the usage of the
SLIC_INFO_IF macro.

SLIC_INFO_IF((myval >= 0), "[" << myval << "] is positive!");

In this case, the INFO message is only logged when the boolean
expression, (myval >=0) evaluates to true.

Note

The primary intent is to provide a convenience layer and facilitate in a
cleaner and more compact code style by encapsulating the conditional branching
logic within a macro.

SLIC_ERROR

The SLIC_ERROR macro logs ERROR messages that indicate that the
application has encountered a critical error.

The following code snippet illustrates the basic usage of the
SLIC_ERROR macro:

SLIC_ERROR("jacobian is negative!");

A stacktrace of the application is appended to all ERROR messages to
facilitate debugging.

Note

By default, an ERROR message triggers a call to abort() the
application. However, this behavior can be toggled by calling
slic::enableAbortOnError() and slic::disableAbortOnError() accordingly.
See the Slic Doxygen API Documentation for more information.

SLIC_ERROR_IF

The SLIC_ERROR_IF provides the same functionality with the SLIC_ERROR
macro, however, it takes one additional argument, a boolean expression, that
allows the application to conditionally log an ERROR message depending on
the value of the boolean expression.

The following code snippet illustrates the usage of the SLIC_ERROR_IF macro.

SLIC_ERROR_IF((jacobian < 0.0 + TOL), "jacobian is negative!");

In this case, the ERROR message in only logged when the boolean
expression, (jacobian < 0.0 + TOL) evaluates to true.

Note

The primary intent is to provide a convenience layer and facilitate in a
cleaner and more compact code style by encapsulating the conditional branching
logic within a macro.

SLIC_WARNING

The SLIC_WARNING macro logs WARNING messages that indicate that
the application has encountered an error, however, the error is not critical
and the application can proceed.

The following code snippet illustrates the basic usage of the SLIC_WARNING
macro.

SLIC_WARNING("Region [" << ir << "] defined but not used in the problem!");

SLIC_WARNING_IF

Similarly, the SLIC_WARNING_IF macro provides the same functionality with
the SLIC_WARNING macro, however, it takes one additional argument,
a boolean expression, that allows the application to conditionally log a
WARNING message depending on the value of the boolean expression.

The following code snippet illustrates the basic usage of the
SLIC_WARNING_IF macro.

SLIC_WARNING_IF((val < 1), "val cannot be less than 1. Forcing value to 1.");
val = 1;

In this case, the WARNING message is only logged when the boolean
expression, (val < 1), evaluates to `` true``.

Note

The primary intent is to provide a convenience layer and facilitate in a
cleaner and more compact code style by encapsulating the conditional branching
logic within a macro.

SLIC_DEBUG

The SLIC_DEBUG macro logs DEBUG messages that are intended for
debugging information intended for developers.

The following code snippet illustrates the basic usage of the SLIC_DEBUG
macro

SLIC_DEBUG("Application is running with " << N << " threads!");

Warning

This macro will log messages only when the Axom Toolkit is configured and
built with debug symbols. Consult the Axom Quick Start Guide for more
information.

SLIC_DEBUG_IF

Similarly, the SLIC_DEBUG_IF macro provides the same functionality with the
SLIC_DEBUG macro, however, it take one additional argument, a boolean
expression, that allows the application to conditionally log a DEBUG
message depending on the value of the supplied boolean expression.

The following code snippet illustrates the basic usage of the SLIC_DEBUG_IF
macro.

SLIC_DEBUG_IF((value < 0), "value is negative!");

In this case, the DEBUG message is only logged when the boolean
expression, (value <0), evaluates to true.

Note

The primary intent is to provide a convenience layer and facilitate in a
cleaner and more compact code style by encapsulating the conditional branching
logic within a macro.

Warning

This macro will log messages only when the Axom Toolkit is configured and
built with debug symbols. Consult the Axom Quick Start Guide for more
information.

SLIC_ASSERT

The SLIC_ASSERT macro is used in a similar manner to the C++ assert()
function call. It evaluates the given expression and logs an ERROR
message if the assertion is not true. The contents of the error message consist
of the supplied expression.

The SLIC_ASSERT macro is typically used to capture programming errors and
to ensure pre-conditions and post-conditions are satisfied.

The following code snippet illustrates the basic usage of the SLIC_ASSERT
macro.

SLIC_ASSERT(data != nullptr);

Warning

This macro will log messages only when the Axom Toolkit is configured and
built with debug symbols. Consult the Axom Quick Start Guide for more
information.

SLIC_ASSERT_MSG

The SLIC_ASSERT_MSG macro provides the same functionality with
the SLIC_ASSERT macro, however, it allows the application to supply
a custom message in addition to the boolean expression that is evaluated.

The following code snippet illustrates the basic usage of the SLIC_ASSERT_MSG
macro.

SLIC_ASSERT_MSG(data != nullptr, "supplied pointer is null!");

Warning

This macro will log messages only when the Axom Toolkit is configured and
built with debug symbols. Consult the Axom Quick Start Guide for more
information.

SLIC_CHECK

The SLIC_CHECK macro evaluates a given boolean expression, similar to the
SLIC_ASSERT macro. However, in contrast to the SLIC_ASSERT macro,
when the boolean expression evaluates to false, the macro logs a WARNING
instead of an ERROR.

The following code snippet illustrates the basic usage of the SLIC_CHECK
macro.

SLIC_CHECK(data != nullptr);

Warning

This macro will log messages only when the Axom Toolkit is configured and
built with debug symbols. Consult the Axom Quick Start Guide for more
information.

SLIC_CHECK_MSG

The SLIC_CHECK_MSG macro provides the same functionality with the
SLIC_CHECK macro, however, it allows for the application to supply
a custom message in addition to the boolean expression that is evaluated.

The following code snippet illustrates the basic usage of the SLIC_CHECK_MSG
macro.

SLIC_CHECK_MSG(data != nullptr, "supplied pointer is null!");

Warning

This macro will log messages only when the Axom Toolkit is configured and
built with debug symbols. Consult the Axom Quick Start Guide for more
information.

Spin User Guide

The Spin component of Axom provides several index data structures to accelerate
spatial queries. The Morton code classes relate each point in a region of
interest to a point on a one-dimensional space filling curve, and the
RectangularLattice helps in the computation of bin coordinates. The UniformGrid
and ImplicitGrid classes build one-level indexes of non-intersecting bins, while
the BVHTree and SpatialOctree classes build nesting hierarchies of bounding
boxes indexing a region of interest.

API Documentation

Doxygen generated API documentation can be found here: API documentation

Helper classes, single-level indexes

	RectangularLattice

	Mortonizer

	UniformGrid

	ImplicitGrid

Tree-structure indexes

	BVHTree

	SpatialOctree

RectangularLattice

The RectangularLattice is a helper class that maps all of N-D space into
a regular, rectangular grid of cells identified by integer coordinates. The
grid is defined by an origin point and a vector indicating spacing in each dimension.

[image: Diagram showing points and their RectangularLattice bins]

The figure shows an example RectangularLattice in 2D, with its origin
(circled) at (-0.6, -0.2) and spacing (1.2, 0.8). Given a query point, the
RectangularLattice will return the coordinates of the cell that contains the
point. It will also return the bounding box of a cell, or the coordinates of a
cell’s lower-left corner.

The following example shows the use of the RectangularLattice. First, include
the header and (if desired) declare type aliases. Using const int in2d = 2
makes a 2D lattice.

#include "axom/spin/RectangularLattice.hpp"
// We'll be using a 2D lattice with space coordinates of type double
// and cell coordinates of type int.
using RectLatticeType = axom::spin::RectangularLattice<in2D, double, int>;
// Get the types of coordinates and bounding box from the RectangularLattice
using RLGridCell = RectLatticeType::GridCell;
using RLSpacePt = RectLatticeType::SpacePoint;
using RLSpaceVec = RectLatticeType::SpaceVector;
using RLBBox = RectLatticeType::SpatialBoundingBox;

Use the RectangularLattice to find grid cells.

 // Origin and spacing
 double origin[] = {-0.6, -0.2};
 double spacing[] = {1.2, 0.8};

 // Instantiate a RectangularLattice.
 // Other constructors allow the use of Point and Vector objects.
 RectLatticeType lat(origin, spacing);

 // Query point (2.0, 1.2) should be in grid cell (2, 1)
 RLSpacePt pA = RLSpacePt::make_point(2.0, 1.2);
 RLGridCell cA = lat.gridCell(pA);
 std::cout << "Point " << pA << " is in grid cell " << cA
 << " (should be (2, 1))" << std::endl;

 // Query point (2.3, 0.8) should also be in grid cell (2, 1)
 RLSpacePt pB = RLSpacePt::make_point(2.3, 0.8);
 RLGridCell cB = lat.gridCell(pB);
 std::cout << "Point " << pB << " is in grid cell " << cB
 << " (should be (2, 1))" << std::endl;

 // What is the lowest corner and bounding box of the shared cell?
 RLSpacePt cellcorner = lat.spacePoint(cB);
 RLBBox cellbbox = lat.cellBounds(cB);
 std::cout << "The lower corner of the grid cell is " << cellcorner
 << " and its bounding box is " << cellbbox << std::endl;

Mortonizer

The Mortonizer (along with its associated class MortonBase) implements
the Morton index, an operation that associates each point in N-D space with a
point on a space-filling curve 1. The PointHash class adapts the
Mortonizer to provide a hashing functionality for use with
std::unordered_map or similar container classes.

The math of the Morton index works with integers. Thus the Mortonizer and
its dependent class PointHash will not work with floating point coordinates.
The following code example shows how the cells of a RectangularLattice,
which have integer coordinates, can be used with a hash table.

The Mortonizer works by interleaving bits from each coordinate of the input
point and finite computer hardware limits its resolution. If the
MortonIndexType is 64-bits, then in 2D it can uniquely index the least
significant 32 bits of the x- and y-coordinates. In 3D, it can uniquely index
the least significant 21 bits of the x-, y-, and z-coordinates.

To use the PointHash, include the header and (as desired) declare type aliases.

#include "axom/spin/MortonIndex.hpp"
#include <unordered_map>
// The PointHash will allow us to use integral N-D coordinates as a hash key.
// This example will use RectangularLattice grid cell coordinates as keys to
// a std::unordered_map.
using PointHashType = axom::spin::PointHash<RLGridCell::CoordType>;
// Here's a class defined elsewhere that will do some work on a point.
class DataContainer;
using MapType = std::unordered_map<RLGridCell, DataContainer, PointHashType>;

The RectangularLattice grid cell associated with a query point can be
stored, using a PointHash, in a std::unordered_map.

 // Make a RectangularLattice to bin query points.
 double origin[] = {-0.6, -0.2};
 double spacing[] = {1.2, 0.8};
 RectLatticeType lat(origin, spacing);

 // Make the map from grid point to DataContainer
 MapType map;

 // For several query points, create a DataContainer if necessary and register
 // the point.
 std::vector<RLSpacePt> pts = generatePoints();
 for(RLSpacePt p : pts)
 {
 RLGridCell g = lat.gridCell(p);
 DataContainer dat;
 if(map.count(g) > 0)
 {
 dat = map[g];
 }
 dat.registerPoint(p);
 map[g] = dat;
 }

 // Report on what was registered.
 for(auto iter : map)
 {
 RLGridCell g = iter.first;
 DataContainer dat = iter.second;
 std::cout << "Grid cell " << g << " holds " << dat.count << " points."
 << std::endl;
 }

Footnotes

	1

	The Morton index is also known, among other things, as the Z-order curve:
see its Wikipedia page [https://wikipedia.org/wiki/Z-order_curve].

UniformGrid

The UniformGrid is inspired by and can be used to implement the
Cell list [https://en.wikipedia.org/wiki/Cell_lists].
This data structure tiles a rectilinear region of interest into
non-intersecting subregions (or “bins”) of uniform size. Each bin gets a
reference to every object in the region of interest that intersects that bin.
UniformGrid can be used when a code compares each primitive
in a collection to every other spatially-close primitive, such as when
checking if a triangle mesh intersects itself. The following naive
implementation is straightforward but runs in \(O(n^2)\) time, where
\(n\) is the number of triangles.

void findTriIntersectionsNaively(std::vector<TriangleType>& tris,
 std::vector<std::pair<int, int>>& clashes)
{
 int tcount = static_cast<int>(tris.size());

 for(int i = 0; i < tcount; ++i)
 {
 TriangleType& t1 = tris[i];
 for(int j = i + 1; j < tcount; ++j)
 {
 TriangleType& t2 = tris[j];
 if(intersect(t1, t2))
 {
 clashes.push_back(std::make_pair(i, j));
 }
 }
 }
}

We want to call intersect() only for triangles that can intersect, ignoring
widely-separated triangles. The UniformGrid enables this optimization. In
the following figure, the UniformGrid divides the region of interest into
three by three bins outlined in grey. A triangle \(t\) (shown in orange)
will be compared with neighbor triangles (shown in black) that fall into the
bins occupied by \(t\). Other triangles (shown in blue) are too far away
to intersect and are not compared with \(t\).

[image: Diagram showing triangles indexed with a UniformGrid]

First, construct the UniformGrid and load it with triangles.

#include "axom/spin/UniformGrid.hpp"
// the UniformGrid will store ints ("thing" indexes) in 3D
using UniformGridType = axom::spin::UniformGrid<int, in3D>;

BoundingBoxType findBbox(std::vector<TriangleType>& tris);
BoundingBoxType findBbox(TriangleType& tri);

UniformGridType* buildUniformGrid(std::vector<TriangleType>& tris)
{
 // Prepare to construct the UniformGrid.
 BoundingBoxType allbbox = findBbox(tris);
 const PointType& minBBPt = allbbox.getMin();
 const PointType& maxBBPt = allbbox.getMax();

 int tcount = static_cast<int>(tris.size());

 // The number of bins along one side of the UniformGrid.
 // This is a heuristic.
 int res = (int)(1 + std::pow(tcount, 1 / 3.));
 int ress[3] = {res, res, res};

 // Construct the UniformGrid with minimum point, maximum point,
 // and number of bins along each side. Then insert the triangles.
 UniformGridType* ugrid =
 new UniformGridType(minBBPt.data(), maxBBPt.data(), ress);
 for(int i = 0; i < tcount; ++i)
 {
 TriangleType& t1 = tris[i];
 BoundingBoxType bbox = findBbox(t1);
 ugrid->insert(bbox, i);
 }

 return ugrid;
}

Then, for every triangle, look up its possible neighbors

void findNeighborCandidates(TriangleType& t1,
 int i,
 UniformGridType* ugrid,
 std::vector<int>& neighbors)
{
 BoundingBoxType bbox = findBbox(t1);

 // Get all the bins t1 occupies
 const std::vector<int> bToCheck = ugrid->getBinsForBbox(bbox);
 size_t checkcount = bToCheck.size();

 // Load all the triangles in these bins whose indices are
 // greater than i into a vector.
 for(size_t curb = 0; curb < checkcount; ++curb)
 {
 std::vector<int> ntlist = ugrid->getBinContents(bToCheck[curb]);
 for(size_t j = 0; j < ntlist.size(); ++j)
 {
 if(ntlist[j] > i)
 {
 neighbors.push_back(ntlist[j]);
 }
 }
 }

 // Sort the neighboring triangles, and throw out duplicates.
 // This is not strictly necessary but saves some calls to intersect().
 std::sort(neighbors.begin(), neighbors.end());
 std::vector<int>::iterator jend =
 std::unique(neighbors.begin(), neighbors.end());
 neighbors.erase(jend, neighbors.end());
}

and test the triangle against those neighbors.

void findTriIntersectionsAccel(std::vector<TriangleType>& tris,
 UniformGridType* ugrid,
 std::vector<std::pair<int, int>>& clashes)
{
 int tcount = static_cast<int>(tris.size());

 // For each triangle t1,
 for(int i = 0; i < tcount; ++i)
 {
 TriangleType& t1 = tris[i];
 std::vector<int> neighbors;
 findNeighborCandidates(t1, i, ugrid, neighbors);

 // Test for intersection between t1 and each of its neighbors.
 int ncount = static_cast<int>(neighbors.size());
 for(int n = 0; n < ncount; ++n)
 {
 int j = neighbors[n];
 TriangleType& t2 = tris[j];
 if(axom::primal::intersect(t1, t2))
 {
 clashes.push_back(std::make_pair(i, j));
 }
 }
 }
}

The UniformGrid has its best effect when objects are roughly the same size and
evenly distributed over the region of interest, and when bins are close to the
characteristic size of objects in the region of interest.

ImplicitGrid

Where the UniformGrid divides a rectangular region of interest into bins,
the ImplicitGrid divides each axis of the region of interest into bins.
Each UniformGrid bin holds indexes of items that intersect that bin; each
ImplicitGrid bin is a bitset that indicates the items intersecting that bin.

The following figure shows a 2D ImplicitGrid indexing a collection of
polygons. A query point determines the bin to search for intersecting
polygons. The application retrieves that bin’s bitset from each axis and
computes bitwise AND operator. The code takes that result and tests for query
point intersection (possibly an expensive operation) with each of the polygons
indicated by bits set “on.”

[image: Diagram showing use of an ImplicitGrid]

The ImplicitGrid is designed for quick indexing and searching over a static
index space in a relatively coarse grid, making it suitable for repeated
construction as well as lookup. The following example shows the use of the
ImplicitGrid. It is similar to the figure but tests a point against 2D
triangles instead of polygons.

#include "axom/spin/ImplicitGrid.hpp"

// the ImplicitGrid will be in 2D
using IGridT = axom::spin::ImplicitGrid<in2D>;

// useful derived types
using IGridCell = typename IGridT::GridCell;
using ISpacePt = typename IGridT::SpacePoint;
using IBBox = typename IGridT::SpatialBoundingBox;
using IBitsetType = typename IGridT::BitsetType;
using IBitsetIndexType = typename IBitsetType::Index;

// some functions we'll use
bool expensiveTest(ISpacePt& query, Triangle2DType& tri);
void makeTriangles(std::vector<Triangle2DType>& tris);

After including the header and setting up types, set up the index.

 // here are the triangles.
 std::vector<Triangle2DType> tris;
 makeTriangles(tris);

 // Set up the ImplicitGrid: ten bins on an axis
 IGridCell res(10);
 // establish the domain of the ImplicitGrid.
 IBBox bbox(ISpacePt::zero(), ISpacePt::ones());
 // room for one hundred elements in the index
 const int numElts = static_cast<int>(tris.size());
 IGridT grid(bbox, &res, numElts);

 // load the bounding box of each triangle, along with its index,
 // into the ImplicitGrid.
 for(int i = 0; i < numElts; ++i)
 {
 grid.insert(findBbox(tris[i]), i);
 }

Inexpensive queries to the index reduce the number of calls to a
(possibly) expensive test routine.

 // Here is our query point
 ISpacePt qpt = ISpacePt::make_point(0.63, 0.42);

 // Which triangles might it intersect?
 IBitsetType candidates = grid.getCandidates(qpt);
 int totalTrue = 0;

 // Iterate over the bitset and test the candidates expensively.
 IBitsetIndexType index = candidates.find_first();
 while(index != IBitsetType::npos)
 {
 if(expensiveTest(qpt, tris[index]))
 {
 totalTrue += 1;
 }
 index = candidates.find_next(index);
 }

BVHTree

The BVHTree implements a
bounding volume hierarchy tree [https://en.wikipedia.org/wiki/Bounding_volume_hierarchy].
This data structure recursively subdivides a rectilinear region of interest
into a “tree” of
subregions, stopping when a subregion contains less than some number of objects
or when the tree reaches a specified height. Similar to UniformGrid,
subregions are also called bins.

The BVHTree is well-suited for particle-mesh or ray-mesh intersection tests.
It is also well-suited to data sets where the contents are unevenly distributed,
since the bins are subdivided based on their contents.
The figure below shows several 2D triangles and their bounding box, which serves
as the root bin in the tree.

[image: Diagram showing triangles in a bounding box]

The BVHTree::build() method recurses into each bin, creating up to two child bins
depending on how many objects are located there and how they are distributed.

[image: Diagram showing first division of a BVHTree]

[image: Diagram showing second division of a BVHTree]

Unlike the UniformGrid, BVHTree bins can overlap.

[image: Diagram showing third division of a BVHTree]

The following code example shows how a BVHTree can be used to accelerate a
point-mesh intersection algorithm. First, we insert all triangles into the
index and call BVHTree::build().

