
Axom Documentation

LLNL

May 03, 2024

CONTENTS

1 Axom Software 3

2 Documentation 5

3 Component Level Dependencies 7

4 Other Tools Application Developers May Find Useful 9

5 Developer Resources 11

6 Communicating with the Axom Team 13
6.1 Mailing Lists . 13
6.2 Chat Room . 13

7 Axom Copyright and License Information 15
7.1 Quickstart Guide . 15
7.2 Axom Core User Guide . 28
7.3 Inlet User Guide . 49
7.4 Klee User Guide . 70
7.5 Lumberjack User Guide . 78
7.6 Mint User Guide . 85
7.7 Multimat User Guide . 164
7.8 Primal User Guide . 164
7.9 Quest User Guide . 173
7.10 Sidre User Guide . 187
7.11 Slam User Guide . 235
7.12 Slic User Guide . 245
7.13 Spin User Guide . 262
7.14 Developer Guide . 278
7.15 Coding Guidelines . 325
7.16 License Info . 369

i

ii

Axom Documentation

Axom is an open source project that provides robust and flexible software components that serve as building blocks
for high performance scientific computing applications. A key goal of the project is to have different application teams
co-develop and share general core infrastructure software across their projects instead of individually developing and
maintaining capabilities that are similar in functionality but are not easily shared.

An important objective of Axom is to facilitate integration of novel, forward-looking computer science capabilities
into simulation codes. A pillar of Axom design is to enable and simplify the exchange of simulation data between
applications and tools. Axom developers emphasize the following principles in software design and implementation:

• Start design and implementation based on concrete application use cases and maintain flexibility to meet the
needs of a diverse set of applications

• Develop high-quality, robust, high performance software that has well-designed APIs, good documentation, and
solid testing

• Apply consistent software engineering practices across all Axom components so developers can easily work on
them

• Ensure that components integrate well together and are easy for applications to adopt

The main drivers of Axom capabilities originate in the needs of multiphysics applications in the Advanced Simula-
tion and Computing (ASC) Program at Lawrence Livermore National Laboratory (LLNL) . However, Axom can be
employed in a wide range of applications beyond that scope, including research codes, proxy application, etc. Of-
ten, developing these types of applications using Axom can facilitate technology transfer from research efforts into
production applications.

CONTENTS 1

https://asc.llnl.gov
https://asc.llnl.gov
https://www.llnl.gov

Axom Documentation

2 CONTENTS

CHAPTER

ONE

AXOM SOFTWARE

Axom software components are maintained and developed on the Axom GitHub Project.

Note: While Axom is developed in C++, its components have native interfaces in C and Fortran for straightforward
usage in applications developed in those languages. Python interfaces are in development.

Our current collection of components is listed here. The number of components and their capabilities will expand over
time as new needs are identified.

• Inlet: Input file parsing and information storage/retrieval

• Klee: Shaping specification and implementation

• Lumberjack: Scalable parallel message logging and filtering

• Mint: Mesh data model

• Multimat: Managing multimaterial field data

• Primal: Computational geometry primitives

• Quest: Querying on surface tool

• Sidre: Simulation data repository

• Slam: Set-theoretic lightweight API for meshes

• Slic: Simple Logging Interface Code

• Spin: Spatial index structures for managing and accelerating spatial searches

3

https://github.com/LLNL/axom

Axom Documentation

4 Chapter 1. Axom Software

CHAPTER

TWO

DOCUMENTATION

User guides and source code documentation are always linked on this site.

• Quickstart Guide

• Source documentation

Core User Guide Source documentation
Inlet User Guide Source documentation
Klee User Guide Source documentation
Lumberjack User Guide Source documentation
Mint User Guide Source documentation
Multimat User Guide Source documentation
Primal User Guide Source documentation
Quest User Guide Source documentation
Sidre User Guide Source documentation
Slam User Guide Source documentation
Slic User Guide Source documentation
Spin User Guide Source documentation

5

doxygen/html/index.html
doxygen/html/coretop.html
doxygen/html/inlettop.html
doxygen/html/kleetop.html
doxygen/html/lumberjacktop.html
doxygen/html/minttop.html
doxygen/html/multimattop.html
doxygen/html/primaltop.html
doxygen/html/questtop.html
doxygen/html/sidretop.html
doxygen/html/slamtop.html
doxygen/html/slictop.html
doxygen/html/spintop.html

Axom Documentation

6 Chapter 2. Documentation

CHAPTER

THREE

COMPONENT LEVEL DEPENDENCIES

Axom has the following inter-component dependencies:

• Core has no dependencies and the other components depend on Core

• Slic optionally depends on Lumberjack

• Slam, Spin, Primal, Mint, Quest, and Sidre depend on Slic

• Mint depends on Slam, and optionally Sidre

• Multimat depends on Slic, and Slam

• Inlet depends on Sidre, Slic, and Primal

• Klee depends on Sidre, Slic, Inlet and Primal

• Quest depends on Slam, Spin, Primal, Mint, and, optionally, Klee

The figure below summarizes these dependencies. Solid links indicate hard dependencies; dashed links indicate op-
tional dependencies.

7

Axom Documentation

quest

slam primal

mintspin

klee

slic

core

sidre

inlet

lumberjack

multimat

8 Chapter 3. Component Level Dependencies

CHAPTER

FOUR

OTHER TOOLS APPLICATION DEVELOPERS MAY FIND USEFUL

The Axom team develops and supports other software tools that are useful for software projects independent of the
Axom. These include:

• BLT CMake-based build system developed by the Axom team to simplify CMake usage and development tool
integration

• Shroud Generator for C, Fortran, and Python interfaces to C++ libraries, and Fortran and Python interfaces to C
libraries

• Conduit Library for describing and managing in-memory simulation data

9

https://github.com/LLNL/blt
https://github.com/LLNL/shroud
https://github.com/LLNL/conduit

Axom Documentation

10 Chapter 4. Other Tools Application Developers May Find Useful

CHAPTER

FIVE

DEVELOPER RESOURCES

Folks interested in contributing to Axom may be interested in our developer resource guides.

• Developer Guide

• Coding Guide

11

Axom Documentation

12 Chapter 5. Developer Resources

CHAPTER

SIX

COMMUNICATING WITH THE AXOM TEAM

6.1 Mailing Lists

The most effective way to communicate with the Axom team is by using one of our email lists:

• ‘axom-users@llnl.gov’ is for Axom users to contact developers to ask questions, report issues, etc.

• ‘axom-dev@llnl.gov’ is mainly for communication among Axom team members

6.2 Chat Room

We also have the ‘Axom Users’ chat room on the LLNL Microsoft Teams server. This is open to anyone with access to
the LLNL network. Just log onto Teams and join the room.

13

mailto:'axom-users@llnl.gov
mailto:'axom-dev@llnl.gov

Axom Documentation

14 Chapter 6. Communicating with the Axom Team

CHAPTER

SEVEN

AXOM COPYRIGHT AND LICENSE INFORMATION

Please see the Axom License.

Copyright (c) 2017-2024, Lawrence Livermore National Security, LLC. Produced at the Lawrence Livermore National
Laboratory.

LLNL-CODE-741217

7.1 Quickstart Guide

This guide provides information to help Axom users and developers get up and running quickly.

It provides instructions for:

• Obtaining, building and installing third-party libraries on which Axom depends

• Configuring, building and installing the Axom component libraries you want to use

• Compiling and linking an application with Axom

Additional information about Axom can be found on the main Axom Web Page:

• Build system

• User guides and source code documentation for individual Axom components

• Developer guide, coding guidelines, etc.

• Communicating with the Axom development team (email lists, chat room, etc.)

Contents:

7.1.1 Zero to Axom: Quick install of Axom and Third Party Dependencies

The easiest path to build Axom’s dependencies is to use Spack. This has been encapsulated using Uberenv. Uberenv
helps by doing the following:

• Pulls a blessed version of Spack locally

• If you are on a known operating system, such as the clusters on Livermore Computing (LC), or our provided
docker images, we have defined Spack configuration files to keep Spack from building the world

• Installs our Spack packages into the local Spack

• Simplifies whole dependency build into one command

15

../../../index.html
https://github.com/spack/spack
https://github.com/LLNL/uberenv

Axom Documentation

Uberenv will create a directory containing a Spack instance with the required Axom dependencies installed.