#include "axom/spin/BVHTree.hpp"
// the BVHTree is in 2D, storing an index to 2D triangles
using BVHTree2DType = axom::spin::BVHTree<int, in2D>;
// supporting classes
using BoundingBox2DType = axom::primal::BoundingBox<double, in2D>;
using Point2DType = axom::primal::Point<double, in2D>;
using Triangle2DType = axom::primal::Triangle<double, in2D>;

BoundingBox2DType findBbox(Triangle2DType& tri);

BVHTree2DType* buildBVHTree(std::vector<Triangle2DType>& tris)
{
 // Initialize BVHTree with the triangles
 const int MaxBinFill = 1;
 const int MaxLevels = 4;
 int tricount = static_cast<int>(tris.size());
 BVHTree2DType* tree = new BVHTree2DType(tricount, MaxLevels);

 for(int i = 0; i < tricount; ++i)
 {
 tree->insert(findBbox(tris[i]), i);
 }

 // Build bounding volume hierarchy
 tree->build(MaxBinFill);

 return tree;
}

After the structure is built, make a list of triangles that are candidate
neighbors to the query point. Call BVHTree::find() to get the list of
bins that the query point intersects. The key idea of find() is that
testing for probe intersection with a bin (bounding box) is cheap. If a bin
intersection test fails (misses), the contents of the bin are cheaply pruned out
of the search. If the probe does intersect a bin, the next level of bins is
tested for probe intersection. Without the acceleration data structure, each
probe point must be tested against each triangle.

void findCandidateBVHTreeBins(BVHTree2DType* tree,
 Point2DType ppoint,
 std::vector<int>& candidates)
{
 // Which triangles does the probe point intersect?
 // Get the candidate bins
 std::vector<int> bins;
 tree->find(ppoint, bins);
 size_t nbins = bins.size();

 // for each candidate bin,
 for(size_t curb = 0; curb < nbins; ++curb)
 {
 // get its size and object array
 int bcount = tree->getBucketNumObjects(bins[curb]);
 const int* ary = tree->getBucketObjectArray(bins[curb]);

 // For each object in the current bin,
 for(int j = 0; j < bcount; ++j)
 {
 // find the tree's internal object ID
 int treeObjID = ary[j];
 // and use it to retrieve the triangle's ID.
 int triID = tree->getObjectData(treeObjID);

 // Then store the ID in the candidates list.
 candidates.push_back(triID);
 }
 }

 // Sort the candidate triangles, and throw out duplicates.
 // This is not strictly necessary but saves some calls to checkInTriangle().
 std::sort(candidates.begin(), candidates.end());
 std::vector<int>::iterator jend =
 std::unique(candidates.begin(), candidates.end());
 candidates.erase(jend, candidates.end());
}

Finally, test the point against all candidate neighbor triangles.

void findIntersectionsWithCandidates(std::vector<Triangle2DType>& tris,
 std::vector<int>& candidates,
 Point2DType ppoint,
 std::vector<int>& intersections)
{
 // Test if ppoint lands in any of its neighbor triangles.
 int csize = static_cast<int>(candidates.size());
 for(int i = 0; i < csize; ++i)
 {
 Triangle2DType& t = tris[candidates[i]];
 if(t.checkInTriangle(ppoint))
 {
 intersections.push_back(candidates[i]);
 }
 }
}

SpatialOctree

Axom provides an implementation of the octree spatial index. The
SpatialOctree recursively divides a bounding box into a hierarchy of
non-intersecting bounding boxes. Each level of subdivision divides the bounding
box of interest along each of its dimensions, so 2D SpatialOctree objects
contain four child bounding boxes at each level, while 3D objects contain eight
children at each level.

The Octree class hierarchy is useful for building custom spatial acceleration
data structures, such as quest::InOutOctree.

The figure below shows the construction of several levels of a 2D octree.

[image: Diagram showing points in a bounding box]

In contrast to a BVHTree, which computes a bounding box at each step,
the octree structure begins with a user-specified bounding box.

[image: Diagram showing first division of a SpatialOctree]

The octree divides all dimensions in half at each step.

[image: Diagram showing second division of a SpatialOctree]

[image: Diagram showing third division of a SpatialOctree]

Similar to the BVHTree, the Octree divides a bounding box only if an object
intersects that bounding box. In contrast to the BVHTree, the bounding box bins
are non-intersecting, and division does not depend on the data in the bounding
box. An \(N\)-dimensional octree divides into \(2^N\) bounding boxes at
each step.

The following code example shows use of the SpatialOctree.
Include headers and define types:

#include "axom/spin/SpatialOctree.hpp"

using LeafNodeType = axom::spin::BlockData;

using OctreeType = axom::spin::SpatialOctree<in3D, LeafNodeType>;
using OctBlockIndex = OctreeType::BlockIndex;
using OctSpacePt = OctreeType::SpacePt;
using OctBBox = OctreeType::GeometricBoundingBox;

Then, instantiate the SpatialOctree and locate or refine blocks that contain
query points.

 OctBBox bb(OctSpacePt(10), OctSpacePt(20));

 // Generate a point within the bounding box
 double alpha = 2. / 3.;
 OctSpacePt queryPt = OctSpacePt::lerp(bb.getMin(), bb.getMax(), alpha);

 // Instantiate the Octree
 OctreeType octree(bb);

 // Find the block containing the query point
 OctBlockIndex leafBlock = octree.findLeafBlock(queryPt);
 // and the bounding box of the block.
 OctBBox leafBB = octree.blockBoundingBox(leafBlock);

 for(int i = 0; i < octree.maxInternalLevel(); ++i)
 {
 // SpatialOctree allows a code to refine (subdivide) a block
 octree.refineLeaf(leafBlock);
 // and locate the (new) child block containing the query point.
 leafBlock = octree.findLeafBlock(queryPt);
 }

Unlike the BVHTree class, the SpatialOctree is intended as a building
block for further specialization. Please see the quest::InOutOctree as an
example of this.

Some ancillary classes used in the implementation of SpatialOctree include
BlockData, which ties data to a block; Brood, used to construct and
organize sibling blocks; OctreeBase, implementing non-geometric operations
such as refinement and identification of parent or child nodes; and
SparseOctreeLevel and DenseOctreeLevel, which hold the blocks at any one
level of the SpatialOctree. Of these, library users will probably be most
interested in providing a custom implementation of BlockData to hold
algorithm data associated with a box within an octree. See the
quest::InOutOctree class for an example of this.

Axom Developer Guide

This guide describes important aspects of software development processes used
by the Axom project. It does not contain information about building the code or
coding guidelines. Please see the note below.

This development guide is intended for all team members and contributors.
It is especially helpful for individuals who are less familiar with the project
and wish to understand how the team works. We attempt to employ simple
practices that are easy to understand and follow and which improve our software
without being overly burdensome. We believe that when everyone on our team
follows similar practices, the likelihood that our software will be
high quality (i.e., robust, correct, easy to use, etc.) is improved. Everyone
who contributes to Axom should be aware of and follow these guidelines.

We also believe that the benefits of uniformity and rigor are best balanced
with allowances for individual preferences, which may work better in
certain situations. Therefore, we do not view these processes as fixed
for all time. They should evolve with project needs and be improved when
it makes sense. Changes should be agreed to by team members after
assessing their merits using our collective professional judgment. When
changes are made, this guide should be updated accordingly.

Note

This document does not describe how to configure and build the
Axom code, or discuss Axom coding guidelines. For information
on those topics please refer to the following documents:
Axom Quickstart Guide,
Axom Coding Guide.

Contents:

	Axom Development Process Summary
	Software Development Cycles

	Software Releases and Version Numbers

	Branch Development

	Code Reviews and Acceptance

	Testing and Code Health

	Software Development Tools

	Continuous Integration
	Azure Pipelines

	RZ Bamboo

	Axom Release Process
	1: Start Release Candidate Branch

	2: Issue a Pull Request

	3: Merge Release Candidate

	4: Draft a Github Release

	5: Make a Release Tarball

	6: Merge Main to Develop

	Release Notes

	Semantic Versioning
	Version Numbers and Meaning

	What Does a Change in Version Number Mean?

	Gitflow Branching Model
	Main and Develop Branches

	Topic Branches

	Release Branches

	Hotfix Branches

	Gitflow Illustrated

	Git/Github: Version Control and Branch Development
	SSH Keys

	Cloning the Repo

	Git Environment Support

	Topic Branch Development

	Checking Out an Existing Branch

	Pull Requests and Code Reviews
	Pull Request Summary

	Code Review Checklist

	Axom Component Structure
	Component Directory Structure

	CMake Files and Variables

	Filename and CMake Target Conventions for Axom Documentation

	C and Fortran Interfaces

	Documentation

	Axom Tests and Examples
	A Few Guidelines for Writing Tests

	Unit Tests

	Integration Tests

	CMake Files and Variables for Tests

	Examples

	CMake Files and Variables for Examples

	Filename and CMake Target Conventions for Axom Tests and Examples

	Running Tests and Examples

	Miscellaneous Development Items
	Web Documentation

	Third-party Library Installation

	Code Health Tools

Axom Development Process Summary

This section provides a high-level overview of key Axom software development
topics and includes links to more detailed discussion.

Software Development Cycles

The Axom team uses a sprint-based development process. We collect
and track issues (bugs, feature requests, tasks, etc.) using Github
and define a set of development tasks (i.e., issues) to complete for each
sprint. While the team meets to discuss issues and plan which ones will be
worked in each sprint, developers of individual Axom components may plan and
schedule work in any way that works for them as long as this is coordinated
with other team efforts. Work performed in each sprint work period is tracked
as a single unified sprint encompassing activities for the entire project.

Software Releases and Version Numbers

Typically, Axom releases are done when it makes sense to make new features
or other changes available to users. A release may coincide with the completion
of a sprint cycle or it may not.

See Axom Release Process for a description of the Axom release process.

The Axom team follows the semantic versioning scheme for assigning
release numbers. Semantic versioning conveys specific meaning about
the code and modifications from version to version by the way version
numbers are constructed.

See Semantic Versioning for a description of semantic versioning.

Branch Development

The Axom project has a Github project space and the team follows
the Gitflow branching model for software development and reviews. Gitflow
is a common workflow centered around software releases. It makes clear which
branches correspond to which phases of development and those phases are
represented explicitly in the structure of the source code repository. As
in other branching models, developers develop code locally and push their
work to a central repository.

See Gitflow Branching Model for a detailed description of how we use Gitflow.

Code Reviews and Acceptance

Before any code is merged into one of our main Gitflow branches (i.e., develop
or main), it must be adequately tested, documented, and reviewed
for acceptance by other team members. The review process is initiated via
a pull request on the Axom Github project.

See Pull Requests and Code Reviews for a description of our review process and
how we use pull requests.

Testing and Code Health

Comprehensive software testing processes and use of code health tools (e.g.,
static analysis, memory checkers, code coverage) are essential ingredients
in the Axom development process.

See Axom Tests and Examples for a description of our software testing process,
including continuous integration.

Software Development Tools

In addition to the tools listed above, we use a variety of other tools to help
manage and automate our software development processes. The tool philosophy
adopted by the Axom project focuses on three central tenets:

	Employ robust, commonly-used tools and don’t re-invent something that already exists.

	Apply tools in ways that non-experts find easy to use.

	Strive for automation and reproducibility.

The main interaction hub for Axom developers is the Atlassian
tool suite on the Livermore Computing Collaboration Zone (CZ). These tools
can be accessed through the MyLC Portal [https://lc.llnl.gov].
Developer-level access to Axom project spaces in these tools requires
membership in the LC group ‘axomdev’. If you are not in this group, and need
to be, please send an email request to ‘axom-dev@llnl.gov’.

The main tools we use are listed below. Please navigate the links
provided for details about how we use them and helpful information about
getting started with them.

	Confluence. We use the Axom Confluence space [https://lc.llnl.gov/confluence/display/ASCT] for team discussion (e.g., hashing out design ideas), maintaining meeting notes, etc.

	Github. We use the Axom Github project [https://github.com/LLNL/axom] to manage our issues and Git repository which contains the Axom source code, build configurations, scripts, test suites, documentation, etc.

	See Git/Github: Version Control and Branch Development for more information about how we use Git and Github.

	Bamboo. We use Bamboo for continuous integration to ensure code quality on our LC systems.: Axom RZ Bamboo project [https://rzlc.llnl.gov/bamboo/browse/ASC]

	See RZ Bamboo for more information about how we use Bamboo.

	Azure Pipelines. We use Azure Pipelines for continuous integration to ensure every code change passes a
level of quality before being merged.: Azure Pipelines [https://azure.microsoft.com/en-us/services/devops/pipelines/]

	See Azure Pipelines for more information about how we use Azire Pipelines.

Continuous Integration

The Axom project uses two CI tools,
Azure Pipelines [https://azure.microsoft.com/en-us/services/devops/pipelines/]
via Github and Bamboo [https://www.atlassian.com/software/bamboo]
on the LC Restricted Zone (RZ).

Azure Pipelines

Every Pull Request created on Github is automatically run through a series of
CI jobs to ensure that the Axom source builds and passes our unit tests.
These configurations mimic the LC compilers and systems as closely as possible
via Docker containers that have our third-party libraries pre-built on them.

RZ Bamboo

We use the Axom RZ Bamboo project [https://rzlc.llnl.gov/bamboo/browse/ASC]
primarily for testing the develop branch against the various LC System Types.
There are two types of Bamboo Plans which are automatically triggered to build
and run tests against the develop branch. The first is triggered nightly and
on any repository change on Github that builds and tests the current Axom source
against previously built third-party libraries. The second is triggered nightly
and builds and tests the complete third-party library build and then the Axom source
against those libraries.

This plan may be run manually at any time by selecting the plan and clicking
on ‘Run plan’ as described above. Each member of the team receives an email
notification every morning about the current state of all jobs.

Axom Release Process

The Axom team decides as a group when the code is ready for a release.
Typically, a release is done when we want to make changes available to users;
e.g., when some new functionality is sufficiently complete or we want users to
try something out and give us feedback early in the development process. A
release may also be done when some other development goal is reached. This
section describes how an Axom releases is done. The process is fairly
informal. However, we want to ensure that the software is in a reasonably
robust and stable state when a release is done. We follow this process to
avoid simple oversights and issues that we do not want to pass on to users.

In the Gitflow Branching Model section, we noted that the main branch
records the official release history of the project. Specifically,
whenever, the main branch is changed, it is tagged with a new
version number. We use a git ‘lightweight tag’ for this purpose. Such
a tag is essentially a pointer to a specific commit on the main branch.

We finalize preparations for a release on a release branch so that other
work may continue on the develop branch without interruption.

Note

No significant code development is performed on a release branch.
In addition to preparing release notes and other documentation, the
only code changes that should be done are bug fixes identified
during release preparations

Here are the steps to follow for an Axom release.

1: Start Release Candidate Branch

Create a release candidate branch off of the develop branch to initiate a
release. The name of a release branch must contain the associated release version
number. Typically, we use a name like v0.5.0-rc
(i.e., version 0.5.0 release candidate). See Semantic Versioning for a
description of how version numbers are chosen.

2: Issue a Pull Request

Create a pull request to merge the release candidate branch into main so that
release changes can be reviewed. Such changes include:

	Update the version information (major, minor, and patch version numbers)
at the top of the axom/src/cmake/AxomVersion.cmake file and in
the axom/RELEASE file.

	Update the release notes in axom/RELEASE-NOTES.md by adding the
release version number and release date in the heading, as well as,
the corresponding link to the version on Github.

	Test the code by running it through all continuous integration tests
and builds. This will ensure that all build configurations are working
properly and all tests pass.

	Fix any issues discovered during final release testing if code changes
are reasonably small and re-run appropriate tests to ensure issues are
resolved. If a major bug is discovered, and it requires significant
code modifications to fix, do not fix it on the release branch.
Create a new Github issue for it [https://github.com/LLNL/axom/issues/new]
and note it in the known bugs section of the release notes.

	Make sure all documentation (source code, user guides, etc.) is
updated and reviewed. This should not be a substantial undertaking as
most of this should have been done during the regular development cycle.

	Proofread the release notes for completeness and clarity and address
any shortcomings. Again, this should not take much time as release notes
should be updated during the regular development cycle. See
Release Notes for information about release notes.

3: Merge Release Candidate

Merge the release candidate branch into the main branch once it is ready and
approved. At this point, the release candidate branch can be deleted.

4: Draft a Github Release

Draft a new Release on Github [https://github.com/LLNL/axom/releases/new]

	Enter the desired tag version, e.g., v0.5.0

	Select main as the target branch to tag a release.

	Enter a Release title. We typically use titles of the following form Axom-v0.3.1

	Copy and paste the information for the release from the
axom/RELEASE-NOTES.md into the release description (omit any sections if empty).

	Publish the release. This will create a tag at the tip of the main
branch and add corresponding entry in the
Releases section [https://github.com/LLNL/axom/releases]

Note

Github will add a corresponding tarbal and zip archives consisting of the
source files for each release. However, these files do not include any
submodules. Consequently, a tarball that includes all of the submodules is
generated manually in a seperate step.

5: Make a Release Tarball

	Checkout the main branch locally and run axom/scripts/make_release_tarball.sh --with-data
This will generate a two tarballs of the form Axom-v0.3.1.tar.gz and AxomData-v0.3.1.tar.gz
each consistsing of the axom source and data respectively.

	Upload the tarballs for the corresponding release, by going to the
Github Releases section [https://github.com/LLNL/axom/releases] and Edit
the release created earlier.

	Attach the tarball to the release.

	Add a note at the top of the release description that indicates which
tarball consists of all the submodules, e.g., “Please download the Axom-v0.3.1.tar.gz tarball below, which includes all of the Axom submodules as well”

	Update the release.

6: Merge Main to Develop

Create a pull request to merge main into develop. When approved, merge it.

Release Notes

Axom release notes are maintained in a single file axom/RELEASE-NOTES.md.
The release notes for the latest version are at the top of the file.
Notes for previous releases appear after that in descending version number
order.

For each version, the release notes must contain the following information:

	Axom version number and date of release

	One or two sentence overview of release, including any major changes.

	Release note items should be broken out into the following sections:

	Added: Descriptions of new features

	Removed: Notable removed functionality

	Deprecated: Deprecated features that will be removed in a future release

	Changed: Enhancements or other changes to existing functionality

	Fixed: Major bug fixes

	Known bugs: Existing issues that are important for users to know about

Note

Release notes for each Axom version should explain what changed in
that version of the software – and nothing else!!

Release notes are an important way to communicate software changes to users
(functionality enhancements, new features, bug fixes, etc.). Arguably, they
are the simplest and easiest way to do so. Each change listed in the release
notes should contain a clear, concise statement of the change. Items should
be ordered based on the impact to users (higher impact - first, lower impact
last).

Note

When writing release notes, think about what users need to know and
what is of value to them.

Release notes should summarize new developments and provide enough detail
for users to get a clear sense of what’s new. They should be brief – don’t
make them overly verbose or detailed. Provide enough description for users
to understand a change, but no more than necessary. In other words, release
notes summarize major closed issues in a human-readable narrative. Direct
users to other documentation (user guides, software documentation, example
codes) for details and additional information.

Note

Release notes should be updated as work is completed and reviewed
along with other documentation in a pull request. This is much
easier than attempting to compile release notes before a release
by looking at commit logs, etc. Preparing release notes as part
of the release process should take no more than one hour.

Lastly, release notes provide an easy-to-find retrospective record of
progress for users and other stakeholders. They are useful for developers
and for project reporting and reviews.

Semantic Versioning

The Axom team uses the semantic versioning scheme for assigning
release numbers. Semantic versioning is a methodology for assigning version
numbers to software releases in a way that conveys specific meaning about
the code and modifications from version to version.
See Semantic Versioning [http://semver.org] for a more detailed description.

Version Numbers and Meaning

Semantic versioning is based on a three part version number MM.mm.pp:

	MM is the major version number. It is incremented when an incompatible
API change is made. That is, the API changes in a way that may break code
using an earlier release of the software with a smaller major version
number. Following Gitflow (above), the major version number may be changed
when the develop branch is merged into the main branch.

	mm is the minor version number. It changes when functionality is
added that is backward-compatible. The API may grow to support new
functionality. However, the software will function the same as any
earlier release of the software with a smaller minor version number
when used through the intersection of two APIs. Following Gitflow (above),
the minor version number is always changed when the develop branch is
merged into the main branch, except possibly when the major version
is changed.

	pp is the patch version number. It changes when a bug fix is made that
is backward compatible. That is, such a bug fix is an internal
implementation change that fixes incorrect behavior. Following Gitflow
(above), the patch version number is always changed when a hotfix branch
is merged into main, or when develop is merged into main and the
changes only contain bug fixes.

What Does a Change in Version Number Mean?

A key consideration in meaning for these three version numbers is that
the software has a public API. Changes to the API or code functionality
are communicated by the way the version number is incremented. Some important
conventions followed when using semantic versioning are:

	Once a version of the software is released, the contents of the release
must not change. If the software is modified, it must be released
as a new version.

	A major version number of zero (i.e., 0.mm.pp) is considered initial
development where anything may change. The API is not considered stable.

	Version 1.0.0 defines the first stable public API. Version number
increments beyond this point depend on how the public API changes.

	When the software is changed so that any API functionality becomes
deprecated, the minor version number must be incremented.

	A pre-release version may be denoted by appending a hyphen and a series
of dot-separated identifiers after the patch version. For example,
1.0.1-alpha, 1.0.1-alpha.1, 1.0.2-0.2.5.

	Versions are compared using precedence that is calculated by separating
major, minor, patch, and pre-release identifiers in that order. Major,
minor, and patch numbers are compared numerically from left to right. For
example, 1.0.0 < 2.0.0 < 2.1.0 < 2.1.1. When major, minor, and patch
numbers are equal, a pre-release version has lower precedence. For
example, 1.0.0-alpha < 1.0.0.

By following these conventions, it is fairly easy to communicate intent of
version changes to users and it should be straightforward for users
to manage dependencies on Axom.

Gitflow Branching Model

The Axom team uses the ‘Gitflow’ branch development model, which is
summarized in this section. See the Atlassian Gitflow Description [https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow]
for more details.

Gitflow is a branching model centered around software releases. It is a simple
workflow that makes clear which branches correspond to which phases of
development and those phases are represented explicitly in the structure of
the repository. As in other branching models, developers develop code locally
and push their work to a central repository.

Main and Develop Branches

The main and develop branches are the two main branches used in Gitflow.
They always exist and the distinction between them is central to the Gitflow
model. Other branches are temporary and used to perform specific development
tasks.