It also generates a host-config file (<config_dependent_name>.cmake) at the root of Axom repository. This host-
config defines all the required information for building Axom.

$ python3 scripts/uberenv/uberenv.py

Note: On LC machines, it is good practice to do the build step in parallel on a compute node. Here is an example
command: salloc -ppdebug -N1-1 python3 scripts/uberenv/uberenv.py

Unless otherwise specified, Spack will default to a compiler. This is generally not a good idea when developing large
codes. To specify which compiler to use, add the compiler specification to the --spec Uberenv command line option.
Supported compiler specs can be found in the Spack compiler files in our repository: scripts/spack/configs/
<platform>/spack.yaml.

We currently regularly test the following Spack configuration files:

• Linux Ubuntu 20.04 (via Windows WSL 2)

• TOSS 4 (On Ruby at LC)

• BlueOS (On Lassen at LC)

To install Axom on a new platform, it is a good idea to start with a known Spack configuration directory (located in the
Axom repo at scripts/spack/configs/<platform>). The spack.yaml file describes the compilers, associated
flags required for the platform, and the the low-level libraries on the system to prevent Spack from building the world.
Documentation on these configuration files is located in the Spack docs.

Some helpful uberenv options include :

• --spec=+cuda (build Axom with CUDA support)

• --spec=+devtools (also build the devtools with one command)

• --spec=%clang@10.0.0 (build with a specific compiler as defined in the compiler.yaml file)

• --spack-env-file=<Path to Spack Environment file> (use specific Spack configuration file)

• --prefix=<Path> (required, build and install the dependencies in a particular location)

There is more thorough uberenv documentation here.

The modifiers to the Spack specification spec can be chained together, e.g. --spec=%clang@10.0.
0+debug+devtools.

If you already have a Spack instance from another project that you would like to reuse, you can do so by changing the
uberenv command as follows:

$ python3 scripts/uberenv/uberenv.py --upstream=</path/to/my/spack>/opt/spack

16 Chapter 7. Axom Copyright and License Information

https://spack.readthedocs.io/en/latest/configuration.html
https://uberenv.readthedocs.io/en/latest/

Axom Documentation

Preparing Windows WSL/Ubuntu for Axom installation

For faster installation of the Axom dependencies via Spack on Windows WSL/Ubuntu systems, install CMake, MPICH,
openblas, OpenGL, and the various developer tools using the following commands:

Ubuntu 20.04

$ sudo apt-get update
$ sudo apt-get upgrade
$ sudo apt-get install cmake libopenblas-dev libopenblas-base mpich cppcheck doxygen␣
→˓libreadline-dev python3-sphinx python3-pip clang-format-10 m4
$ sudo ln -s /usr/lib/x86_64-linux-gnu/* /usr/lib

Note that the last line is required since Spack expects the system libraries to exist in a directory named lib. During
the third party library build phase, the appropriate Spack config directory must be specified using either:

Ubuntu 20.04

python3 scripts/uberenv/uberenv.py --spack-env-file=scripts/spack/configs/
linux_ubuntu_20/spack.yaml --prefix=path/to/install/libraries

Using Axom in Your Project

The install includes examples that demonstrate how to use Axom in CMake-based, BLT-based and Makefile-based
build systems.

CMake-based build system example

endif()

project(using_with_cmake)

message(STATUS "CMake Version: ${CMAKE_VERSION}")

#--
Check for AXOM_DIR and use CMake's find_package to import axom's targets
#--
if(NOT DEFINED AXOM_DIR OR NOT EXISTS ${AXOM_DIR}/lib/cmake/axom-config.cmake)

message(FATAL_ERROR "Missing required 'AXOM_DIR' variable pointing to an installed␣
→˓axom")
endif()

if (ENABLE_CUDA)
enable_language(CUDA)

endif()

if (ENABLE_HIP)
if (NOT ROCM_PATH)

find_path(ROCM_PATH
hip
ENV{ROCM_DIR}
ENV{ROCM_PATH}
ENV{HIP_PATH}

7.1. Quickstart Guide 17

Axom Documentation

See: examples/axom/using-with-cmake

BLT-based build system example

#--
Set up BLT with validity checks
#--

Check that path to BLT is provided and valid
if(NOT DEFINED BLT_SOURCE_DIR OR NOT EXISTS ${BLT_SOURCE_DIR}/SetupBLT.cmake)

message(FATAL_ERROR "Missing required 'BLT_SOURCE_DIR' variable pointing to a valid␣
→˓blt")
endif()

include(${BLT_SOURCE_DIR}/SetupBLT.cmake)

#--
Check for AXOM_DIR and use CMake's find_package to import axom's targets
#--
if(NOT DEFINED AXOM_DIR OR NOT EXISTS ${AXOM_DIR}/lib/cmake/axom-config.cmake)

message(FATAL_ERROR "Missing required 'AXOM_DIR' variable pointing to an installed␣
→˓axom")
endif()

include(CMakeFindDependencyMacro)

find_dependency(axom REQUIRED
NO_DEFAULT_PATH
PATHS ${AXOM_DIR}/lib/cmake)

#--
Set up example target that depends on axom
#--

blt_add_executable(NAME example
SOURCES example.cpp

See: examples/axom/using-with-blt

Makefile-based build system example

AXOM_DIR ?= ../../..

CXX=@CMAKE_CXX_COMPILER@
CXX_FLAGS=@CMAKE_CXX_FLAGS@ -std=c++@CMAKE_CXX_STANDARD@
INC_FLAGS=-I$(AXOM_DIR)/include/
LINK_FLAGS=-L$(AXOM_DIR)/lib/ @AXOM_ORDERED_LIBS@

main:
$(CXX) $(INC_FLAGS) example.cpp $(LINK_FLAGS) -o example

(continues on next page)

18 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

clean:
rm -f example

See: examples/axom/using-with-make

7.1.2 The Code

Our Git repository contains the Axom source code, documentation, test suites and all files and scripts used for config-
uring and building the code. The repository lives in our Github repository.

We use Github for issue tracking. Please report issues, feature requests, etc. there or send email to the Axom develop-
ment team.

Getting the Code

Access to our repository and Atlassian tools requires membership in the LC group axom. If you’re not in the group,
please send email to ‘axom-dev@llnl.gov’ and request to be added.

SSH keys

If you have not used Github before, you should start by creating and adding your SSH keys to Github. Github provides
a good tutorial. Performing these two simple steps will make it easier for you to interact with our Git repository without
having to repeatedly enter login credentials.

Cloning the repo

To clone the repo into your local working space, type the following:

$ git clone --recursive git@github.com:LLNL/axom.git

Important notes:

• You don’t need to remember the URL for the Axom repo above. It can be found by going to the Axom repo on
our Github project and clicking on the ‘Clone or download’ button that is on the upper right of the Axom Github
page.

• The --recursive argument above is needed to pull in Axom’s submodules. This includes our data directory,
which is used for testing, as well as our build system called BLT, a standalone product that lives in its own
repository. Documentation for BLT can be found here.

• If you forget to pass the --recursive argument to the git clone command, the following commands can be
typed after cloning:

$ cd axom
$ git submodule init
$ git submodule update

7.1. Quickstart Guide 19

https://github.com/LLNL/axom
https://github.com/LLNL/axom/issues
mailto:'axom-dev@llnl.gov
https://help.github.com/en/enterprise/2.18/user/github/authenticating-to-github/adding-a-new-ssh-key-to-your-github-account
https://github.com/llnl/blt
https://github.com/llnl/blt
https://llnl-blt.readthedocs.io/en/latest/

Axom Documentation

Repository Layout

If you need to look through the repository, this section explains how it is organized. If you do not need this information
and just want to build the code, please continue on to the next section.

The top-level Axom directory contains the following directories:

data
The optional axom_data submodule is cloned here.

host-configs
Detailed configuration information for platforms and compilers we support.