The main branch records the official release history of the project.
Each time the main branch is changed, it is tagged with a new version number.
For a description of our versioning scheme, see Semantic Versioning.

The develop branch is used to integrate and test new features and most
bug fixes before they are merged into main.

Important

Development never occurs directly on the main or develop
branches.

Topic Branches

Topic branches are created off of other branches (usually develop)
and are used to develop new features and resolve issues before they
propagate to main. Topic branches are temporary, living only as long as they
are needed to complete a development task.

Each new feature, or other well-defined portion of work, is developed on its
own topic branch, with changes being pushed to the central repository regularly
for backup. We typically include a label, such as “feature” or “bugfix”, in
the topic branch name to make it clear what type of work is being done on the
branch. See Topic Branch Development for a description of common Git mechanics
when doing topic branch development.

When a feature is complete, a pull request is submitted for review by other
team members. When all issues arising in a review have been addressed and
reviewers have approved the pull request, the feature branch is merged into
develop. See Pull Requests and Code Reviews for more information about code reviews
and pull request approval.

Important

Feature branches never interact directly with the main
branch.

Release Branches

Release branches are another important temporary branch type in Gitflow:
When the team has decided that enough features, bug fixes, etc. have been
merged into develop (for example, all items identified for a release have
been completed), a release branch is created off of develop to finalize the
release. Creating a release branch starts the next release cycle on develop.
At that point, new work can start on feature branches for the next release.
Only changes required to complete the release are added to a release branch.
When a release branch is ready, it is merged into main and main is tagged
with a new version number. Finally, main is merged back into develop since
it may have changed since the release was initiated.

The basic mechanics for generating a new release of the main branch for the
Axom project are described in Axom Release Process.

Important

No new features are added to a release branch. Only bug fixes,
documentation, and other release-oriented changes go into a
release branch.

Hotfix Branches

The last important temporary branch type in Gitflow is a hotfix branch.
Sometimes, there is a need to resolve an issue in a released version on the
main branch. When the fix is complete, it is reviewed using a pull request
and then merged into both main and develop when approved. At this point,
main is tagged with a new version number. A dedicated line of development
for a bug fix, using a hotfix branch, allows the team to quickly address
issues without disrupting other parts of the workflow.

Important

Hotfix branches are the only branches created off of main.

Gitflow Illustrated

The figure below shows how branches interact in Gitflow.

[image: ../../../_images/gitflow-workflow.png]
Fig. 34 This figure shows typical interactions between branches in the Gitflow
workflow. Here, main was merged into develop after tagging version v0.1.
A fix was needed and so a hotfix branch was created. When the fix was
completed, it was merged into main and develop. Main was tagged
with version v0.2. Also, work was performed on two feature branches.
When one feature branch was done, it was merged into develop. Then, a
release branch was created and it was merged into main when the release
was finalized. Finally, main was tagged with version v1.0.

Git/Github: Version Control and Branch Development

This section provides information about getting started with Git and
Github and describes some mechanics of topic branch development
on the Axom project. For most project work, we interact with our Git
repository via our Github project [https://github.com/LLNL/axom].

If you are new to the Git or want to brush up on its features, there are
several good sources of information available on the web:

	Atlassian Git Tutorial [https://www.atlassian.com/git/] has a lot of useful stuff.

	The Git Docs [https://git-scm.com/docs/] is a complete reference for Git commands and options. It also provides some cheat sheets you can download.

	Learn Git Branching [http://learngitbranching.js.org/] is nice for visual, hands-on learners.

	The e-book Pro Git, by Scott Chacon [https://git-scm.com/book/en/v2] is an excellent overview guide to using Git effectively.

SSH Keys

If you have not used Github before, you should start by creating and adding your SSH keys to Github.
Github provides a good tutorial here [https://help.github.com/en/enterprise/2.18/user/github/authenticating-to-github/adding-a-new-ssh-key-to-your-github-account].
Performing these two simple steps will make it easier for you to interact with
our Git repository without having to repeatedly enter login credentials.

Cloning the Repo

All development work on Axom is performed in a local workspace copy of
the Git repository. To make a local workspace copy, you clone the repo into
a directory that you will work in. This is done by typing:

$ git clone --recursive git@github.com:LLNL/axom.git

Note

You don’t need to remember the URL for the Axom repo above. It can be
found by going to the Axom repo on our Github project and
clicking on the ‘Clone or download’ button on the upper right hand corner
above the source.

The ‘–recursive’ argument above is needed to pull in all Git submodules
that we use in the project. In particular, you will need the BLT build system,
which is a Git sub-module in Axom, in your local copy of the repo. In case you
forget to pass the ‘–recursive’ argument to the ‘git clone’ command, you can
type the following commands after cloning:

$ cd axom
$ git submodule init
$ git submodule update

Either way, the end result is the same and you are good to go.

Git Environment Support

After cloning, we recommend that you run the development setup script we
provide in the top-level Axom directory to ensure that your Git environment
is configured properly; i.e.,:

$ cd axom
$./scripts/setup-for-development.sh

This script sets up several things we find useful, such as Git editor, aliases,
client-side hooks, useful tips, etc.

You can also define your own aliases for common git commands to simplify your workflow.
For example, the following sets up an alias for unstaging files:

$ git config alias.unstage 'reset HEAD--'

Then, the alias can be used as a regular Git command as illustrated below:

$ git unstage <file>

Moreover, you may want to tap in to some of your shell’s features to enhance your Git experience.
Chief among the most notable and widely used features are:

	Git Completion, which allows tab-completion of Git commands and branch names.

	Prompt Customization, which allows modifying your prompt to indicate the
current branch name, whether there are local changes, etc.

Git ships with contributed plugins for popular shells. Examples illustrating
how to use these plugins in bash and tcsh/csh are given below.

Setting up your Bash Environment

If you are in Bash, you can set your environment as follows:

	Get the git-prompt.sh and auto-completion scripts from github

$ wget https://raw.githubusercontent.com/git/git/master/contrib/completion/git-prompt.sh
$ wget https://raw.githubusercontent.com/git/git/master/contrib/completion/git-completion.bash

	Optionally, you may want to move the files to another location. Nominaly, folks put those as
hidden files in their home directory

$ mv git-prompt.sh $HOME/.git-prompt.sh
$ mv git-completion.bash $HOME/.git-completion.bash

	Add the following to your .bashrc

source ~/.git-prompt.sh
source ~/.git-completion.bash
export GIT_PS1_SHOWDIRTYSTATE=1
export GIT_PS1_SHOWSTASHSTATE=1
export GIT_PS1_SHOWUNTRACKEDFILES=1

Set your PS1 variable
reset=$(tput sgr0)
bold=$(tput bold)
export PS1='[\w] \[$bold\]$(__git_ps1 " (%s)")\[$reset\]\n\[$bold\]\u@\h\[$reset\] > '

Setting up your tcsh/csh Environment

Likewise, if you are using tcsh/csh, you can do the following:

	Get the auto-completion scripts from github. Note, git-completion.tcsh makes
calls to git-completion.bash, so you need to have both

$ wget https://raw.githubusercontent.com/git/git/master/contrib/completion/git-completion.tcsh
$ wget https://raw.githubusercontent.com/git/git/master/contrib/completion/git-completion.bash

	Optionally, you may want to move the files to another location. Nominally, folks put those as
hidden files in their home directory

$ mv git-completion.tcsh $HOME/.git-completion.tcsh
$ mv git-completion.bash $HOME/.git-completion.bash

	Add the following to your .tcshrc or .cshrc

source ~/.git-completion.tcsh

Add alias to get the branch
alias __git_current_branch 'git rev-parse --abbrev-ref HEAD >& /dev/null && echo "{`git rev-parse --abbrev-ref HEAD`}"'

Set your prompt variable for example:
alias precmd 'set prompt="%n@%m[%c2]`__git_current_branch` "'

Topic Branch Development

It is worth re-emphasizing a fundamental principle of the Gitflow
development model that we described in Gitflow Branching Model.

Important

We never work directly on the develop or main branches.
All development occurs on topic branches.

When we refer to a topic branch, it could be a feature branch,
a bugfix branch, etc. The basic workflow for performing development
on a topic branch is:

	Create a topic branch off the develop branch and push the new branch
to Github.

	Make changes and commit them to your branch in your local copy of the
repository. Remember to push changes to the Github repo
regularly for backup and so you can easily recover earlier versions of
your work if you need to do so.

	If you are working on your topic branch for a while, it is a good idea
to keep your topic branch current with the develop branch by merging
develop into your topic branch regularly. This will simplify the
process of merging your work into the develop branch when you are ready.

	When your work is complete (including required testing, documentation,
etc.), create a pull request so others on the team
can review your work. See Pull Requests and Code Reviews.

Here are some details about each of these steps.

Step 1 – Create a topic branch

Most development occurs on a topic branch created off the develop branch.
Occasions where a branch is created from another branch, such as a
‘hotfix’ branch created off main, are described in Gitflow Branching Model.
To create a branch in Git, provide the -b option to the
git checkout command, followed by the name of your topic branch.
A topic branch name should include your username (i.e., login id) and a
brief description indicating the purpose of the branch.
Typically, we label such branches using “feature”, “bugfix”, etc. to make
it clear what type of work is being performed on a branch. For example,:

$ git checkout -b feature/<userid>/my-cool-new-feature
$ git push -u

You can also attach a Github issue number to the branch name if the work
you will do on the branch is related to a issue. Then, Github
will associate the issue with the commit when you merge your branch to the
develop branch. For example,:

$ git checkout -b bugfix/<userid>/issue-atk-<issue #>
$ git push -u

Alternatively, if your branch addresses multiple issues, you should
add the appropriate issue numbers (e.g., #374) to the messages in
your commits that address them.

In each of these examples, the ‘git push -u’ command pushes the branch to
the Github server and it will appear in the list of branches you and
other developers can see there.

Step 2 – Do development work

After you’ve created a topic branch and pushed it to Github, perform
your development work on it; i.e., edit files, add files, etc.
Common commands you will use are:

$ git add <file>
$ git commit
$ git push

The ‘add’ command adds a file (or files) to be staged for a commit
operation. The ‘commit’ command moves your staged changes to your local
copy of the repository. The ‘push’ command pushes these changes to the
topic branch in the Git repo. To push your work, you could also do:

$ git push origin

This is equivalent to ‘git push’ if you specified the ‘-u’ option when you
originally pushed your topic branch when you created it.

Important

You may perform several local commits before you push your work
to the Github repo. Generally, it is a good idea to limit the
amount of modifications contained in any one commit. By
restricting individual commits to a reasonable size that
contain closely related work, it is easier to refer back to
specific changes you make when the need arises (as it
inevitably will!). For example, if you regularly run your
code through a formatting tool (we use clang-format on the Axom
project), it is preferable to commit other content changes first
and then commit formatting changes in a separate commit. That
way, you can distinguish substance from cosmetic changes easily
in the Git history.

Recall the Git environment setup script we recommended that you run after
cloning the repo in the Cloning the Repo section above. One of the
Git pre-commit hooks that the script sets up applies formatting constraints
on the commit message you provide when you execute the ‘commit’ command. The
constraints are recommended Git practices that help make it easier to use
various tools with the Git version control system. Specifically:

	Commit message subject line is at most 50 characters

	Subject line and body of commit message are separated by a blank line

	Main body of commit message is wrapped to 78 characters

Step 3 – Keep current with develop

If you will be working on your topic branch for a while, it is a good idea
to merge changes (made by other developers) from the develop branch to
your topic branch regularly. This will help avoid getting too far out of
sync with the branch into which your work will be merged eventually.
Otherwise, you may have many conflicts to resolve when you are ready to
merge your topic branch into develop and the merge could be difficult.

Before you begin the merge, make sure all outstanding changes to your topic
branch are committed. Then, make sure your local repo is up-to-date with
the develop branch by checking it out and pulling in the latest
changes; i.e.,:

$ git checkout develop
$ git pull

Next, checkout your topic branch and merge changes in from the
develop branch, and check for conflicts:

$ git checkout <your topic branch>
$ git merge develop

The ‘merge’ command will tell you whether there are conflicts and which
files have them. Hopefully, you will not see any conflicts and you can
continue working on your topic branch. If there are conflicts, you must
resolve them before you will be able to merge your topic branch to develop.
So, you may as well resolve them right away. You can resolve them by
editing the conflicting files and committing the changes. Merge conflicts
appear in a file surrounded by lines with special characters on them. For
example, if you open a conflicted file in an editor, you may see:

<<<<<<< HEAD
// lines of code, etc...
=======
// more lines of code, etc...
>>>>>>> develop

The section above the ‘=======’ line are the file contents in the current
branch head (your topic branch). The lines below are the contents of the
develop branch that conflict with yours. To resolve the conflict, choose
the correct version of contents you want and delete the other lines.

Alternatively, you can use a tool to help resolve your conflicts. The
‘git mergetool’ command helps you run a merge tool. One such tool is called
“meld”, which is very powerful and intuitive. Diff tools like “tkdiff”
are also helpful for resolving merge conflicts.

Important

Git will not let you commit a file with merge conflicts.
After you resolve merge conflicts in a file, you must
stage the file for commit (i.e., git add <filename>),
commit it (i.e., `git commit), and push it to the Github
repo (i.e., git push) before you can merge.

Step 4 – Create a pull request

When your work is complete, and you are ready to merge your topic branch
to the develop branch, you must initiate a pull request in Github. Go
into the Axom Github project, select your branch, and click
Create pull request in the left column. Make sure you select the correct
destination branch. The default destination branch in our project is set
up to be the develop branch. So, in most cases, you won’t have to do
anything special.

You must also select appropriate team members to review changes. Our
Github project is set up to require at least one other developer to
approve the pull request before a merge.

Important

You cannot approve your own pull request.

When your pull request is approved (see Code Review Checklist for more
information), you merge your topic branch to the develop branch by
clicking the “merge” button in Github. If there are no merge conflicts,
the merge will proceed and you are done. If there are conflicts, Github
will indicate this and will not let you merge until all conflicts are
resolved.

Important

You must run the CZ Bamboo plan ‘Build and Test Branch’
and verify all tests pass before you merge.
See RZ Bamboo for more information.

The preferred way to resolve conflicts at this point is to go into your
topic branch and do the following:

$ git fetch origin
$ git merge origin

The ‘fetch’ command pulls changes from the remote branch into your local
branch. Running the ‘merge’ command will show which files have conflicts.
Fix the conflicts as described in Step 3 – Keep current with develop. After all
conflicts are resolved, run the ‘commit’ and ‘push’ commands as usual:

$ git commit
$ git push

Lastly, complete the merge in Github by clicking the merge button.

Important

To keep things tidy, please delete your topic branch in
Github after it is merged if you no longer need it for
further development. Github provides an option to
automatically delete the source branch of a merge after
the merge is complete. Alternatively, you can click on
the Github branches tab and manually delete the branch.

Checking Out an Existing Branch

When working on multiple branches, or working on one with someone else on
the team, you will need to checkout a specific branch. Any existing branch
can be checked out from the Git repository. Here are some useful commands:

$ git fetch
$ git branch -a
$ git checkout <branch name>

The ‘fetch’ command retrieves new work committed by others on branches you may
have checked out, but without merging those changes into your local
copies of those branches. You will need to merge branches if you want changes
from one branch to be moved into another. The ‘branch’ command lists all
available remote branches. The ‘checkout’ command checks out the specified
branch into your local working space.

Note

You do not give the ‘-b’ option when checking out an existing
branch. This option is only used when creating a new branch.

Here is a concrete example:

$ git branch -a | grep homer
 remotes/origin/feature/homer/pick-up-bart
$ git checkout feature/homer/pick-up-bart
 Branch feature/homer/pick-up-bart set up to track remote branch feature/homer/pick-up-bart
 Switched to a new branch 'feature/homer/pick-up-bart'

Pull Requests and Code Reviews

Before any code is merged into the develop or main branches, it
must be tested, documented, reviewed, and accepted. Creating a pull request on
the Axom Github project to merge a branch into develop or main
initiates the test and review processes. All required build configurations
and tests must pass for a pull request to be approved. Also, new tests
(unit, integration, etc.) must be created that exercise any new functionality
that is introduced. This will be assessed by reviewers of each pull request.
See Step 4 – Create a pull request for details about creating pull requests.

Code changes in a pull request must be accepted by at least one member
of the Axom development team other than the originator of the pull
request. It is recommended that several team members review pull
requests, especially when changes affect APIs, dependencies (within Axom
and external), etc. Pull request reviewers can be
selected on Github when the pull request is created. Changes reviewed by
the team are accepted, rejected, or commented on for improvement; e.g.,
issues to be addressed, suggested changes, etc. Pull requests can be updated
with additional changes and commits as needed. When a pull request is
approved, it can be merged. If the merged branch is no longer needed for
development, it should be deleted.

In addition to successful compilation and test passing, changes to the
develop and main branches should be scrutinized in other ways and using
other code health tools we use. See Git/Github: Version Control and Branch Development for more information
about using our continuous integration tools.

Pull Request Summary

To recap, here is a summary of steps in a pull request:

	When code is ready to be considered for acceptance, create a pull request
on the Axom Github project. Identify the appropriate reviewers
and add them to the pull request.

	Code must build successfully and all relevant tests must pass, including
new tests required for new functionality.

	All issues (build failures, test failures, reviewer requests) must be
addressed before a pull request is accepted.

	Pull requests must be approved by at least one member of development
team other than the pull request originator.

	When a pull request is approved it may be merged. If the merged branch is
no longer needed, it should be deleted. This can be done when merging
with Github.

Code Review Checklist

Beyond build and test correctness, we also want to ensure that code follows
common conventions before acceptance. The following list is a high-level
summary of the types of concerns we want to identify during pull request
reviews and resolve before a pull request is merged. Please see the
Axom Coding Guide for details
on items in this list.

	A new file or directory must be placed in its proper location; e.g.,
in the same directory with existing files supporting related functionality.

	File contents must be organized clearly and structure must be consistent
with conventions.

	Namespace and other scoping conventions must be followed.

	Names (files, types, methods, variables, etc.) must be clear, easily
understood by others, and consistent with usage in other parts of the code.
Terminology must be constrained; i.e., don’t introduce a new term for
something that already exists and don’t use the same term for different
concepts.

	Documentation must be clear and follow conventions. Minimal, but adequate,
documentation is preferred.

	Implementations must be correct, robust, portable, and understandable to
other developers.

	Adequate tests (unit and performance) tests must be added for new
functionality.

Axom Component Structure

This section describes the structure of directories, files, and their contents
for an Axom component. This section should be used as a guide to identify
tasks to be done when adding a new software component to Axom. These include:

	Creating the appropriate directory structure

	Modifying and adding CMake files and variables

	Generating C and Fortran interfaces

	Writing documentation

	Writing tests

Note

The discussion here does not contain coding guidelines. Please see
Axom Coding Guide
for that information.

Component Directory Structure

In the axom/src/components directory, you will find a subdirectory for
each Axom component. For example:

$ cd axom/src/components
$ ls -1
CMakeLists.txt
axom_utils
lumberjack
mint
...

All files for each component are contained in subdirectories in the
component directory.

To illustrate, consider the sidre component directory:

$ cd axom/src/components/sidre
$ ls -1 -F
CMakeLists.txt
docs/
examples/
src/
tests/

Note that, besides directories, the top-level component directory contains
a few files:

	CMakeLists.txt contains CMake information for the component in the Axom build system.

The docs directory contains the component documentation. Subdirectories in
the docs directory are named for each type of documentation. The directories
doxygen and sphinx are required. Each Axom component uses Doxygen for
source code documentation and Sphinx for user documentation. Other
documentation directories can be used as needed. For example, sidre also
contains documentation directories dot for dot-generated figures, and
design for design documents.

The src directory contains all header and source files for the component.
These files, which are typically C++, can be organized in subdirectories
within the src directory in whatever manner makes sense. For example, in
sidre, these core header and source files are in a subdirectory called
core. As is common practice for C++ libraries, associated header and
source files are co-located in the same directories.

The interface directory contains interface files for use by languages
other than C++. To make it easy for applications written in C and
Fortran, for example, to use Axom directly in their native languages,
Axom components provide APIs in these languages. For information about
how we generate these APIs, see C and Fortran Interfaces.

A test directory is required for each component which contains a
comprehensive set of unit tests. See Axom Tests and Examples for information
about writing tests and inserting them into our testing framework.

An examples directory is optional, but recommended. It contains simple
code examples illustrating component usage.

Important

For consistency, these subdirectory names within the top-level
component directory should be the same for each Axom components.

CMake Files and Variables

To properly configure and compile code for a component, and generate
consistent make targets, existing CMake files and variables need to be
modified in addition to adding CMake files for the new component. In this
section, we describe the sort of changes and additions that are required.
For additional details about our CMake and BLT usage, please look in files
in existing Axom components.

Add CMake macro definitions

The top-level CMake directory axom/src/cmake contains a file called
AxomConfig.cmake that defines macro constants for enabling
Axom components and setting third-party library (TPL) dependencies that
are used to enforce consistency for conditionally-compiled code. When a new
component or dependency is added, that file must be modified by:

	Adding the name of the component to the COMPS variable

	Adding new TPL dependency to the TPL_DEPS variable

The CMake variables are used to generate macro constants in the Axom
configuration header file. For each new CMake variable added, an associated
#cmakedefine definition must be added to the config.hpp.in file in the
axom/src/include directory.

Modify top-level CMakeLists.txt file

When adding a new Axom component, the file axom/src/components/CMakeLists.txt
must be modified to hook the component into the CMake build configuration
system. Specifically:

	Add option to enable component. For example,:

axom_add_component(COMPONENT_NAME sidre DEFAULT_STATE ${AXOM_ENABLE_ALL_COMPONENTS})

	Add component dependency target by adding component name to the axom_components variable.

Add component CMakeLists.txt files

There are several CMakeLists.txt files that must be added in various component
directories. We try to maintain consistent organization and usage across all
Axom components to avoid confusion. To illustrate, we describe the key
contents of the CMakeLists.txt files in the sidre Axom component. See those
files or those in other components for more details.

Top-level component directory

The top-level component directory contains a CMakeLists.txt, e.g.,
axom/src/components/sidre/CmakeLists.txt, which contains the following items:

	Checks for necessary dependencies with useful error or warning messages;
e.g.,:

if(NOT HDF5_FOUND)
 message(FATAL_ERROR "Sidre requires HDF5. Set HDF5_DIR to HDF5 installation.")
endif()

	Subdirectories additions with guards as needed; e.g.,:

add_subdirectory(src)

and:

if (AXOM_ENABLE_TESTS)
 add_subdirectory(tests)
endif()

	CMake exports of component targets; e.g.,:

install(EXPORT <component name>-targets DESTINATION lib/cmake)

	Code formatting and static analysis targets; e.g.,:

axom_add_code_checks(BASE_NAME <component name>)

Note

Each Axom component should use the common clang-format
configuration file defined for the project at src/.clang-format.
The file is used to define source code formatting options that are
applied when the clang-format tool is run on the code.

Component src directory

The CMakeLists.txt file in the component src directory defines:

	A variable for component header files named <component name>_headers

	A variable for component source files named <component name>_sources

	A variable for component dependencies named <component name>_depends

For example, these variables for the sidre component are sidre_headers,
sidre_sources, and sidre_depends.

Note

It is important to account for all conditional inclusion of items
in these CMake variable names. For example, a C interface is
generated to support a Fortran API, typically. So if Fortran is
not enabled, it is usually not necessary to include the C header
files in sidre_headers. Similarly, do not include items in
the dependency variable if they are not found.

This file also adds source subdirectories as needed (using the CMake
add_subdirectory command), adds the component as a Axom library, and
adds target definitions for dependencies. For example, the command to
add sidre as a library is:

blt_add_library(NAME
 sidre
 SOURCES
 "${sidre_sources}"
 "${sidre_fortran_sources}"
 HEADERS
 "${sidre_headers}"
 DEPENDS_ON
 ${sidre_depends}
)

All components should follow this format to describe the library information.

Component docs directory

A component docs directory contains a CMakeLists.txt file that uses
the CMake add_subdirectory command to add sphinx and doxygen
subdirectories to the build configuration. These should be guarded to prevent
addition if either Sphinx or Doxygen are not found.

CMakeLists.txt files in the sphinx and doxygen subdirectories add
targets and dependencies for each type of documentation build. For example,
the sidre component generates sidre_docs and sidre_doxygen targets
for these document types.

Component tests and examples

The content of component tests and examples directories, including as
CMake files are discussed in Axom Tests and Examples.

Filename and CMake Target Conventions for Axom Documentation

The conventions in this section are intended to make it easy to generate
a specific piece of documentation for a an Axom component manually. In Axom,
we use ‘make’ targets to build documentation. Typing make help will list
all available targets. When the following conventions are followed, all
documentation targets for a component will be grouped together in this
listing. Also, it should be clear from each target name what the target is for.

CMake targets for component user guides and source code docs (i.e., Doxygen)
are:

<component name>_user_docs

and

<component name>_doxygen_docs

respectively. For example:

sidre_user_docs (sidre component user guide)
sidre_doxygen_docs (sidre Doxygen source code docs)

C and Fortran Interfaces

Typically, we use the Shroud tool to generate C and Fortran APIs from our C++
interface code. Shroud is a python script that generate code
from a yaml file that describes C++ types and their interfaces. It was
developed for the Axom project and has since been generalized and is supported
as a standalone project. *Add link to Shroud project*
To illustrate what is needed to generate multi-language API code via a make
target in the Axom build system, we describe the contents of the sidre
Axom component interface directory axom/src/components/sidre/src/interface
that must be added:

	A yaml file, named sidre_shroud.yaml, which contains an annotated
description of C++ types and their interfaces in sidre C++ files.
This file and its contents are generated manually.

	Header files, such as sidre.h, that can be included in C files. Such
a file includes files containing Shroud-generated ‘extern C’ prototypes.

	Directories to hold the generated files for different languages; e.g.,
c_fortran for C and Fortran APIs, python for python API, etc.

	‘Splicer’ files containing code snippets that get inserted in the
generated files.

	A CMakeLists.txt files that contains information for generating CMake
targets for Shroud to generate the desired interface code. For example:

add_shroud(YAML_INPUT_FILE sidre_shroud.yaml
 YAML_OUTPUT_DIR yaml
 C_FORTRAN_OUTPUT_DIR c_fortran
 PYTHON_OUTPUT_DIR python
 DEPENDS_SOURCE
 c_fortran/csidresplicer.c c_fortran/fsidresplicer.f
 python/pysidresplicer.c
 DEPENDS_BINARY genfsidresplicer.f
)

This tells shroud which yaml file to generate code files from, which
directories to put generated files in, which splicer files to use, etc.

The end result of properly setting up these pieces is a make target called
generate_sidre_shroud that can be invoked to generate sidre API code
in other languages Axom supports.

Documentation

Complete documentation for an Axom component consists of several parts
described in the following sections. All user documentation is accessible
on Axom Read The Docs page [https://axom.readthedocs.io].

User Documentation

Each Axom component uses Sphinx for user documentation. This documentation
is generated by invoking appropriate make targets in our build system.
For example, make sidre_docs builds html files from Sphinx user
documentation for the sidre component.

The main goal of good user documentation is to introduce the software to
users so that they can quickly understand what it does and how to use it.
A user guide for an Axom component should enable a new user to get a
reasonable sense of the capabilities the component provides and what the
API looks like in under 30 minutes. Beyond introductory material, the user
guide should also help users understand all major features and ways the
software may be used. Here is a list of tips to help you write good
documentation:

	Try to limit documentation length and complexity. Using figures,
diagrams, tables, bulleted lists, etc. can help impart useful
information more quickly than text alone.

	Use examples. Good examples can help users grasp concepts quickly
and learn to tackle problems easily.

	Place yourself in the shoes of targeted users. Detailed
instructions may be best for some users, but may be onerous for others
who can quickly figure things out on their own. Consider providing
step-by-step instructions for completeness in an appendix, separate
chapter, via hyperlink, etc. to avoid clutter in sections where you
are trying to get the main ideas across.

	Try to anticipate user difficulties. When possible, describe workarounds,
caveats, and places where software is immature to help users set
expectations and assumptions about the quality and state of your software.

	Test your documentation. Follow your own instructions completely.
If something is unclear or missing, fix your documentation. Working with
a co-worker who is new to your work, or less informed about it, is
also a good way to get feedback and improve your documentation.

	Make documentation interesting to read. While you are not writing a
scintillating novel, you want to engage users with your documentation
enough so that they don’t fall asleep reading it.

	Quickly incorporate feedback. When a user provides some useful feedback
on your documentation, it shows they care enough to help you improve
it to benefit others. Incorporate their suggestions in a timely fashion
and ask them if you’ve addressed their concerns. Hopefully, this will
encourage them to continue to help.

Speaking of good user documentation, the
reStructuredText Primer [http://www.sphinx-doc.org/en/stable/rest.html]
provides enough information to quickly learn enough to start using the
markdown language for generating sphinx documentation.

Code Documentation

Each Axom component uses Doxygen for code documentation. This documentation
is generated by invoking appropriate make targets in our build system.
For example, make sidre_doxygen builds html files from Doxygen code
documentation for the sidre component.

The main goal of code documentation is to provide an easily navigable
reference document of your software interfaces and implementations for
users who need to understand details of your code.

We have a useful discussion of our Doxygen usage conventions in the
Documentation Section of the Axom Coding Guide.
The Doxygen Manual [http://www.doxygen.nl/manual/] contains
a lot more details.

Fill in more details when we have a better handle on how we want to organize
our doxygen stuff…

Axom Tests and Examples

This section describes how to build and organize tests and examples
for Axom components. These live in tests and examples directories
within each component top-level directory.

Comprehensive collections of well-designed unit tests and integration
tests are important tools for developing quality software. Good tests
help to ensure that software operates as expected as it is being developed
and as it is used in different ways. To maintain a high level of usefulness,
tests must be maintained and developed along with the rest of project
software. Tests should be expanded and modified as software evolves so that
they can always be used to verify that software functionality is correct.

Unit tests are most effective for designing and modifying
individual software units to make sure they continue work properly.
Integration tests help to make sure that various sets of software units
work together. Typically, integration testing is more complex and subtle
than the sum of the independent unit tests of the parts that comprise the
integrated system. Proving that component X and component Y each work
independently doesn’t prove that X and Y are compatible or that they will
work together. Also, defects in individual components may bear no relationship
to issues an end user would see.

When developing software, it is important to keep these thoughts in mind and
to use tests effectively to meet your goals. Exposing issues when designing
and refactoring individual software components may be best accomplished with
unit tests, often run manually as you are adding or modifying code. Detecting
broken regressions (e.g., “this used to work, but something changed and now it doesn’t”) may be best done by frequently running automated integration tests.

This section describes how to write and manually run tests in Axom. In
RZ Bamboo, we describe our automated testing process using the
Atlassian Bamboo tool.

A Few Guidelines for Writing Tests

Before we describe the mechanics of writing tests in the Axom framework,
we describe some test guidelines. The aim of these guidelines is to help
ensure that tests are complete, correct, easy to run, and easy to modify
as needed when software changes.

	Decompose tests so that each test is independent of the others. For
example, a unit test file should test features of a single class
and not contain tests of other classes.

	Each specific behavior should be specified in one and only one test.
For example, all unit tests for a container class may live in a single
test file, but you should verify each container operation (e.g.,
container creation/destruction, item insertion, item removal, container
traversal, etc.) in exactly one test. In particular, if a test
covers some behavior, checking that same behavior in another test
is unnecessary.

	Limit each test to as few logical assertions as possible. Ideally, each
behavior should require one logical assertion. However, sometimes it
makes sense to have more than one check. For example, a test for an
empty container may assert that its ‘empty’ method returns true and
also assert that its ‘size’ method returns zero.

	Tests should be independent on the order in which they are run.

	Tests should be independent of the platform (hardware architecture,
compiler, etc.) on which they are run.

	Tests should be named clearly and consistently. See
Filename and CMake Target Conventions for Axom Tests and Examples for a description of Axom conventions for
test names.

Unit Tests

In Axom, we use the
Google Test framework [https://github.com/google/googletest]
for C and C++ unit tests and we use the
Fortran Unit Test Framework (FRUIT) [https://sourceforge.net/projects/fortranxunit/] for Fortran unit tests.

Organization of tests in either language/framework are similar should
follow the principles summarized in the guidelines above. Each Google Test or
FRUIT file is compiled into its own executable that can be run directly or
as a ‘make’ target. Each executable may contain multiple tests. So that
running individual tests as needed is not overly burdensome, such as unit
tests for a C++ class, we put all tests for distinct software units in files
separate from those for other units. Tests within each file should be sized
so that too many different behaviors are not executed or verified in a
single test.

See Filename and CMake Target Conventions for Axom Tests and Examples for test file naming and make target conventions.

Google Test (C++/C Tests)

The contents of a typical Google Test file look like this:

#include "gtest/gtest.h"

#include ... // include Axom headers needed to compiler tests in file

// ...

TEST(<test_case_name>, <test_name_1>)
{
 // Test 1 code here...
 // EXPECT_EQ(...);
}

TEST(<test_case_name>, <test_name_2>)
{
 // Test 2 code here...
 // EXPECT_TRUE(...);
}

// Etc.

Each unit test is defined by the Google Test TEST() macro which accepts a
test case name identifier, such as the name of the C++ class being tested,
and a test name, which indicates the functionality being verified by the
test. For each test, logical assertions are defined using
Google Test assertion macros. Failure of expected values will cause the test
to fail, but other tests will continue to run.

Note that the Google Test framework will generate a ‘main()’ routine for
each test file if it is not explicitly provided. However, sometimes it is
necessary to provide a ‘main()’ routine that contains operation to run
before or after the unit tests in a file; e.g., initialization code or
pre-/post-processing operations. A ‘main()’ routine provided in a test
file should be placed at the end of the file in which it resides.

Here is an example ‘main()’ from an Axom test that sets up a slic logger
object to be used in tests:

int main(int argc, char * argv[])
{
 int result = 0;

 ::testing::InitGoogleTest(&argc, argv);

 UnitTestLogger logger; // create & initialize test logger,
 // finalized when exiting main scope

 ::testing::FLAGS_gtest_death_test_style = "threadsafe";
 result = RUN_ALL_TESTS();

 return result;
}

Note that Google Test is initialized first, followed by initialization of the
slic UnitTestLogger object. The RUN_ALL_TESTS() Google Test macro will
run all the tests in the file.

As another example, consider a set of tests that use MPI. The ‘main()’
routine will initialize and finalize MPI before and after tests are run,
respectively:

int main(int argc, char * argv[])
{
 int result = 0;

 ::testing::InitGoogleTest(&argc, argv);

 UnitTestLogger logger; // create & initialize test logger,
 // finalized when exiting main scope

 MPI_Init(&argc, &argv);

 result = RUN_ALL_TESTS();

 MPI_Finalize();

 return result;
}

Note that Google test is initialized before ‘MPI_Init()’ is called.

Other Google Test features, such as fixtures, may be used as well.

See the Google Test Primer [https://github.com/google/googletest/blob/master/googletest/docs/Primer.md]
for discussion of Google Test concepts, how to use them, and a listing of
available assertion macros, etc.

FRUIT (Fortran Tests)

Fortran unit tests using the FRUIT framework are similar in structure to
the Google Test tests for C and C++ described above.

The contents of a typical FRUIT test file look like this:

module <test_case_name>
 use iso_c_binding
 use fruit
 use <axom_module_name>
 implicit none

contains

subroutine test_name_1
! Test 1 code here...
! call assert_equals(...)
end subroutine test_name_1

subroutine test_name_2
! Test 2 code here...
! call assert_true(...)
end subroutine test_name_2

! Etc.

The tests in a FRUIT test file are placed in a Fortran module named for
the test case name, such as the name of the C++ class whose Fortran interface
is being tested. Each unit test is in its own Fortran subroutine named
for the test name, which indicates the functionality being verified by the
unit test. Within each unit test, logical assertions are defined using
FRUIT methods. Failure of expected values will cause the test
to fail, but other tests will continue to run.

Note that each FRUIT test file defines an executable Fortran program. The
program is defined at the end of the test file and is organized as follows:

program fortran_test
 use fruit
 use <axom_component_unit_name>
 implicit none
 logical ok

 ! initialize fruit
 call init_fruit

 ! run tests
 call test_name_1
 call test_name_2

 ! compile summary and finalize fruit
 call fruit_summary
 call fruit_finalize

 call is_all_successful(ok)
 if (.not. ok) then
 call exit(1)
 endif
end program fortran_test

Please refer to the FRUIT documentation [https://sourceforge.net/projects/fortranxunit/] for more information.

Integration Tests

Important

Fill this in when we know what we want to do for this…

CMake Files and Variables for Tests

The CMakeLists.txt file in component test directory defines the
following items:

	Variables for test source files as needed. Separate variables should
be used for Fortran, C++, etc. For example, gtest_sidre_tests for
C++ tests, gtest_sidre_C_tests for C tests, and fruit_sidre_tests
for Fortran tests. Note that we use the Google Test framework for C
and C++ tests and Fruit for Fortran tests.

	An executable and test variable for each test executable to be
generated. These variables use the blt_add_executable and
blt_add_test macros, respectively, as described above.

Note

Fortran executables and tests should be guarded to prevent
generation when Fortran is not enabled.

See Axom Tests and Examples for details about writing tests in Axom.

Examples

Examples for Axom components serve to illustrate more realistic usage of
those components. They can also be run as tests if that’s appropriate.

The source code for each component test should be contained in the component
examples directory if it is contained in one file. If it contains multiple
files, these should be placed in a descriptively-named subdirectory
of the examples directory.

In addition, each example should be given its own CMake-generated make target.

CMake Files and Variables for Examples

The CMakeLists.txt file in each component’s ‘examples’ directory defines the
following items:

	Variables for example source files and header files as needed
Separate variables should be used for Fortran, C++, etc. For example,
example_sources for C++, F_example_sources for Fortran.

	An executable and test variable for each example executable to be
generated and each executable to be run as a test. These definitions
use the blt_add_executable and blt_add_test macros, respectively.
For example:

blt_add_executable(NAME <example executable name>
 SOURCES <example source>
 OUTPUT_DIR ${EXAMPLE_OUTPUT_DIRECTORY}
 DEPENDS_ON <example dependencies>)

and:

blt_add_test(NAME <example executable name>
 COMMAND <example executable name>)

Fortran executables and tests should be guarded to prevent generation if
Fortran is not enabled.

Filename and CMake Target Conventions for Axom Tests and Examples

The conventions in this section are intended to make it easy to tell what
is in a given component test or example file and to make it easy to run
desired test or example. In Axom, we use ‘make’ targets to build and run
tests and examples. Typing make help will list all available targets. When
the following conventions are followed, all test and example targets for a
component will be grouped together in this listing. Also, it will be clear
from each target name what the target is for.

Test file names and make targets

The format of a test file name is:

<component name>_<test name>_<optional language specifier>

Examples:

sidre_buffer.cpp ('Buffer' class C++ unit test)
sidre_buffer_C.cpp ('Buffer' class C unit test)
sidre_buffer_F.f ('Buffer' class Fortran unit test)

When test files are named like this, it is easy to see what they contain.
Additionally, when added to the appropriate CMakeLists.txt file
(see src/components/sidre/tests/CmakeLists.txt file for example), the
extension ‘_test’ will be added to the make target name so that the
test will appear as follows in the make target listing when ‘make help’
is typed:

sidre_buffer_test
sidre_buffer_C_test
sidre_buffer_F_test

Note

We should also add a target for each component to run all its tests;
e.g., ‘make sidre_tests’

Example file names and make targets

The format of an example file name is:

<component name>_<example name>_<optional language specifier>_ex

	Examples::

	sidre_shocktube_ex.cpp (‘shocktube’ C++ example)
sidre_shocktube_F_ex.f (‘shocktube’ Fortran example)

Running Tests and Examples

Axom examples and tests can be run in multiple different ways using make
targets, Bamboo continuous integration (CI) tool, or manually. The best
choice for running them depends on what you are trying to do.

For example, if you build Axom and want to make sure everything is working
properly, you can type the following command in the build directory:

$ make test

This will run all tests and examples and report a summary of passes and
failures. Detailed output on individual tests is suppressed.

If a test fails, you can invoke its executable directly to see the detailed
output of which checks passed or failed. This is especially useful when
you are modifying or adding code and need to understand how unit test details
are working, for example.

Lastly, you can run suites of tests, such as all tests on a set of platforms
and compilers, using Bamboo. See RZ Bamboo for information about
running tests using the Bamboo tool.

Miscellaneous Development Items

This section describes various development tasks that need to be
performed that are not covered in earlier sections.

Web Documentation

Describe how to build and install web documentation…

Shared LC web content location axom/src/docs/sphinx/web

Third-party Library Installation

Describe how to run the scripts to install third-party libraries for
testing different versions locally on a branch and for installing new
libraries for the team to use…

Building and installing TPLs for all compilers on the current LC platform you are on:

$ python ./scripts/llnl_scripts/build_tpls.py -d <output/path/>

Questions we need to answer include:

	How does one add a new compiler or platform to the mix?

	How does one build a new set of TPLs with for a single platform or compiler
for testing?

	What is the procedure for changing versions of one or more TPLs?

	How do we keep things straight when using different TPL versions for
different branches?

	How to use the scripts for team TPL support vs. local development
experimentation?

	Others?

Note

Pull in content from ../web/build_system/thirdparty_deps.rst …
fill in gaps and make sure it it up-to-date…

Code Health Tools

This section describes how to run code health tools we use.

Code Coverage

Setting up and running code coverage analysis…

Static Analysis

Setting up and running static analysis tools….

Memory Checking

Setting up and running memory checking tools….

Axom Coding Guidelines

These guidelines define code style conventions for the Axom project. Most of the
items were taken from the cited references, sometimes with modifications and
simplifications; see References and Useful Resources.

The guidelines emphasize code readability, correctness, portability, and
interoperability. Agreement on coding style and following common idioms
and patterns provides many benefits to a project with multiple developers.
A uniform “look and feel” makes it easier to read and understand source code,
which increases team productivity and reduces confusion and coding errors
when developers work with code they did not write. Also, guidelines
facilitate code reviews by enforcing consistency and focusing developers on
common concerns. Some of these guidelines are arbitrary, but all are based
on practical experience and widely accepted sound practices. For brevity,
most guidelines contain little detailed explanation or justification.

Each guideline is qualified by one of three auxiliary verbs:
“must”, “should”, or “may” (or “must not”, “should not”, “may not”).

	A “must” item is an absolute requirement.

	A “should” item is a strong recommendation.

	A “may” item is a potentially beneficial stylistic suggestion.