See Host-config files for more information.

scripts
Scripts that we maintain to simplify development and usage tasks

src
The bulk of the repo contents.

Within the src directory, you will find the following directories:

axom
Directories for individual Axom components (see below)

cmake
Axom’s build system lives here.

The BLT submodule is cloned into the blt subdirectory.

docs
General Axom documentation files

examples
Example programs that utilize Axom in their build systems

thirdparty
Built-in third party libraries with tests to ensure they are built properly.

In the axom directory, you will find a directory for each of the Axom components. Although there are dependencies
among them, each is developed and maintained in a largely self-contained fashion. Axom component dependencies
are essentially treated as library dependencies. Each component directory contains subdirectories for the component
header and implementation files, as well as user documentation, examples and tests.

7.1.3 Configuration and Building

This section provides information about configuring and building the Axom software after you have cloned the repos-
itory. The main steps for using Axom are:

1. Configure, build, and install third-party libraries (TPLs) on which Axom depends.

2. Build and install Axom component libraries that you wish to use.

3. Build and link your application with the Axom installation.

Depending on how your team uses Axom, some of these steps, such as installing the Axom TPLs and Axom itself, may
need to be done only once. These installations can be shared across the team.

20 Chapter 7. Axom Copyright and License Information

Axom Documentation

Requirements, Dependencies, and Supported Compilers

Basic requirements:

• C++ compiler with C++14 support at a minimum

• CMake with a minimum required version of 3.14 for CPU-only and CUDA builds, and a minimum version of
3.21 when building with HIP support

• Fortran Compiler (optional)

Supported Compilers

Axom supports a wide variety of compilers. Please see the file axom/scripts/spack/configs/<platform>/
spack.yaml for the current list of supported and tested compilers for the platforms we test on.

External Dependencies

Axom has two types of dependencies:

• Libraries. These contain code that Axom must link against.

• Tools. These are executables that we use during code development; e.g. generate documentation, format code,
etc.

Unless noted otherwise in the following discussion, Axom dependencies are optional.

Note: A typical Axom user need only understand how to enable Axom features and provide a valid installation path
for each required library dependency for each enabled feature.

Library Dependencies

The following table lists:

• Axom external library dependencies and links to documentation for each library

• Which libraries are required or optional dependencies for Axom. While most Axom libraries are not required,
they are required to access all capabilities of components listed.

• The CMake variable that must be set to the path of each library installation when configuring a build with the
library

7.1. Quickstart Guide 21

Axom Documentation

Library Dependent Components Build system variable
Adiak Optional: Core ADIAK_DIR
Caliper Optional: Core CALIPER_DIR
Conduit Required: Inlet, Klee, Sidre CONDUIT_DIR
c2c Optional: Quest C2C_DIR
HDF5 Optional: Sidre HDF5_DIR
Lua Optional: Inlet LUA_DIR
MFEM Optional: Primal, Quest, Sidre MFEM_DIR
RAJA Optional: Mint, Spin, Quest RAJA_DIR
SCR Optional: Sidre SCR_DIR
Umpire Optional: Core, Spin, Quest UMPIRE_DIR

Note that each library dependency has a corresponding build system variable (with the suffix _DIR) to supply the path
to the library’s installation directory. For example, hdf5 has a corresponding variable HDF5_DIR.

Note: Optional c2c library is currently only available for configurations on LLNL clusters.

Tool Dependencies

The following table lists:

• Axom external tool dependencies, with links to documentation for each tool

• The purpose of each tool; i.e., how it is used in Axom development

• The CMake variable that must be set to the path of the tool installation to enable its use in Axom

Tool Purpose Build System Variable
clangformat Code Style Checks CLANGFORMAT_EXECUTABLE
CppCheck Static C/C++ code analysis CPPCHECK_EXECUTABLE
Doxygen Source Code Docs DOXYGEN_EXECUTABLE
Lcov Code Coverage Reports LCOV_EXECUTABLE
Shroud Multi-language binding generation SHROUD_EXECUTABLE
Sphinx User Docs SPHINX_EXECUTABLE

Each tool has a corresponding build system variable (with the suffix _EXECUTABLE) to supply a path to the tool exe-
cutable. For example, sphinx has a corresponding build system variable SPHINX_EXECUTABLE.