How to apply “should” and “may” items often depends on the particular code
situation. It is best to use these in ways that enhance code readability
and help reduce user and developer errors.

Important

	Variations in coding style for different Axom components
is permitted. However, coding style within each Axom
component must be consistent.

	Deviations from these guidelines must be
agreed upon by the Axom team.

	When the team agrees to change the guidelines, this
guide must be updated.

Contents:

	1 Changing Existing Code
	Follow existing code style

	Only change code from other sources when it makes sense

	2 Names
	Good names are clear and meaningful

	Avoid cryptic names

	Use terminology consistently

	Name directories so it’s easy to know what’s in them

	Follow file extension conventions

	Associated source and header file names should match

	File contents should be clear from file name

	File names should not differ only by case

	Namespace name format

	Type name format

	Function name format

	Function names should indicate behavior

	Related functions should have similar names

	Data member and variable name format

	Variable names should indicate type

	Macro and enumeration name format

	3 Directory Organization
	Limit scope of directory contents

	Put files where it’s easy to find them

	4 Header File Organization
	All header file contents should be related

	Include in a header file only what’s needed to compile it

	Use forward declarations when you can

	Organize header file contents for easy understanding

	All function arguments should have names

	Header file layout details

	5 Source File Organization
	Each source file should have an associated header file

	Header file include order should follow rules for header files

	Avoid extraneous header file inclusions

	Function order in source and header files should match

	Source file layout details

	6 Scope
	Use namespaces to avoid name collisions

	Use namespaces to hide non-API code in header files

	Use ‘unnamed’ namespace for hiding code in source files

	Apply the ‘using directive’ carefully

	Use access qualifiers to control class interfaces

	Use ‘friend’ and ‘static’ rarely

	Hide nested classes when possible

	Limit scope of local variables

	7 Code Documentation
	Document only what’s needed

	Documenting new code vs. existing code

	Write clear documentation

	Documentation should be easy to spot

	General Doxygen usage
	Brief vs. detailed comments

	Doxygen comment blocks

	Doxygen inline comments

	Copyright and release statement

	File documentation
	Brief and detailed comments

	Type documentation
	Brief and detailed comments

	Cross-references and caveats

	Function documentation
	Example function documentation

	Brief and detailed comments

	Return values

	Arguments

	Grouping small functions

	Header file vs. source file documentation

	Data member documentation
	Brief and detailed comments

	Grouping data members

	Summary of common Doxygen commands

	8 Design and Implement for Correctness and Robustness
	Keep it simple…

	Avoid global and static data

	Avoid macros and magic numbers for constants

	Avoid issues with compiler-generated class methods
	Rule of three

	Restrict copying of non-copyable resources

	Rely on compiler-generated methods when appropriate

	Functors should always be copyable

	Understand standard rules for compiler-generated methods

	Initializing and copying class members
	Initialize all members at construction

	Know when to use initialization vs. assignment

	Use the copy-and-swap idiom

	Initializing, copying, and inheritance

	Prefer composition to inheritance

	Keep inheritance relationships simple

	Design for/against inheritance

	Use virtual functions responsibly

	Inline functions
	Inline short, simple functions

	Only inline a class constructor when it makes sense

	Do not inline virtual methods

	Function and operator overloading
	There’s a fine line between clever and…

	Overload consistently

	Common operators

	Function arguments
	Consistent argument order makes interfaces easier to use

	Pointer and reference arguments and const

	Always name function arguments

	Function return points

	Proper type usage

	Templates

	Use const to enforce correct usage

	Casts and type conversions
	Avoid C-style casts, const_cast, and reinterpret_cast

	Use the explicit qualifier to avoid unwanted conversions

	Memory management
	Allocate and deallocate memory in the same scope

	Use new/delete consistently

	9 Code Formatting
	Conditional statements and loops

	White space and code alignment
	White space enhances code readability

	Vertical alignment helps to show scope

	Break lines where it makes sense

	Use parentheses for clarity

	10 Common Code Development Macros, Types, etc.
	Unused variables

	Disabling compiler-generated methods

	Conditionally compiled code

	Error handling

	11 Portability, Compilation, and Dependencies
	Portability
	Nothing beyond C++11

	No non-standard language constructs

	Compilation
	Avoid conditional compilation

	The compiler is your friend

	Minimize dependencies on third-party libraries (TPLs)

	References and Useful Resources

1 Changing Existing Code

Follow existing code style

1.1 When modifying existing code, the style conventions already in
use in each file must be followed unless the scope of changes makes
sense (see next item). This is not intended to
stifle personal creativity - mixing style is disruptive and
may cause confusion for users and fellow developers.

1.2 When making stylistic changes to existing code, those changes should
extend to a point where the style is consistent across a reasonable scope.
This may mean that an entire file is changed to prevent multiple conflicting
styles.

Only change code from other sources when it makes sense

1.3 The Axom project may contain code pulled in from sources outside
Axom. These guidelines apply to code developed within Axom
primarily. The decision to modify externally-developed code that we pull
into Axom will be evaluated on a case-by-case basis. Modifying such
code to be compliant with these guidelines should typically be done only if
a significant rewrite is undertaken for other reasons.

2 Names

Good names are essential to sound software design. This section contains
guidelines for naming files, types, functions, class members, variables, etc.
The main goal is to use clear and unambiguous names. Also, we want naming
conventions for different entities so that, when applied, the role of each
is obvious from the form of its name.

Good names are clear and meaningful

2.1 Every name must be meaningful. In particular, its meaning must
be clear to other code developers and users, not just the author of the name.

A substantial benefit of good name selection is that it can greatly
reduce the amount of developer debate to define a concept. A good name
also tends to reduce the amount of documentation required for others to
understand it. For example, when the name of a function clearly indicates
what it does and the meaning and purpose of each argument is clear from
its name, then code comments may be unnecessary. Documentation
can be a substantial part of software and requires maintenance.
Minimizing the amount of required documentation reduces this burden.

Avoid cryptic names

2.2 Tersely abbreviated or cryptic names should be avoided. However,
common acronyms and jargon that are well understood by team members and
users may be used.

Use terminology consistently

2.3 Terminology must be used consistently; i.e., for names and concepts
in the code and in documentation. Multiple terms should not be used to
refer to the same concept and a concept should not be referred to by
multiple terms.

Using a clear, limited set of terminology in a software project helps
maintain the consistency and integrity of the software, and it makes
the code easier to understand for developers and users.

2.4 Each name must be consistent with other similar names in the code.

For example, if getter/setter methods follow the convention “getFoo”
and “setFoo” respectively, then adding a new setter method called
“putBar” is clearly inconsistent.

Name directories so it’s easy to know what’s in them

2.5 Each directory must be named so that the collective purpose
of the files it contains is clear. All directory names should follow
the same style conventions.

All directory names should use all lower case letters and consist
of a single word in most cases. A directory name with more than one
word should use an ‘underscore’ to separate words.

For example, use:

cool_stuff

not

cool-stuff

Follow file extension conventions

2.6 C++ header and source file extensions must be: *.hpp and *.cpp,
respectively.

2.7 C header and source files (e.g., tests, examples, and generated API code)
must have extensions *.h and *.c, respectively.

2.8 Fortran source files (e.g., tests and examples, and generated API code)
must have the extension *.f or *.F . *.F must be used if the
preprocessor is needed to compile the source file.

Associated source and header file names should match

2.9 The names of associated header and source files should match, apart from
the file extension, to make their association clear.

For example, the header and source files for a class “Foo” should
be named “Foo.hpp” and “Foo.cpp”, respectively.

Also, files that are closely related in other ways, such as a header file
containing prototypes for a set of methods that are not class members and
a source file containing implementations of those methods, should be
named the same or sufficiently similar so that their relationship is
clear.

File contents should be clear from file name

2.10 The name of each file must clearly indicate its contents.

For example, the header and source file containing the definition and
implementation of a major type, such as a class must include the
type name of the type in the file name. For example, the header and
implementation file for a class called “MyClass” should be named
“MyClass.hpp” and “MyClass.cpp”, respectively.

Files that are not associated with a single type, but which contain
closely related functionality or concepts, must be named so that
the functionality or concepts are clear from the name. For example,
files that define and implement methods that handle file I/O should
be named “FileIO.hpp” and “FileUtils.cpp”, or similar.

File names should not differ only by case

2.11 File names that differ only in letter case must not be used.

Since we must support Windows platforms, which have limited case
sensitivity for file names, having files with names “MyClass.hpp”
and “myclass.hpp”, for example, is not acceptable.

Namespace name format

2.12 All namespaces defined must use all lowercase letters for
consistency and to avoid user confusion.

Type name format

2.13 Type names (i.e., classes, structs, typedefs, enums, etc.) must be
nouns and should be in mixed case with each word starting with
an upper case letter and all other letters in lower cases.

For example, these are preferred type names:

DataStore, MyCollection, TypeUtils

These type names should not be used:

dataStore, mycollection, TYPEUTILS

2.14 Separating characters, such as underscores, should not be used
between words in a type name.

For example, these names are not preferred type names:

Data_store, My_Collection

Note

Exceptions to the guidelines above include cases where types
play a similar role to those in common use elsewhere. For example,
naming an iterator class “base_iterator” would be acceptable if
it is conceptually similar with the C++ standard library class.

2.15 Suffixes that may be used by compilers for name mangling, or
which are used in the C++ standard library, such as “_t”, must not
be used in type names.

Function name format

2.16 Function names must use “camelCase” or “pot_hole” style. camelCase
is preferred.

camelCase style: The first word has all lower case letters.
If multiple words are used, each word after the first starts with
an upper case letter and all other letters in the word are lower case.
Underscores must not be used in camelCase names, but numbers may be used.

For example, these are proper camelCase names:

getLength(), createView2()

pot_hole style: All letters are lower case. If multiple
words are used, they are separated by a single underscore. Numbers
may be used in pothole style names.

For example, these are acceptable pothole style variable names:

push_front(), push_back_2()

2.17 Names of related functions, such as methods for a class, should
follow the same style.

Note

Exception: While consistency is important, name style may be
mixed when it makes sense to do so. While camelCase style is
preferred for class member functions, a class may also contain
methods that follow pot_hole style if those methods perform
operations that are similar to C++ standard library functions,
for example.

For example, the following method names are acceptable for a class
with camelCase style names:

push_back(), push_front()

if those methods are similar in behavior to C++ standard methods.

Function names should indicate behavior

2.18 Each function name must indicate clearly indicate what the
function does.

For example:

calculateDensity(), getDensity()

are good function names because they distinguish the fact that the
first performs a calculation and the second returns a value. If a
function were named:

density()

what it actually does is murky; i.e., folks would have to read its
documentation or look at its implementation to see what it actually does.

2.19 Function names should begin with a verb because they perform an action.

2.20 Verbs such as “is”, “has”, “can”, etc. should be used for functions
with a boolean return type.

For example, the following names are preferred:

isInitialized(), isAllocated()

Related functions should have similar names

2.21 Complementary verbs such as “get/set”, “add/remove” and “create/destroy”
must be used for routines that perform complementary operations.

Such symmetry prevents confusion and makes interfaces easier to use.

Data member and variable name format

2.22 All variables (class/struct members, function-scoped variables, function
arguments, etc.) must use either “camelCase” style or “pot_hole” style.
Pot_hole style is preferred since it distinguishes variable names from
method names.

For example, these are acceptable variable names:

myAverage, person_name, pressure2

2.23 Non-static class and struct data member names must have the
prefix “m_”.

This convention makes it obvious which variables are class
members/struct fields and which are other local variables. For
example, the following are acceptable names for class data members using
camelCase style:

m_myAverage, m_personName

and acceptable pothole style:

m_my_average, m_person_name

2.24 Static class/struct data member names and static file scope variables
must have the prefix “s_”.

Similar to the guideline above, this makes it obvious that the variable
is static.

Variable names should indicate type

2.25 Verbs, such as “is”, “has”, “can”, etc., should be used for boolean
variables (i.e., either type bool or integer that indicates true/false).

For example, these names are preferred:

m_is_initialized, has_license

to these names:

m_initialized, license

2.26 A variable that refers to a non-fundamental type should give an
indication of its type.

For example,:

Topic* my_topic;

is clearer than:

Topic* my_value;

Macro and enumeration name format

2.27 Preprocessor macro constants must be named using all uppercase
letters and underscores should be used between words.

For example, these are acceptable macro names:

MAX_ITERATIONS, READ_MODE

These are not acceptable:

maxiterations, readMode

2.28 The name of each enumeration value should start with a capital letter
and use an underscore between words when multiple words are used.

For example,:

enum Orange
{
 Navel,
 Valencia,
 Num_Orange_Types
};

3 Directory Organization

The goal of the guidelines in this section is to make it easy to locate a file
easily and quickly. Make it easy for your fellow developers to find stuff they
need.

Limit scope of directory contents

3.1 The contents of each directory and file must be well-defined and
limited so that the directory can be named to clearly indicate its contents.
The goal is to prevent directories and files from becoming bloated with
too many divergent concepts.

Put files where it’s easy to find them

3.2 Header files and associated implementation files should reside in
the same directory unless there is a good reason to do otherwise. This is
common practice for C++ libraries.

3.3 Each file must reside in the directory that corresponds to (and named
for) the code functionality supported by the contents of the file.

4 Header File Organization

The goal of these guidelines is to make it easy to find essential information
in header files easily and quickly. Header files define software interfaces so
consistently-applied conventions for file organization can significantly
improve user understanding and developer productivity.

All header file contents should be related

4.1 A header file may contain multiple type definitions (e.g., structs,
classes, enums, etc.). However, type definitions and function declarations in
a header file must be related closely and/or support the primary type for
which the file is named.

4.2 A “typedef” statement, when used, should appear in the header file
where the type is defined.

This practice helps ensure that all names associated with a given type
are available when the appropriate header file is used and eliminates
potentially inconsistent type names.

Include in a header file only what’s needed to compile it

4.3 A header file must be self-contained and self-sufficient.

Specifically, each header file

	Must have proper header file include guards
(see Header file layout details) to prevent multiple inclusion. The
macro symbol name for each guard must be chosen to guarantee uniqueness
within every compilation unit in which it appears.

	Must include all other headers and/or forward declarations it
needs to be compiled standalone. In addition, a file should not
rely on symbols defined in other header files it includes; the
other files should be included explicitly.

	Must contain implementations of all generic templates and inline
methods defined in it. A compiler will require the full definitions of
these constructs to be seen in every source file that uses them.

Note

Function templates or class template members whose implementations
are fully specialized with all template arguments must be
defined in an associated source file to avoid linker errors
(e.g., multiply-defined symbols). Fully specialized templates
are not templates and are treated just like regular functions.

4.4 Extraneous header files or forward declarations (i.e., those not
required for standalone compilation) must not be included in header files.

Spurious header file inclusions, in particular, introduce spurious file
dependencies, which can increase compilation time unnecessarily.

Use forward declarations when you can

4.5 Header files should use forward declarations instead of header file
inclusions when possible. This may speed up compilation, especially when
recompiling after header file changes.

Note

Exceptions to this guideline:

	Header files that define external APIs for the Axom
project must include all header files for all types that
appear in the API. This makes use of the API much easier.

	When using a function, such as an inline method or template, that
is implemented in a header file, the header file containing the
implementation must be included.

	When using C++ standard library types in a header file, it may be
preferable to include the actual headers rather than forward reference
headers, such as ‘iosfwd’, to make the header file easier to use. This
prevents users from having to explicitly include standard headers
wherever your header file is used.

4.6 A forward type declaration must be used in a header file when an
include statement would result in a circular dependency among header files.

Note

Forward references, or C++ standard ‘fwd’ headers, are preferred
over header file inclusions when they are sufficient.

Organize header file contents for easy understanding

4.7 Header file include statements should use the same ordering pattern
for all files.

This improves code readability, helps to avoid misunderstood
dependencies, and insures successful compilation regardless of
dependencies in other files. A common, recommended header file
inclusion ordering scheme is (only some of these may be needed):

	Headers in the same Axom component

	Other headers within the project

	TPL headers; e.g., MPI, OpenMP, HDF5, etc.

	C++ and C standard library headers

	System headers

Also, code is easier to understand when include files are ordered
alphabetically within each of these sections and a blank line is
inserted between sections. Adding comments that describe the
header file categories can be helpful as well. For example,

// Headers from this component
#include "OtherClassInThisComponent.hpp"

// "other" component headers
#include "other/SomeOtherClass.hpp"

// C standard library
#include <stdio.h>

// C++ standard library
#include <unordered_map>
#include <vector>

// Non-std system header
#include <unistd.h>

Note

Ideally, header file inclusion ordering should not matter.
Inevitably, this will not always be the case. Following the
ordering prescription above helps to avoid problems when others’
header files are not constructed following best practices.

4.8 Routines should be ordered and grouped in a header file so that
code readability and understanding are enhanced.

For example, all related methods should be grouped together. Also,
public methods, which are part of an interface, should appear before
private methods.

All function arguments should have names

4.9 The name of each function argument must be specified in a header
file declaration. Also, names in function declarations and definitions
must match.

For example, this is not an acceptable function declaration:

void doSomething(int, int, int);

Without argument names, the only way to tell what the arguments mean is
to look at the implementation or hope that the method is documented
well.

Header file layout details

Content must be organized consistently in all header files.
This section summarizes the recommended header file layout using numbers
and text to illustrate the basic structure. Details about individual items
are contained in the guidelines after the summary.

// (1) Axom copyright and release statement

// (2) Doxygen file prologue

// (3a) Header file include guard, e.g.,
#ifndef MYCLASS_HPP
#define MYCLASS_HPP

// (4) Header file inclusions (when NEEDED in lieu of forward declarations)
#include "myHeader.hpp"

// (5) Forward declarations NEEDED in header file (outside of project namespace)
class ForwardDeclaredClass;

// (6a) Axom project namespace declaration
namespace axom {

// (7a) Internal namespace (if used); e.g.,
namespace awesome {

// (8) Forward declarations NEEDED in header file (in project namespace(s))
class AnotherForwardDeclaredClass;

// (9) Type definitions (class, enum, etc.) with Doxygen comments e.g.,
/*!
 * \brief Brief ...summary comment text...
 *
 * ...detailed comment text...
 */
class MyClass {
 int m_classMember;
};

// (7b) Internal namespace closing brace (if needed)
} // awesome namespace closing brace

// (6b) Project namespace closing brace
} // axom namespace closing brace

// (3b) Header file include guard closing endif */
#endif // closing endif for header file include guard

4.10 (Item 1) Each header file must contain a comment section that
includes the Axom copyright and release statement.

See 7 Code Documentation for details.

4.11 (Item 2) Each header file must begin with a Doxygen file prologue.

See 7 Code Documentation for details.

4.12 (Items 3a,3b) The contents of each header file must be guarded
using a preprocessor directive that defines a unique “guard name” for the file.

The guard must appear immediately after the file prologue and use the
‘#ifndef’ directive (item 2a); this requires a closing ‘#endif’
statement at the end of the file (item 2b).

The preprocessor constant must use the file name followed by “_HPP” for
C++ header files; e.g., “MYCLASS_HPP” as above.

The preprocessor constant must use the file name followed by “_H” for
C header files.

4.13 (Item 4) All necessary header file inclusion statements must
appear immediately after copyright and release statement and before any
forward declarations, type definitions, etc.

4.14 (Item 5) Any necessary forward declarations for types defined outside
the project namespace must appear after the header include statements
and before the Axom project namespace statement.

4.15 (Items 6a, 6b, 7a, 7b) All types defined and methods defined in a
header file must be included in a namespace.

Either the project “axom” namespace (item 6a) or a namespace
nested within the project namespace (item 7a) may be used, or
both may be used. A closing brace (“}”) is required to close each
namespace declaration (items 6b and 7b) before the closing ‘#endif’
for the header file include guard.

4.16 (Item 8) Forward declarations needed must appear in the
appropriate namespace before any other statements (item 8).

4.17 (Item 9) All class and other type definitions must appear
after header file inclusions and forward declarations. A proper class
prologue must appear before the class definition. See 7 Code Documentation
for details.

5 Source File Organization

The goal is to make it easy to find essential information in a file easily
and quickly. Consistently-applied conventions for file organization
can significantly improve user understanding and developer productivity.

Each source file should have an associated header file

5.1 Each source file should have an associated header file with a matching
name, such as “Foo.hpp” for the source file “Foo.cpp”.

Note

Exceptions: Test files may not require headers.

Header file include order should follow rules for header files

5.2 The first header file inclusion in a source file must be the header
file associated with the source file (when there is one). After that the
rules for including headers in other headers apply. For example,

#include "MyAssociatedHeaderFile.hpp"

// Other header file inclusions...

See Organize header file contents for easy understanding for header file inclusion rules.

Avoid extraneous header file inclusions

5.2 Unnecessary header files should not be included in source files
(i.e., headers not needed to compile the file standalone).

Such header file inclusions introduce spurious file dependencies, which
may increases compilation time unnecessarily.

Function order in source and header files should match

5.3 The order of functions implemented in a source file should match the
order in which they appear in the associated header file.

This makes the methods easier to locate and compare with documentation
in the header file.

Source file layout details

Content must be organized consistently in all source files.
This section summarizes the recommended source file layout using numbers
and text to illustrate the basic structure. Details about individual items
are contained in the guidelines after the summary.

// (1) Axom copyright and release statement

// (2) Doxygen file prologue

// (3) Header file inclusions (only those that are NECESSARY)
#include "..."

// (4a) Axom project namespace declaration
namespace axom {

// (5a) Internal namespace (if used); e.g.,
namespace awesome {

// (6) Initialization of static variables and data members, if any; e.g.,
Foo* MyClass::s_shared_foo = 0;

// (7) Implementation of static class member functions, if any

// (8) Implementation of non-static class members and other methods

// (5b) Internal namespace closing brace (if needed)
} // awesome namespace closing brace

// (4b) Project namespace closing brace
} // axom namespace closing brace

5.4 (Item 1) Each source file must contain a comment section that
includes the Axom copyright and release statement.

See 7 Code Documentation for details.

5.5 (Item 2) Each source file must begin with a Doxygen file prologue.

See 7 Code Documentation for details.

5.6 (Item 3) All necessary header file include statements must appear
immediately after the copyright and release statement and before any
implementation statements in the file.

Note

If a header is included in a header file, it should not be
included in the associated source file.

5.7 (Items 4a, 4b, 5a, 5b) All contents in a source file must follow
the same namespace inclusion pattern as its corresponding header file
(See Header file layout details).

Either the main project namespace (item 4a) or internal namespace
(item 5a) may be used, or both may be used. A closing brace (“}”)
is required to close each namespace declaration (items 4b and 5b).

5.8 (Item 6) Any static variables and class data members that are
defined in a header file must be initialized in the associated source
file before any method implementations.

5.9 (Items 7, 8) Static method implementations must appear before
non-static method implementations.

6 Scope

Use namespaces to avoid name collisions

6.1 All Axom code must be included in the project namespace
‘axom’; e.g.,:

namespace axom {
 // . . .
}

6.2 Each Axom component must define its own unique namespace within
the “axom” namespace. All contents of each component must reside
within that namespace.

Use namespaces to hide non-API code in header files

6.3 Code that must be appear in header files (e.g., templates) that is not
intended to be part of a public interface, such as helper classes/structs
and methods, should be placed in an internal namespace.

Common names for such namespaces include ‘internal’ (for implementations
used only internally) and ‘detailed’ (for types, etc. used only
internally). Any reasonable choice is acceptable; however, the choice
must be the same within each Axom component.

Note that declaring helper classes/structs private within a class
definition is another good option. See Hide nested classes when possible
for details.

Use ‘unnamed’ namespace for hiding code in source files

6.4 Classes/structs and methods that are meant to be used only internally to a
single source file should be placed in the ‘unnamed’ namespace to make
them invisible outside the file.

This guarantees link-time name conflicts will not occur. For example:

namespace {
 void myInternalFunction();
}

Apply the ‘using directive’ carefully

6.5 The ‘using directive’ must not be used in any header file.

Applying this directive in a header file leverages a bad decision to
circumvent the namespace across every file that directly or indirectly
includes that header file.

Note

This guideline implies that each type name appearing in a header
file must be fully-qualified (i.e., using the namespace
identifier and scope operator) if it resides in a different
namespace than the contents of the file.

6.6 The ‘using directive’ may be used in a source file to avoid using a
fully-qualified type name at each declaration. Using directives must appear
after all “#include” directives in a source file.

6.7 When only parts of a namespace are used in an implementation file, only
those parts should be included with a using directive instead of the
entire namespace contents.

For example, if you only need the standard library vector container form
the “std” namespace, it is preferable to use:

using std::vector;

rather than:

using namespace std;

Use access qualifiers to control class interfaces

6.8 Class members must be declared in the following order:

	“public”

	“protected”

	“private”

That is, order members using these access qualifiers in terms of
“decreasing scope of visibility”.

Note

Declaring methods before data members is preferred because methods
are more commonly considered part of a class interface. Also,
separating methods and data into their own access qualified
sections usually helps make a class definition clearer.

6.9 Class data members should be “private”. The choice to use “public”
or “protected” data members must be scrutinized by other team members.

Information hiding is an essential part of good software engineering
and private data is the best means for a class to preserve its
invariants. Specifically, a class should maintain control of how object
state can be modified to minimize side effects. In addition, restricting
direct access to class data enforces encapsulation and facilitates
design changes through refactoring.

Use ‘friend’ and ‘static’ rarely

6.10 “Friend” declarations should be used rarely. When used, they
must appear within the body of a class definition before any class
member declarations. This helps make the friend relationship obvious.

Note that placing “friend” declarations before the “public:” keyword
makes them private, which preserves encapsulation.

6.11 Static class members (methods or data) must be used rarely. In
every case, their usage should be carefully reviewed by the team.

When it is determined that a static member is needed, it must appear
first in the appropriate member section. Typically, static member
functions should be “public” and static data members should be
“private”.

Hide nested classes when possible

6.12 Nested classes should be private unless they are part of the
enclosing class interface.

For example:

class Outer
{
 // ...
private:
 class Inner
 {
 // ...
 };
};

When only the enclosing class uses a nested class, making it private
does not pollute the enclosing scope needlessly. Furthermore, nested
classes may be forward declared within the enclosing class definition
and then defined in the implementation file of the enclosing class.
For example:

class Outer
{
 class Inner; // forward declaration

 // use name 'Inner' in Outer class definition
};

// In Outer.cpp implementation file...
class Outer::Inner
{
 // Inner class definition
}

This makes it clear that the nested class is only needed in the
implementation and does not clutter the class definition.

Limit scope of local variables

6.13 Local variables should be declared in the narrowest scope possible
and as close to first use as possible.

Minimizing variable scope makes source code easier to comprehend and
may have performance and other benefits. For example, declaring a loop
index inside a for-loop statement such as:

for (int ii = 0; ...) {

is preferable to:

int ii;
...
for (ii = 0; ...) {

Beyond readability, this rule has benefits for thread safety, etc.

Note

	Exception: When a local variable is an object, its constructor

	and destructor may be invoked every time a scope (such as a loop)
is entered and exited, respectively.

Thus, instead of this:

for (int ii = 0; ii < 1000000; ++ii) {
 Foo f;
 f.doSomethingCool(ii);
}

it may be more efficient to do this:

Foo f;
for (int ii = 0; ii < 1000000; ++ii) {
 f.doSomethingCool(ii);
}

6.14 A local reference to any item in the global namespace (which should be
rare if needed at all) should use the scope operator (“::”) to make
the fact that it resides in the global namespace clear.

For example:

int local_val = ::global_val;

7 Code Documentation

This section contains guidelines for content and formatting of code
documentation mentioned in earlier sections. The aims of these
guidelines are to:

	Document files, data types, functions, etc. consistently.

	Promote good documentation practices so that essential information is
presented clearly and lucidly, and which do not over-burden developers.

	Generate source code documentation using the Doxygen system.

Document only what’s needed

7.1 Documentation should only include what is essential for users and
other developers to easily understand code. Comments should be limited to
describing constraints, pre- and post-conditions, and other issues that
are important, but not obvious. Extraneous comments (e.g., documenting
“the obvious”) should be avoided.

Code that uses clear, descriptive names (functions, variables, etc.) and
clear logical structure is preferable to code that relies on a lot of
comments for understanding. To be useful, comments must be understood by
others and kept current with the actual code. Generally, maintenance
and understanding are better served by rewriting tricky, unclear code
than by adding comments to it.

Documenting new code vs. existing code

7.2 New source code must be documented following the guidelines in this
section. Documentation of existing code should be modified to conform to
these guidelines when appropriate.

7.3 Existing code documentation should be improved when its inadequate,
incorrect, or unclear.

Note

When code is modified, documentation must be changed to reflect
the changes.

Write clear documentation

7.4 To make comment text clear and reduce confusion, code comments
should be written in grammatically-correct complete sentences or
easily understood sentence fragments.

Documentation should be easy to spot

7.5 End-of-line comments should not be used to document code logic,
since they tend to be less visible than other comment forms and may be
difficult to format cleanly.

Short end-of-line comments may be useful for labeling closing braces
associated with nested loops, conditionals, for scope in general, and
for documenting local variable declarations.

7.6 All comments, except end-of-line comments, should be indented to
match the indentation of the code they are documenting. Multiple line comment
blocks should be aligned vertically on the left.

7.7 Comments should be clearly delimited from executable code with blank
lines and “blocking characters” (see examples below) to make them stand out
and, thus, improve the chances they will be read.

7.8 White space, such as blank lines, indentation, and vertical alignment
should be used in comment blocks to enhance readability, emphasize
important information, etc.

General Doxygen usage

The Doxygen code documentation system uses C or C++ style comment sections
with special markings and Doxygen-specific commands to extract documentation
from source and header files. Although Doxygen provides many sophisticated
documentation capabilities and can generate a source code manual in a variety
of formats such as LaTeX, PDF, and HTML, these guidelines address only a small
subset of Doxygen syntax. The goal of adhering to a small, simple set of
documentation commands is that developers will be encouraged to build useful
documentation when they are writing code.

Brief vs. detailed comments

The Doxygen system interprets each documentation comment as either “brief”
or “detailed”.

	A brief comment is a concise statement of purpose for an item (usually no
more than one line) and starts with the Doxygen command “\brief”
(or “@brief”). Brief comments appear in summary sections of the generated
documentation. They are typically seen before detailed comments when
scanning the documentation; thus good brief comments make it easier to
can or navigate a source code manual.

	A detailed comment is any comment that is not identified as ‘brief’.

7.9 A “brief” description should be provided in the Doxygen comment
section for each of the following items:

	A type definition (i.e., class, struct, typedef, enum, etc.)

	A macro definition

	A struct field or class data member

	A class member function declaration (in the header file class
definition)

	An unbound function signature (in a header file)

	A function implementation (when there is no description in the
associated header file)

7.10 Important information of a more lengthy nature (e.g., usage examples
spanning multiple lines) should be provided for files, major data types
and definitions, functions, etc. when needed. A detailed comment must be
separated from a brief comment in the same comment block with a line containing
no documentation text.

Doxygen comment blocks

7.11 Doxygen comment blocks may use either JavaDoc, Qt style, or one
of the C++ comment forms described below.

JavaDoc style comments consist of a C-style comment block starting with
two *’s, like this:

/**
 * ...comment text...
 */

Qt style comments add an exclamation mark (!) after the opening of a
C-style comment block,like this:

/*!
 * ...comment text...
 */

For JavaDoc or Qt style comments, the asterisk characters (“*”) on
intermediate lines are optional, but encouraged.

C++ comment block forms start each line with an additional slash:

///
/// ...comment text...
///

or an exclamation mark:

//!
//! ...comment text...
//!

For these C++ style comment forms, the comment delimiter is required on
each line.

7.12 A consistent Doxygen comment block style must be used within a component.

7.13 Doxygen comment blocks must appear immediately before the items they
describe; i.e., no blank lines between comment and documented item. This
insures that Doxygen will properly associate the comment with the item.

Doxygen inline comments

7.14 Inline Doxygen comments may be used for class/struct data members,
enum values, function arguments, etc.

When inline comments are used, they must appear after the item
on the same line and must use the following syntax:

/*!< ...comment text... */

Note that the “<” character must appear immediately after the opening of
the Doxygen comment (with no space before). This tells Doxygen that the
comment applies to the item immediately preceding the comment. See
examples in later sections.

7.15 When an item is documented using the inline form, the comment
should not span multiple lines.

Copyright and release statement

7.16 Each file must contain a comment section that includes the project
software release information (using whichever comment characters are
appropriate for the language the file is written in). In the interest of
brevity, the complete release statement is summarized here to show the
essential information. The full version can be found in any of the project
files.

Note

Change this when we release the code.

/*
 * Copyright (c) 2017-2020, Lawrence Livermore National Security, LLC.
 * Produced at the Lawrence Livermore National Laboratory.
 *
 * All rights reserved.
 *
 * This source code cannot be distributed without permission and
 * further review from Lawrence Livermore National Laboratory.
 */

See Header file layout details and Source file layout details for guidelines
on placement of copyright and release statement in header and source files,
respectively.

File documentation

7.17 Each header file that declares a global type, method, etc. must
have a Doxygen file prologue similar to the following:

/*!

 *
 * \file ...optional name of file...
 *
 * \brief A brief statement describing the file contents/purpose. (optional)
 *
 * Optional detailed explanatory notes about the file.
 *
 **
 */

 The "\\file" command **must** appear first in the file prologue. It
 identifies the comment section as documentation for the file.

 The file name **may** include (part of) the path if the file name is not
 unique. If the file name is omitted on the line after the "\\file"
 command, then any documentation in the comment block will belong to
 the file in which it is located instead of the summary documentation
 in the listing of documented files.

Note

Doxygen requires that a file itself must be documented for
documentation to be generated for any global item (global function,
typedef, enum, etc.) defined in the file.

See Header file layout details and Source file layout details for guidelines
on placement of file prologue in header and source files, respectively.

Brief and detailed comments

7.18 A brief statement of purpose for the file should appear as the first
comment after the file command. If included, the brief statement, must be
preceded by the “\brief” command.

7.19 Any detailed notes about the file may be included after the brief
comment. If this is done, the detailed comments must be separated from
the brief statement by a line containing no documentation text.

Type documentation

7.20 Each type and macro definition appearing in a header file must have
a Doxygen type definition comment prologue immediately before it. For example

/*!
 **
 *
 * \brief A brief statement of purpose of the type or macro.
 *
 * Optional detailed information that is helpful in understanding the
 * purpose, usage, etc. of the type/macro ...
 *
 * \sa optional cross-reference to other types, functions, etc...
 * \sa etc...
 *
 * \warning This class is only partially functional.
 *
 **
 */

Note

Doxygen requires that a compound entity, such as a class, struct,
etc. be documented in order to document any of its members.

Brief and detailed comments

7.21 A brief statement describing the type must appear as the first text
comment using the Doxygen command “\brief”.

7.22 Important details about the item should be included after the brief
comment and, if included, must be separated from the brief comment by a
blank line.

Cross-references and caveats

7.23 Cross-references to other items, such as other related types should
be included in the prologue to enhance the navigability of the documentation.

The Doxygen command “\sa” (for “see also”) should appear before each
such cross-reference so that links are generated in the documentation.

7.24 Caveats or limitations about the documented type should be noted
using the “\warning” Doxygen command as shown above.

Function documentation

7.25 Each unbound function should be be documented with a function
prologue in the header file where its prototype appears or in a source file
immediately preceding its implementation.

7.26 Since C++ class member functions define the class interface, they
should be documented with a function prologue immediately preceding
their declaration in the class definition.

Example function documentation

The following examples show two function prologue variations that may
be used to document a method in a class definition. The first shows how
to document the function arguments in the function prologue.

/*!

 *
 * \brief Initialize a Foo object with given operation mode.
 *
 * The "read" mode means one thing, while "write" mode means another.
 *
 * \return bool indicating success or failure of initialization.
 * Success returns true, failure returns false.
 *
 * \param[in] mode OpMode enum value specifying initialization mode.
 * ReadMode and WriteMode are valid options.
 * Any other value generates a warning message and the
 * failure value ("false") is returned.
 *

 */
 bool initMode(OpMode mode);

The second example shows how to document the function argument inline.

/*!
 **
 *
 * @brief Initialize a Foo object to given operation mode.
 *
 * The "read" mode means one thing, while "write" mode means another.
 *
 * @return bool value indicating success or failure of initialization.
 * Success returns true, failure returns false.
 *

 */
 bool initMode(OpMode mode /*!< [in] ReadMode, WriteMode are valid options */);

Note that the first example uses the “" character to identify Doxygen
commands; the second uses “@”.

Brief and detailed comments

7.27 A brief statement of purpose for a function must appear as the first
text comment after the Doxygen command “\brief” (or “@brief”).

7.28 Any detailed function description, when included, must appear
after the brief comment and must be separated from the brief comment by
a line containing no text.

Return values

7.29 If the function has a non-void return type, the return value should
be documented in the prologue using the Doxygen command “\return”
(or “@return”) preceding a description of the return value.

Functions with “void” return type and C++ class constructors and
destructors should not have such documentation.

Arguments

7.30 Function arguments should be documented in the function prologue
or inline (as shown above) when the intent or usage of the arguments is not
obvious.

The inline form of the comment may be preferable when the argument
documentation is short. When a longer description is provided (such as
when noting the range of valid values, error conditions, etc.) the
description should be placed within the function prologue for
readability. However, the two alternatives for documenting function
arguments must not be mixed within the documentation of a single
function to reduce confusion.

In any case, superfluous documentation should be avoided. For example,
when there are one or two arguments and their meaning is obvious from
their names or the description of the function, providing no comments is
better than cluttering the code by documenting the obvious. Comments
that impart no useful information are distracting and less helpful than
no comment at all.

7.31 When a function argument is documented in the prologue comment section,
the Doxygen command “param” should appear before the comment as in the
first example above.

7.32 The “in/out” status of each function argument should be documented.

The Doxygen “param” command supports this directly by allowing such an
attribute to be specified as “param[in]”, “param[out]”, or
“param[in,out]”. Although the inline comment form does not support
this, such a description should be included; e.g., by using “[in]”,
“[out]”, or “[in,out]” in the comment.

Grouping small functions

7.33 Short, simple functions (e.g., inline methods) may be grouped
together and documented with a single descriptive comment when this is
sufficient.

An example of Doxygen syntax for such a grouping is:

//@{
//! @name Setters for data members

void setMember1(int arg1) { m_member1 = arg1; }
void setMember2(int arg2) { m_member2 = arg2; }

//@}

Header file vs. source file documentation

7.34 Important implementation details (vs. usage detailed) about a function
should be documented in the source file where the function is implemented,
rather than the header file where the function is declared.

Header file documentation should include only purpose and usage
information germane to an interface. When a function has separate
implementation documentation, the comments must not contain Doxygen
syntax. Using Doxygen syntax to document an item in more than one location
(e.g., header file and source file) can cause undesired Doxygen
formatting issues and potentially confusing documentation.

A member of a class may be documented as follows in the source file
for the class as follows (i.e., no Doxygen comments):

/*

 *
 * Set operation mode for a Foo object.
 *
 * Important detailed information about what the function does...
 *

 */
 bool Foo::initMode(OpMode mode)
 {
 ...function body...
 }

Data member documentation

7.35 Each struct field or class data member should have a descriptive
comment indicating its purpose.

This comment may as appear as a prologue before the item, such as:

/*!
 * \brief Brief statement describing the input mode...
 *
 * Optional detailed information about the input mode...
 */
int m_input_mode;

or, it may appear after the item as an inline comment such as:

int m_input_mode; /*!< \brief Brief statement describing the input mode.... */

Brief and detailed comments

7.36 Regardless of which documentation form is used, a brief description
must be included using the Doxygen command “\brief” (or “@brief”).

7.37 Any detailed description of an item, if included, must appear after
the brief comment and be separated from the brief comment with a line
containing no documentation text.

When a detailed comment is provided, or the brief statement requires
more than one line, the prologue comment form should be used instead
of the inline form to make the documentation easier to read.

Grouping data members

7.38 If the names of data members are sufficiently clear that their meaning
and purpose are obvious to other developers (which should be determined in
a code review), then the members may be grouped together and documented
with a single descriptive comment.

An example of Doxygen syntax for such a grouping is:

//@{
//! @name Data member description...

int m_member1;
int m_member2;
...
//@}

Summary of common Doxygen commands

This Section provides an overview of commonly used Doxygen commands.
Please see the Doxygen guide [http://www.doxygen.nl/manual/] for more details and information about other commands.

Note that to be processed properly, Doxygen commands must be preceded with
either “" or “@” character. For brevity, we use “" for all commands
described here.

	\brief

	The “brief” command is used to begin a brief description of
a documented item. The brief description ends at the next blank line.

	\file

	The “file” command is used to document a file. Doxygen requires
that to document any global item (function, typedef, enum, etc.), the file
in which it is defined must be documented.

	\name

	The “name” command, followed by a name containing no blank
spaces, is used to define a name that can be referred to elsewhere
in the documentation (via a link).

	\param

	The “param” command documents a function parameter/argument.
It is followed by the parameter name and description. The “\param”
command can be given an optional attribute to indicate usage of the
function argument; possible values are “[in]”, “[out]”, and “[in,out]”.

	\return

	The “return” command is used to describe the return value
of a function.

	\sa

	The “sa” command (i.e., “see also”) is used to refer (and
provide a link to) another documented item. It is followed by the target
of the reference (e.g., class/struct name, function name, documentation
page, etc.).

	@{,@}

	These two-character sequences begin and end a
grouping of documented items. Optionally, the group can be given a name
using the “name” command. Groups are useful for providing additional
organization in the documentation, and also when several items can be
documented with a single description (e.g., a set of simple, related
functions).

	\verbatim, \endverbatim

	The “verbatim/endverbatim” commands are
used to start/stop a block of text that is to appear exactly as it is
typed, without additional formatting, in the generated documentation.

	-, -#

	The “-” and “-#” symbols begin an item in a bulleted
list or numbered list, respectively. In either case, the item ends at
the next blank line or next item.

	\b, \e

	These symbols are used to make the next word bold or
emphasized/italicized, respectively, in the generated documentation.

8 Design and Implement for Correctness and Robustness

The guidelines in this section describe various software design and
implementation practices that help enforce correctness and robustness
and avoid mis-interpretation or confusion by others.

Keep it simple…

8.1 Simplicity, clarity, ease of modification and extension should
always be a main goal when writing new code or changing existing code.

8.2 Each entity (class, struct, variable, function, etc.) should embody
one clear, well-defined concept.

The responsibilities of an entity may increase as it is used in new and
different ways. However, changes that divert it from its original intent
should be avoided. Also, large, monolithic entities that provide too
much functionality or which include too many concepts tend to increase
code coupling and complexity and introduce undesirable side effects.
Smaller, clearly constrained objects are easier to write, test, maintain,
and use correctly. Also, small, simple objects tend to get used more
often and reduce code redundancy.

Avoid global and static data

8.3 Global, complex, or opaque data sharing should not be used. Shared
data increases coupling and contention between different parts of a code base,
which makes maintenance and modification difficult.

8.4 Static or global variables of class type must not be used.

Due to indeterminate order of construction, their use may cause bugs
that are very hard to find. Static or global variables that are pointers
to class types may be used and must be initialized properly in a
single source file.

Avoid macros and magic numbers for constants

8.5 Preprocessor macros should not be used when there is a better
alternative, such as an inline function or a constant variable definition.

For example, this:

const double PI = 3.1415926535897932384626433832;

is preferable to this:

#define PI (3.1415926535897932384626433832)

Macros circumvent the ability of a compiler to enforce beneficial
language concepts such as scope and type safety. Macros are also
context-specific and can produce errors that cannot be understood
easily in a debugger. Macros should be used only when there is
no better choice for a particular situation.

8.6 Hard-coded numerical constants and other “magic numbers” must not
be used directly in source code. When such values are needed, they should
be declared as named constants to enhance code readability and consistency.

Avoid issues with compiler-generated class methods

The guidelines in this section apply to class methods that may be
automatically generated by a compiler, including constructors, destructors,
copy, and move methods. Developers should be aware of the conditions under
which compilers will and will not generate these methods. Developers should
also be aware of when compiler-generated methods suffice and when they do not.
After providing some guidelines, we discuss standard C++ rules that compilers
follow for generating class methods when they are not explicitly defined.
See Understand standard rules for compiler-generated methods.

The most important cases to pay attention to involve the destructor, copy
constructor, and copy-assignment operator. Classes that provide these methods,
either explicitly or compiler-generated, are referred to as copyable. Failing
to follow the rules for these methods can be damaging due to errors or
unexpected behavior. Rules involving the move constructor and move-assignment
operator are less important since they mostly affect efficiency and not
correctness. Copy operations can be used to accomplish the same end result
as move operations, just less efficiently. Move semantics are an important
optimization feature of C++. The C++11 standard requires compilers to use
move operations instead of copy operations when certain conditions are
fulfilled. Classes that provide move operations, either explicitly or
compiler-generated, are referred to as movable.

Rule of three

8.7 Each class must follow the Rule of Three which states: if the
destructor, copy constructor, or copy-assignment operator is explicitly
defined, then the others must be defined.

Compiler-generated and explicit versions of these methods must not
be mixed. If a class requires one of these methods to be implemented,
it almost certainly requires all three to be implemented.

This rule helps guarantee that class resources are managed properly.
C++ copies and copy-assigns objects of user-defined types in various
situations (e.g., passing/returning by value, container manipulations,
etc.). These special member functions will be called, if accessible.
If they are not user-defined, they are implicitly-defined by the compiler.

Compiler-generated special member functions can be incorrect
if a class manages a resource whose handle is an object of
non-class type. Consider a class data member which is a bare pointer to
an object. The compiler-generated class destructor will not free the
object. Also, the compiler-generated copy constructor and copy-assignment
operator will perform a “shallow copy”; i.e., they will copy the value
of the pointer without duplicating the underlying resource.

Neglecting to free a pointer or perform a deep copy when those operations
are expected can result in serious logic errors. Following the Rule of
Three guards against such errors. On the rare occasion these actions are
intentional, a programmer-written destructor, copy constructor, and
copy-assignment operator are ideal places to document intent of
design decisions.

Restrict copying of non-copyable resources

8.8 A class that manages non-copyable resources through non-copyable handles,
such as pointers, should declare the copy methods private and and leave
them unimplemented.

When the intent is that such methods should never be called, this is a
good way to help a compiler to catch unintended usage. For example:

class MyClass
{
 // ...

private:
 DISABLE_DEFAULT_CTOR(MyClass);
 DISABLE_COPY_AND_ASSIGNMENT(MyClass);

 // ...
};

When code does not have access to the private members of a class tries
to use such a method, a compile-time error will result. If a class does
have private access and tries to use one of these methods an link-time
error will result.

This is another application of the “Rule of Three”.

Please see 10 Common Code Development Macros, Types, etc. for more information about the
macros used in this example to disable compiler-generated methods.

Note

Exception: If a class inherits from a base class that declares
these methods private, the subclass need not declare the methods
private. Including comments in the derived class header indicating
that the the parent class enforces the non-copyable properties of
the class is helpful.

Rely on compiler-generated methods when appropriate

8.9 When the compiler-generated methods are appropriate (i.e.,
correct and sufficiently fast), the default constructor, copy constructor,
destructor, and copy assignment may be left undeclared. In this case,
it is often helpful to add comments to the class header file indicating that
the compiler-generated versions of these methods will be used.

8.10 If a class is default-constructable and has POD (“plain old data”) or
pointer data members, a default constructor should be provided explicitly
and its data members must be initialized explicitly if a default
constructor is provided. A compiler-generated default constructor will not
initialize such members, in general, and so will leave a constructed object
in an undefined state.

For example, the following class should provide a default constructor
and initialize its data members in it:

class MyClass
{
 MyClass();

 // ...

private:
 double* m_dvals;
 int[] m_ivals;

};

Functors should always be copyable

8.11 By convention, a functor class should have a copy constructor and
copy-assignment operator.

Typically, the compiler-generated versions are sufficient when the class
has no state or non-POD data members. Since such classes are usually
small and simple, the compiler-generated versions of these methods
may be used without documenting the use of default value semantics
in the functor definition.

For example:

class MyFunctor
{
 // Compiler-generated copy ctor and copy assignment sufficient

private:
 DIABLE_DEFAULT_CTOR(MyFunctor); // prevent default construction

 // ...
};

Note that in this example, the default constructor is disabled to prevent
default construction. This can help prevent programming errors when
object state must be fully initialialized on construction. For more
information about common Axom macros, see 10 Common Code Development Macros, Types, etc..

Understand standard rules for compiler-generated methods

This section provides some background information related to the guidelines
in the previous section. There, we provide guidelines that help to decide
when to define class methods that may be generated automatically by a compiler
and when relying on compiler-generated versions suffices. Here, we describe
the conditions under which compilers generate methods automatically.

Consider the following simple class:

class MyClass
{
public:
 int x;
};

How many methods does it have? None?

Actually, MyClass may have as many as six methods depending on how it is
used: a default constructor, destructor, copy constructor, copy-assignment
operator, move constructor, and move-assignment operator. Any of these may
be generated by a compiler.

Note

See 11 Portability, Compilation, and Dependencies for discussion about using C++11 features
such as move semantics.

C++ compiler rules for generating class member functions are:

	The parameter-less default constructor is generated if a class does
not define any constructor and all base classes and data members
are default-constructable. This means that once you declare a copy
constructor (perhaps to disable the automatically provided one),
the compiler will not supply a default constructor.

	The destructor is automatically supplied if possible, based on the
members and the base classes.

	A copy constructor is generated if all base classes and members are
copy-constructable. Note that reference members are copy-constructable.

	The copy-assignment operator is generated if all base classes and members
are copy-assignable. For this purpose, reference members are not
considered copy-assignable.

	A move constructor is supplied unless the class has any of the following:
a user-defined copy constructor, copy-assignment operator,
move-assignment operator, or destructor. If the move constructor cannot
be implemented because not all base classes or members are
move-constructable, the supplied move constructor will be defined
as deleted.

	A move-assignment operator is generated under the same conditions as
the move constructor.

The importance of understanding these rules and applying the guidelines in
the previous section is underscored by the fact that compiler-generated
methods may have different behaviors depending on how they are used. Here
we provide some examples based on MyClass defined above.

If MyClass has a user-defined constructor, then

MyClass item1;

and

MyClass item2 = MyClass();

will both call the user-defined default constructor “MyClass()” and there is
only one behavior.

However, if MyClass relies on the compiler-generated constructor

MyClass item1;

performs default initialization, while

MyClass item2 = MyClass();

performs value initialization.

Default initialization calls the constructors of any base classes, and nothing
else. Since constructors for intrinsic types do not do anything, that means
all member variables will have garbage values; specifically, whatever values
happen to reside in the corresponding addresses.

Value initialization also calls the constructors of any base classes. Then,
one of two things happens:

	If MyClass is a POD class (all member variables are either intrinsic
types or classes that only contain intrinsic types and have no
user-defined constructor/destructor), all data is initialized to 0.

	If MyClass is not a POD class, the constructor does not touch any data,
which is the same as default initialization (so member variables have
garbage values unless explicitly constructed otherwise).

Other points worth noting:

	Intrinsic types, such as int, float, bool, pointers, etc. have
constructors that do nothing (not even initialize to zero), destructors
that do nothing, and copy constructors and copy assignment-ers that
blindly copy bytes.

	Comparison operators, such as “==” or “!=” are never automatically
generated by a compiler, even if all base classes and members are
comparable.

Initializing and copying class members

Initialize all members at construction

8.12 Class type variables should be defined using direct initialization
instead of copy initialization to avoid unwanted and spurious type conversions
and constructor calls that may be generated by compilers.

For example, use:

std::string name("Bill");

instead of:

std::string name = "Bill";

or:

std::string name = std::string("Bill");

8.13 Each class data member must be initialized (using default values
when appropriate) in every class constructor. That is, an initializer or
initialization must be provided for each class data member so that
every object is in a well-defined state upon construction.

Generally, this requires a user-defined default constructor when a class
has POD members. Do not assume that a compiler-generated default
constructor will leave any member variable in a well-defined state.

Note

Exception: A class that has no data members, including one that
is derived from a base class with a default constructor that provides
full member initialization, does not require a user-defined default
constructor since the compiler-generated version will suffice.

Know when to use initialization vs. assignment

8.14 Data member initialization should be used instead of assignment in
constructors, especially for small classes. Initialization prevents needless
run-time work and is often faster.

8.15 When using initialization instead of assignment to set data member
values in a constructor, data members should always be initialized
in the order in which they appear in the class definition.

Compilers adhere to this order regardless of the order that members
appear in the class initialization list. So you may as well agree with
the compiler rules and avoid potential errors that could result when
one member depends on the state of another.

8.16 For classes with complex data members, assignment within the body of
the constructor may be preferable.

If the initialization process is sufficiently complex, it may be
better to initialize (i.e., assign) member objects in a method that
is called after object creation, such as “init()”.

Use the copy-and-swap idiom

8.17 A user-supplied implementation of a class copy-assignment operator
should check for assignment to self, must copy all data members
from the object passed to operator, and must return a reference to “*this”.

The copy-and-swap idiom should be used.

Initializing, copying, and inheritance

8.18 A constructor must not call a virtual function on any data member
object since an overridden method defined in a subclass cannot be called
until the object is fully constructed.

There is no general guarantee that data members are fully-created
before a constructor exits.

8.19 All constructors and copy operations for a derived class must call
the necessary constructors and copy operations for each of its base classes
to insure that each object is properly allocated and initialized.

Prefer composition to inheritance

8.20 Class composition should be used instead of inheritance to extend
behavior.

Looser coupling between objects is typically more flexible and easier
to maintain and refactor.

Keep inheritance relationships simple

8.21 Class hierarchies should be designed so that subclasses inherit
from abstract interfaces; i.e., pure virtual base classes.

Inheritance is often done to reuse code that exists in a base class.
However, there are usually better design choices to achieve reuse.
Good object-oriented use of inheritance is to reuse existing calling
code by exploiting base class interfaces using polymorphism. Put another
way, “interface inheritance” should be used instead of “implementation
inheritance”.

8.22 Deep inheritance hierarchies; i.e., more than 2 or 3 levels, should
be avoided.

8.23 Multiple inheritance should be restricted so that only one base
class contains methods that are not “pure virtual”.

8.24 “Private” and “protected” inheritance must not be used unless you
absolutely understand the ramifications of such a choice and are sure that
it will not create design and implementation problems.

Such a choice must be reviewed with team members. There almost
always exist better alternatives.

Design for/against inheritance

8.25 One should not inherit from a class that was not designed to be a
base class; e.g., if it does not have a virtual destructor.

Doing so is bad practice and can cause problems that may not be reported
by a compiler; e.g., hiding base class members. To add functionality,
one should employ class composition rather than by “tweaking” an
existing class.

8.26 The destructor of a class that is designed to be a base class must
be declared “virtual”.

However, sometimes a destructor should not be declared virtual, such as
when deletion through a pointer to a base class object should be
disallowed.

Use virtual functions responsibly

8.27 Virtual functions should be overridden responsibly. That is, the
pre- and post-conditions, default arguments, etc. of the virtual functions
should be preserved.

Also, the behavior of an overridden virtual function should not
deviate from the intent of the base class. Remember that derived classes
are subsets, not supersets, of their base classes.

8.28 Inherited non-virtual methods must not be overloaded or hidden.

8.29 A virtual function in a base class should only be implemented in
the base class if its behavior is always valid default behavior for any
derived class.

8.30 If a method in a base class is not expected to be overridden in any
derived class, then the method should not be declared virtual.

8.31 If each derived class has to provide specific behavior for a base class
virtual function, then it should be declared pure virtual.

8.32 Virtual functions must not be called in a class constructor or
destructor. Doing so is undefined behavior. Even if it seems to work
correctly, it is fragile and potentially non-portable.

Inline functions

Function inlining is a compile time operation and the full definition of an
inline function must be seen wherever it is called. Thus, the implementation
of every function to be inlined must be provided in a header file.

Whether or not a function implemented in a header file is explicitly declared
inline using the “inline” keyword, the compiler decides if the function will
be inlined. A compiler will not inline a function that it considers too
long or too complex (e.g., if it contains complicated conditional logic).
When a compiler inlines a function, it replaces the function call with the
body of the function. Most modern compilers do a good job of deciding when
inlining is a good choice.

It is possible to specify function attributes and compiler flags that can
force a compiler to inline a function. Such options should be applied with
care to prevent excessive inlining that may cause executable code bloat and/or
may make debugging difficult.

Note

When in doubt, don’t use the “inline” keyword and let the compiler
decide whether to inline a function.

Inline short, simple functions

8.33 Simple, short frequently called functions, such as accessors, that will
almost certainly be inlined by most compilers should be implemented inline
in header files.

Only inline a class constructor when it makes sense

8.34 Class constructors should not be inlined in most cases.

A class constructor implicitly calls the constructors for its base
classes and initializes some or all of its data members, potentially
calling more constructors. If a constructor is inlined, the construction
and initialization needed for its members and bases will appear at every
object declaration.

Note

Exception: A class/struct that has only POD members, is not
a subclass, and does not explicitly declare a destructor, can
have its constructor safely inlined in most cases.

Do not inline virtual methods

8.35 Virtual functions must not be inlined due to polymorphism.

For example, do not declare a virtual class member function as:

inline virtual void foo() { }

In most circumstances, a virtual method cannot be inlined because a
compiler must do runtime dispatch on a virtual method when it doesn’t
know the complete type at compile time.

Note

Exception: It is safe to define an empty destructor inline in an
abstract base class with no data members.

Important

Should we add something about C++11 ‘final’ keyword???

Function and operator overloading

There’s a fine line between clever and…

8.36 Operator overloading must not be used to be clever to the point of
obfuscation and cause others to think too hard about an operation.
Specifically, an overloaded operator must preserve “natural” semantics
by appealing to common conventions and must have meaning similar
to non-overloaded operators of the same name.

Overloading operators can be beneficial, but should not be overused
or abused. Operator overloading is essentially “syntactic sugar” and an
overloaded operator is just a function like any other function. An
important benefit of overloading is that it often allows more
appropriate syntax that more easily communicates the meaning of an
operation. The resulting code can be easier to write, maintain, and
understand, and it may be more efficient since it may allow the compiler
to take advantage of longer expressions than it could otherwise.

Overload consistently

8.37 Function overloading must not be used to define functions that
do conceptually different things.

Someone reading declarations of overloaded functions should be able to
assume (and rightfully so!) that functions with the same name do
something very similar.

8.38 If an overloaded virtual method in a base class is overridden in a
derived class, all overloaded methods with the same name in the base class
must be overridden in the derived class.

This prevents unexpected behavior when calling such member functions.
Remember that when a virtual function is overridden, the overloads of
that function in the base class are not visible to the derived class.

Common operators

8.39 Both boolean operators “==” and “!=” should be implemented if one
of them is.

For consistency and correctness, the “!=” operator should be
implemented using the “==” operator implementation. For example:

bool MyClass::operator!= (const MyClass& rhs)
{
 return !(this == rhs);
}

8.40 Standard operators, such as “&&”, “||”, and “,” (i.e., comma),
must not be overloaded.

Built-in versions of these operators are typically treated specially
by a compiler. Thus, programmers cannot implement their full semantics.
This can cause confusion. For example, the order of operand evaluation
cannot be guaranteed when overloading operators “&&” or “||”. This may
cause problems as someone may write code that assumes that evaluation
order is the same as the built-in versions.

Function arguments

Consistent argument order makes interfaces easier to use

8.41 Function arguments must be ordered similarly for all routines
in an Axom component.

Common conventions are either to put all input arguments first, then
outputs, or vice versa. Input and output arguments must not be mixed
in a function signature. Parameters that are both input and output can
make the best choice unclear. Conventions consistent with related
functions must always be followed. When adding a new parameter to an
existing method, the established ordering convention must be followed.

Note

When adding an argument to an existing method, do not just stick it
at the end of the argument list.

Pointer and reference arguments and const

8.42 Each function argument that is not a built-in type (i.e., int, double,
char, etc.) should be passed either by reference or as a pointer to avoid
unnecessary copies.

8.43 Each function reference or pointer argument that is not changed by
the function must be declared “const”.

Always name function arguments

8.44 Each argument in a function declaration must be given a name that
exactly matches the function implementation.

For example, use:

void computeSomething(int op_count, int mode);

not:

void computeSomething(int, int);

Function return points

8.45 Each function should have exactly one return point to make
control logic clear.

Functions with multiple return points tend to be a source of errors when
trying to understand or modify code, especially if there are multiple
return points within a scope. Such code can always be refactored to
have a single return point by using local scope boolean variables and/or
different control logic.

A function may have two return points if the first return statement
is associated with error condition check, for example. In this case,
the error check should be performed at the start of the function body
before other statements are reached. For example, the following is a
reasonable use of two function return points because the error condition
check and the return value for successful completion are clearly visible:

int computeSomething(int in_val)
{
 if (in_val < 0) { return -1; }

 // ...rest of function implementation...

 return 0;
}

Note

Exception. If multiple return points actually fit well into the
logical structure of some code, they may be used. For example,
a routine may contain extended if/else conditional logic with
several “if-else” clauses. If needed, the code may be more clear if
each clause contains a return point.

Proper type usage

8.46 The “bool” type should be used instead of “int” for boolean
true/false values.

8.47 The “string” type should be used instead of “char*”.

The string type supports and optimizes many character string manipulation
operations which can be error-prone and less efficient if implemented
explicitly using “char*” and standard C library functions. Note that
“string” and “char*” types are easily interchangeable, which allows C++
string data to be used when interacting with C routines.

8.48 An enumeration type should be used instead of macro definitions
or “int” data for sets of related constant values.

Since C++ enums are distinct types with a compile-time specified set of
values, there values cannot be implicitly cast to integers or
vice versa – a “static_cast” operator must be used to make the
conversion explicit. Thus, enums provide type and value safety and
scoping benefits.

In many cases, the C++11 enum class construct should be used
since it provides stronger type safety and better scoping than regular
enum types.

Templates

8.49 A class or function should only be made a template when its
implementation is independent of the template type parameter.

Note that class member templates (e.g., member functions that are
templates of a class that is not a template) are often useful to
reduce code redundancy.

8.50 Generic templates that have external linkage must be defined in the
header file where they are declared since template instantiation is a compile
time operation. Implementations of class templates and member templates that
are non-trivial should be placed in the class header file after the class
definition.

Use const to enforce correct usage

8.51 The “const” qualifier should be used for variables and methods
when appropriate to clearly indicate usage and to take advantage of
compiler-based error-checking. For example, any class member function
that does not change the state of the object on which it is called
should be declared “const”

Constant declarations can make code safer and less error-prone since they
enforce intent at compile time. They also improve code understanding
because a constant declaration clearly indicates that the state
of a variable or object will not change in the scope in which the
declaration appears.

8.52 Any class member function that does not change a data member of the
associated class must be declared “const”.

This enables the compiler to detect unintended usage.

8.53 Any class member function that returns a class data member that
should not be changed by the caller must be declared “const” and
must return the data member as a “const” reference or pointer.

Often, both “const” and non-“const” versions of member access functions
are needed so that callers may declare the variable that holds the
return value with the appropriate “const-ness”.

Casts and type conversions

Avoid C-style casts, const_cast, and reinterpret_cast

8.54 C-style casts must not be used.

All type conversions must be done explicitly using the named C++
casting operators; i.e., “static_cast”, “const_cast”, “dynamic_cast”,
“reinterpret_cast”.

8.55 The “const_cast” operator should be avoided.

Casting away “const-ness” is usually a poor programming decision and can
introduce errors.

Note

Exception: It may be necessary in some circumstances to cast
away const-ness, such as when calling const-incorrect APIs.

8.56 The “reinterpret_cast” must not be used unless absolutely necessary.

This operator was designed to perform a low-level reinterpretation of
the bit pattern of an operand. This is needed only in special
circumstances and circumvents type safety.

Use the explicit qualifier to avoid unwanted conversions

8.57 A class constructor that takes a single non-default argument, or a
single argument with a default value, must be declared “explicit”.

This prevents compilers from performing unexpected (and, in many
cases, unwanted!) implicit type conversions. For example:

class MyClass
{
public:
 explicit MyClass(int i, double x = 0.0);
};

Note that, without the explicit declaration, an implicit conversion
from an integer to an object of type MyClass could be allowed. For
example:

MyClass mc = 2;

Clearly, this is confusing. The “explicit” keyword forces the
following usage pattern:

MyClass mc(2);

to get the same result, which is much more clear.

Memory management

Allocate and deallocate memory in the same scope

8.58 Memory should be deallocated in the same scope in which it is
allocated.

8.59 All memory allocated in a class constructor should be deallocated
in the class destructor.

Note that the intent of constructors is to acquire resources and the
intent of destructors is to free those resources.

8.60 Pointers should be set to null explicitly when memory is deallocated.
This makes it easy to check pointers for “null-ness” when needed.

Use new/delete consistently

8.61 Data managed exclusively within C++ code must be allocated and
deallocated using the “new” and “delete” operators.

The operator “new” is type-safe, simpler to use, and less error-prone
than the “malloc” family of C functions. C++ new/delete operators
must not be combined with C malloc/free functions.

8.62 Every C++ array deallocation statement must include “[]”
(i.e., “delete[]”) to avoid memory leaks.

The rule of thumb is: when “[]” appears in the allocation, then “[]”
must appear in the corresponding deallocation statement.

9 Code Formatting

Conditional statements and loops

9.1 Curly braces should be used in all conditionals, loops, etc.
even when the content inside the braces is a “one-liner”.

This helps prevent coding errors and misinterpretation of intent.
For example, this:

if (done) { ... }

is preferable to this:

if (done) ...

9.2 One-liners may be used for “if” conditionals with
“else/else if” clauses when the resulting code is clear.

For example, either of the following styles may be used:

if (done) {
 id = 3;
} else {
 id = 0;
}

or:

if (done) { id = 3; } else { id = 0; }

9.3 Complex “if/else if” conditionals with many “else if” clauses
should be avoided.

Such statements can always be refactored using local boolean variables
or “switch” statements. Doing so often makes code easier to read and
understand and may improve performance.

9.4 An explicit test for zero/nonzero must be used in a conditional
unless the tested quantity is a boolean or pointer type.

For example, a conditional based on an integer value should use:

if (num_lines != 0) { ... }

not:

if (num_lines) { ... }

White space and code alignment

Most conventions for indentation, spacing and code alignment
preferred by the team are enforced by using the clang-format tool.

There are several build system targets related to code formatting grouped
under the check and style targets. The former verify that the code is
properly formatted, while the latter modify source files to conform to
axom’s rules.

Important

Axom’s style targets modify source files. Please ensure
that you’ve committed/staged all your changes before running them.

Tip

When axom is configured to use the make-based generator, the
entire codebase can be formatted by running make clangformat_style
from the build directory. Simiarly, one can verify that the code if
properly formatted by running make clangformat_check. There are
also component-specific variants for these targets, e.g. for axom’s
core component, we have core_clangformat_style and
core_clangformat_check.

Not all preferred formatting conventions are supported by clang-format.
The following guidelines provide additional recommendations to make
code easier to read and understand.

White space enhances code readability

9.5 Blank lines and indentation should be used throughout code to
enhance readability.

Examples of helpful white space include:

	Between operands and operators in arithmetic expressions.

	After reserved words, such as “while”, “for”, “if”, “switch”, etc.
and before the parenthesis or curly brace that follows.

	After commas separating arguments in functions.

	After semi-colons in for-loop expressions.

	Before and after curly braces in almost all cases.

9.6 White space must not appear between a function name and the opening
parenthesis to the argument list. In particular, if a function call is broken
across source lines, the break must not come between the function name and
the opening parenthesis.

9.7 Tabs must not be used for indentation since this can be problematic
for developers with different text editor settings.

Vertical alignment helps to show scope

9.8 When function arguments (in either a declaration or implementation)
appear on multiple lines, the arguments should be vertically aligned
for readability.

9.9 All statements within a function body should be indented within
the surrounding curly braces.

9.10 All source lines in the same scope should be vertically aligned.
Continuation of previous lines may be indented if it make the code easier
to read.

Break lines where it makes sense

9.11 When a line is broken at a comma or semi-colon, it should be broken
after the comma or semi-colon, not before. This helps make it clear that
the statement continues on the next line.

9.12 When a source line is broken at an arithmetic operator
(i.e., +, -, etc.), it should be broken after the operator, not before.

Use parentheses for clarity

9.13 Parentheses should be used in non-trivial mathematical and logical
expressions to clearly indicate structure and intended order of operations.
Do not assume everyone who reads the code knows all the rules for operator
precedence.

10 Common Code Development Macros, Types, etc.

This section provides guidelines for consistent use of macros and types
defined in Axom components, such as “axom_utils” and “slic”, and in our build
system that we use in day-to-day code development.

Important

Code that is guarded with macros described in this section
must not change the externally-observable execution
behavior of the code.

The macros are intended to help users and developers avoid
unintended or potentially erroneous usage, etc. not confuse them.

Unused variables

10.2 To silence compiler warnings and express variable usage intent more
clearly, macros in the AxomMacros.hpp header file in the source include
directory must be used when appropriate. For example,:

void my_function(int x, int AXOM_DEBUG_PARAM(y))
{
 // use variable y only for debug compilation
}

Here, the AXOM_DEBUG_PARAM macro indicates that the variable ‘y’ is only
used when the code is compiled in debug mode. It also removes the variable
name in the argument list in non-debug compilation to prevent unwanted
compiler warnings.

Please see the AxomMacros.hpp header file for other available macros and
usage examples.

Disabling compiler-generated methods

10.3 To disable compiler-generated class/struct methods when this is desired
and to clearly express this intent, the AXOMMacros.hpp header file in
source include directory contains macros that should be used for this
purpose. See Avoid issues with compiler-generated class methods for more information about
compiler-generated methods.

Please see the AXOMMacros.hpp header file for other available macros and
usage examples.

Conditionally compiled code

10.4 Macros defined by Axom build system must be used to
control conditional code compilation.

For example, complex or multi-line code that is intended to be exposed only
for a debug build must be guarded using the AXOM_DEBUG macro:

void MyMethod(...)
{
#if defined(AXOM_DEBUG)
 // Code that performs debugging checks on object state, method args,
 // reports diagnostic messages, etc. goes here
#endif

 // rest of method implementation
}

The Axom build system provides various other macros for controlling
conditionally-compiled code. The macro constants will be defined based
on CMake options given when the code is configured. Please see the
config.hpp header file in the source include directory for a complete list.

Error handling

10.5 Macros provided in the “slic” component should be used to provide
runtime checks for incorrect or questionable usage and informative messages
for developers and users.

Runtime checks for incorrect or questionable usage and generation of
informative warning, error, notice messages can be a tremendous help to
users and developers. This is an excellent way to provide run-time debugging
capabilities in code. Using the “slic” macros ensures that syntax and meaning
are consistent and that output information is handled similarly throughout
the code.

When certain conditions are encountered, the macros can emit failed boolean
expressions and descriptive messages that help to understand potentially
problematic usage. Here’s an example of common SLIC macro usage in AXOM:

Bar* myCoolFunction(int in_val, Foo* in_foo)
{
 if (in_val < 0 || in_foo == nullptr)
 {
 SLIC_CHECK_MSG(in_val >= 0, "in_val must be non-negative");
 SLIC_CHECK(in_foo != nullptr);
 return nullptr;
 } else if (!in_foo->isSet()) {
 SLIC_CHECK_MSG(in_foo->isSet(),
 "in_foo is not set, will use default settings");
 const int val = in_val >= 0 ? in_val : DEFAULT_VAL;
 in_foo->setDefaults(val);
 }

 Bar* bar = new Bar(in_foo);

 return bar;
}

This example uses slic macros that are only active when the code is compiled
in debug mode. When compiled in release mode, for example, the macros are
empty and so do nothing. Also, when a condition is encountered that is
problematic, such as ‘in_val < 0’ or ‘in_foo == nullptr’, the code will
emit the condition and an optional message and not halt. This allows calling
code to catch the issue (in this case a null return value) and react. There
are other macros (e.g., SLIC_ASSERT) that will halt the code if that is
desired.

Slic macros operate in one of two compilation-defined modes. Some macros are
active only in for a debug compile. Others are active for any build type.
Macros provided for each of these modes can be used to halt the code or not
after describing the condition that triggered them. The following table
summarizes the SLIC macros.

	Macro type

	When active?

	Halts code?

	ERROR

	Always

	Yes

	WARNING

	Always

	No

	ASSERT

	Debug only

	Yes

	CHECK

	Debug only

	No

Typically, we use macros ERROR/WARNING macros rarely. They are used primarily
to catch cases that are obvious programming errors or would put an application
in a state where continuing is seriously in doubt. CHECK macros are used most
often, since they provide useful debugging information and do not halt the
code – they allow users to catch cases from which they can recover. ASSERT
macros are used in cases where halting the code is desired, but only in
debug mode.

Please see the slic.hpp header file to see which macros are available and
how to use them.

Important

It is important to apply these macros judiciously so that they
benefit users and other developers. We want to help folks use
our software correctly and not “spam” them with too much
information.

11 Portability, Compilation, and Dependencies

C++ is a huge language with many advanced and powerful features. To avoid
over-indulgence and obfuscation, we would like to avoid C++ feature bloat.
By constraining or even banning the use of certain language features and
libraries, we hope to keep our code simple and portable. We also hope to
avoid errors and problems that may occur when language features are not
completely understood or not used consistently. This section lists such
restrictions and explains why use of certain features is constrained or
restricted.

Portability

Nothing beyond C++11

11.1 C++ language features beyond standard C++11 must not be used unless
reviewed by the team and verified that the features are supported by all
compilers we need to support.

Changing this guideline requires full consensus of all team members.

No non-standard language constructs

11.2 Special non-standard language constructs, such as GNU extensions,
must not be used if they hinder portability.

Note

Any deviation from these C++ usage requirements must be
agreed on by all members of the team and vetted with our
main application users.

Compilation

Avoid conditional compilation

11.3 Excessive use of the preprocessor for conditional compilation at a
fine granularity (e.g., selectively including or removing individual source
lines) should be avoided.

While it may seem convenient, this practice typically produces confusing
and error-prone code. Often, it is better to refactor the code into
separate routines or large code blocks subject to conditional compilation
where it is more clear.

Code reviews by team members will dictate what is/is not acceptable.

The compiler is your friend

11.4 Developers should rely on compile-time and link-time errors to
check for code correctness and invariants.

Errors that occur at run-time and which depend on specific control flow
and program state are inconvenient for users and can be difficult to
detect and fix.

Important

Add specific guidance on how this should be done…

Minimize dependencies on third-party libraries (TPLs)

11.5 While it is generally desirable to avoid recreating functionality that
others have already implemented, we should limit third-party library
dependencies for Axom to make it easier for users. We are a library,
and everything we necessarily depend on will become a dependency for our
user.

Before introducing any significant TPL dependency on Axom
(e.g., hdf5), it must be agreed on by the development team and vetted
with our main users.

11.6 Unless absolutely necessary, any TPL we depend on must not be
exposed through any public interface in Axom.

References and Useful Resources

Most of the guidelines here were gathered from the following list sources.
The list contains a variety of useful resources for programming in C++
beyond what is presented in these guidelines.

	The Chromium Projects: C++ Dos and Don’ts. https://chromium.googlesource.com/chromium/src/+/HEAD/styleguide/c++/c++-dos-and-donts.md

	Dewhurst, S., C++ Gotchas: Avoiding Common Problems in Coding and Design, Addison-Wesley, 2003.

	Dewhurst S., C++ Common Knowledge: Essential Intermediate Programming, Addison-Wesley, 2005.

	Doxygen manual, http://www.doxygen.nl/manual/

	Google C++ Style Guide, https://google.github.io/styleguide/cppguide.html

	ISO/IEC 14882:2011 C++ Programming Language Standard.

	Josuttis, N., The C++ Standard Library: A Tutorial and Reference, Second Edition, Addison-Wesley, 2012.

	LLVM Coding Standards, llvm.org/docs/CodingStandards.html

	Meyers, S., More Effective C++: 35 New Ways to Improve Your Programs and Designs, Addison-Wesley, 1996.

	Meyers, S., Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library, Addison-Wesley, 2001.

	Meyers, S., Effective C++: 55 Specific Ways to Improve Your Programs and Designs (3rd Edition), Addison-Wesley, 2005.

	Meyers, S., Effective Modern C++: 42 Specific Ways to Improve Your Use of C++11 and C++14, O’Reilly.

	Programming Research Ltd., High-integrity C++ Coding Standard, Version 4.0, 2013.

	Sutter, H. and A. Alexandrescu, C++ Coding Standards: 101 Rules, Guidelines, and Best Practices, Addison-Wesley, 2005.

License Info

Axom License

Copyright (c) 2017-2020, Lawrence Livermore National Security, LLC.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Index

Detailed examples

Example 1

Setting up and iterating a relation between two sets
Demonstrates looping through elements using single and double subscript operators as well as iterators.

Example 2

Define a simple hexahedral mesh using Nodes and Zones, relations from nodes to zones and from zones to nodes.
Show how we iterate on the nodes of a zone and on the zones of a node.

This illustrates how different relation types (static with const and variable cardinality, respectively) can be
iterated.

More examples can be found in slam’s examples subdirectory.
* A slam version of Lulesh (todo: add link)
* A slam version of tiny hydro (todo: add link)

Other goodies

	Dynamic bitset

	ModularInt class

	…

 _images/cell_faces.png
5 face

face

_images/class_diagram.png
. Base Class

Concrete Class

Structured

Mesh

— inheritance

- - -» composition

- — - >

_images/cdsfields.png
topologies

tinymesh

coordsets

@% type : unstructured

shape : hex
elements
connectivity (16, 0, 1) : int
¥

coords

ds root

type : explicit

x (12,0, double [

(values }———y (12,0, 1) dowble | T -

nodefield

eltfield

z (12,0, 1) : double

association : vertex
type : scalar
topology : mesh
values (12,0, 1) : int

association : vertex

type : scalar

topology : mesh

nodes xs (12, 0, 1) : double

2s (12,0, 1) : double

values (2, 0, 1) : double

_images/cdstopo.png
ds root

tinymesh
nodes xs (12, 0, 1) : double

coordsets

type : explicit

oords \ - vs (12, 0, 1) : double
x (12,0, double

topologies

(values }———y (12,0, 1) dowble | T)

25 (12,0, 1) : double
z (12,0, 1) : double f-------mmmuus

o fiield:
coordset - coords | \felds elds

nodefield (12, 0, 1) : int

shape : hex
elements

connectivity (16, 0, 1) : int eltfield (2, 0, 1) : double ""’D:I

v

_images/execmodel.png
mint::for_all_{x}< {P}, [xargs::*] >({m},‘AXOM_LAMBDA(IndexType idx [...]){ ... },)
iteration execution execution mint::Mesh kernel
space policy signature pointer

_images/f17.png

_images/decomp.png
Block 2

Block 0 Block 1 Block 0 Block 1

_images/ds.png

_images/face_orientation.png

_images/gitflow-workflow.png
¥
A
7 e

/,0

>0—0

v
00— @ .
R e
©+0-0-0

-.v

_images/graphviz-40cfa9ca34ff91c6cb5e0305df5a328363dd1987.png

nav.xhtml

 Table of Contents

 		
 Axom

_images/hexagon.png
hexagon

_images/implicitgrid.png
BIE[EIRIE]~[EE8

_images/hex.png

_images/hex27.png

_images/linear_cell_types.png
S HA

mint::VERTEX mint::SEGMENT mint:QUAD mint: TRIANGLE
A 6 5 5
A q
2 2
2 2
o
0 o
° 1
by 1 1

mintTET mintHEX mint::PRISM mint:PYRAMID

_images/mesh_representation.png
O Node Index

Cell Index

A Face Index

_images/intro_mesh.png
phi
20601100 200 300 400 500 600 700 89e+02
\

_images/intro_mesh_unstructured.png
phi
11601100 200 300 400 500 600 700 89e+02

_images/meshed_domain.png
(@)

cel

(b)

_images/meshtypes.png
mint::UniformMesh

mint::RectilinearMesh

mint::UnstructuredMesh< CELL_TOPOLOGY >

mint::CurvilinearMesh

:" %0
HHIcs
001,009,495 %
IS

mint::ParticleMesh

_images/orderedset_feature_diagram.png
CompileTimeSize<N>

SizePolicy

RuntimeSize

CompileTimeOffset<N>

OffsetPolicy

RuntimeOffset

OrderedSet

CompileTimeStride<N>

StridePolicy

RuntimeStride

Nolndirection

IndirectionPolicy Arraylndirection

STLVectorIndirection

size()
empty ()

offset()

stride()

hasIndirection()
indirection()
data()

aSet[eltId] := indirection(eltID*stride() + offset())

_images/prism.png

_images/pyramid.png

_images/particles.png

_images/pic.png

_images/quad9.png

_images/quad_mesh.png

_images/q2_cell_types.png
mint:zHEX27

mint::QUADY

_images/quad.png

_images/roundrectangle.png
rounded rectangle

_images/sample_unstructured_mesh.png
O Node Index

Cell Index

_images/rectangle.png
rectangle

_images/showBVHTree0.png

_images/showBVHTree1.png

_images/sample_unstructured_mesh_mixed.png
O Node Index

Cell Index

_images/set_relation_map.png
53

0.2

42

12.2

_images/showBoundingBoxes.png

_images/showBVHTree2.png

_images/showBVHTree3.png
N

_images/showDistance.png

_images/showIntersect.png

_images/showClip.png

_images/showClosestPoint.png

_images/showOctree2.png

_images/showOctree3.png

_images/showOctree0.png

_images/showOctree1.png
Lo

_images/showOrientation.png

_images/showRectangularLattice.png

_images/architecture.png
Application

4
{

Logger Static API

Severity Level

L 4

Active Logger

Warning

Ls1* Ls2*

LS3*

_images/cds.png
topologies

coordsets

_images/SingleCellTypeMesh.png
(O Node Index

Cell Index

Cell-To-Node Connectivity Array

cell0

cell 1

cell 2

cell 3

3

2|2

0

1|3

4

2I1

5

_images/Uberenv.jpg
Uberenv: A thin veneer around Spack

bootstraps

3 Party Libraries and

_images/cdscoords.png
topologies

tinymesh

coordsets

fields

ds root

type : explicit

coords N
x (12,0, double

(values }———y (12,0, 1) dowble | T -

z (12,0, 1) : double

nodes

xs (12, 0, 1) : double

ys (12,0, 1) : double

2s (12,0, 1) : double

nodefield (12, 0, 1) : int

eltfield (2, 0, 1) : double ’D:I

_images/structured_curvilinear_mesh.png

_images/structured_rectilinear_mesh.png

_images/sidre-view-states.png
- isDescribed() isAllocated() isApplied()

EMPTY True: view has data description False False

False: view has no data description
BUFFER
EXTERNAL

STRING

True: view has buffer and data True: view’s buffer is allocated True: view’s description is
description False: view’s buffer is not applied to buffer data
False: view has buffer and no data allocated False: if view has a
description description, it is not
applied to buffer data

True: view has non-null external True: view has non-null True: view’s description is

data ptr and data description external data ptr applied to non-null

False: view has non-null external external data ptr

data ptr and no data description False: if view has a
description, it is not
applied to buffer data

True True True

True True True

_images/sidre_datastore_example.png
Datastore

Groups and Views

/)—»(state)—b

cycle: 25

O

time: 1.2562e-2

name: "sample_20171206_a"

x (4096, 0, 3) : double

y (4096, 1, 3) : double

Z (4096, 2, 3) : double

Attributes

Buffers

temp (3375, 0, 1) : double (vis: 1> F-1-""""

rho (3375, 0, 1) : double

region (3375, 0, 1) : int

int * (external pointer) ﬂ

_images/MixedCellTypeMesh.png
O Node Index
Cell Index Cell-To-Node Connectivity Array

cell0 cell 1 cell 2

@ 0]1 2|1 513 2|3 4

~N

10

@ @ Cell Offsets: | 0 | 3

Cell Types:

cell 0 mint::TRIANGLE

@ cell 1
@ cell 2—| mint::TRIANGLE

mint::QUAD

_images/tiny_mesh.png
Node ID
Ner, {'\Edcl

E lem&ﬂ‘{'
Tield

_images/SampleMesh.png

_images/tiny_mesh_rendered.png
DB: finymesh.root

Mesh
Var. finymesh_mesh

Pseudocolor
Var: finymesh_mesh/nodefleld
4000

3000
2.000
—1.000

L 000
Max: 4,00
Min: 0,000

user: capps2

Fri Apr 609:12:34 2018

_images/structured_uniform_mesh.png

_images/AllNearestNeighbors.png
!

~

_images/surface_mesh_queries.png
z

'

o

WL N iy
—V

_images/topological_structure.png
Cells

Faces

Nodes

_images/showUniformGrid.png
JAR

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_images/triangle.png

_images/unstructured_mixed_mesh.png

_static/up-pressed.png

_static/up.png

_static/minus.png

_static/plus.png

_static/file.png