Building and Installing Third-party Libraries

We use the Spack Package Manager to manage and build TPL dependencies for Axom on Linux and MacOS systems.
Similarly, support for managing and building TPLs on Windows is provided through Vcpkg.

To make the TPL management process easier and automatic (you don’t really need to learn much about Spack or Vcpkg),
we drive it with a Python script called uberenv.py, which is located in the scripts/uberenv directory. Running
this script on Linux or MacOS does several things:

• It clones the Spack repo from GitHub and checks out a specific version that we have tested.

• It configures Spack compiler sets, adds custom package build rules, and sets any options specific to Axom.

22 Chapter 7. Axom Copyright and License Information

https://llnl.github.io/Adiak
https://software.llnl.gov/Caliper
https://llnl-conduit.readthedocs.io/en/latest
https://rzlc.llnl.gov/c2c
https://www.hdfgroup.org/solutions/hdf5/
https://www.lua.org/
https://mfem.org/
https://raja.readthedocs.io/en/main/
https://computing.llnl.gov/projects/scalable-checkpoint-restart-for-mpi
https://umpire.readthedocs.io/en/latest/
https://releases.llvm.org/10.0.0/tools/clang/docs/ClangFormat.html
http://cppcheck.sourceforge.net/
http://www.doxygen.nl/
http://ltp.sourceforge.net/coverage/lcov.php
https://shroud.readthedocs.io/en/develop/
http://www.sphinx-doc.org/en/master/
https://github.com/spack/spack
https://github.com/microsoft/vcpkg

Axom Documentation

• It invokes Spack to build a complete set of TPLs for each configuration and generates a host-config file (i.e.,
CMake cache file) that includes all details of the configuration and build dependencies.

On Windows, uberenv.py takes analogous steps:

• It clones the vcpkg repo from GitHub.

• It specifies configuration details such as the “triplet,” specifying compiler, 64 vs 32-bits, and any other options
specific to Axom.

• It sets up vcpkg and then invokes vcpkg to build a set of TPLs. It also generates a host-config file that includes
configuration details and build dependencies.

The figure illustrates what the script does.

The uberenv script is run from the top-level Axom directory like this:

$ python ./scripts/uberenv/uberenv.py --prefix {install path} \
--spec spec \

[--mirror {mirror path}]

For more details about uberenv.py and the options it supports, please see the uberenv docs

You can also see examples of how Spack spec names are passed to uberenv.py in the Python scripts we use to
build TPLs for Axom development on LC platforms at LLNL. These scripts are located in the directory scripts/
llnl_scripts.

Note: To get a full list of all Axom dependencies in an uberenv spack build of our TPLs, please go to the TPL root
directory and run the following Spack command: ./spack/bin/spack spec axom. The analogous command for an
uberenv vcpkg build is: .\vcpkg depend-info axom.

7.1. Quickstart Guide 23

https://uberenv.readthedocs.io/en/latest/

Axom Documentation

Building and Installing Axom

This section provides essential instructions for building the Axom code.

Axom uses BLT, a CMake-based system, to configure and build the code. There are two ways to configure Axom:

• Using the helper Python script config-build.py

• Directly invoke CMake from the command line

Either way, we typically pass in many of the configuration options and variables using platform-specific host-config
files.

Host-config files

Host-config files help make the Axom configuration process more automatic and reproducible. A host-config file
captures all build configuration information used for a build, such as compiler version and options, paths to all TPLs, etc.
When passed to CMake (via the -C path/to/hostconfig/file/foo.cmake option), the host-config file initializes
the CMake cache with the configuration contained in the file.

We noted earlier that the uberenv script generates a host-config file for each item in the Spack spec list given to it. These
files are generated by Spack in the directory where the TPLs were installed. The name of each file contains information
about the platform and spec.

For more information, see BLT host-config documentation.

Python helper script

The easiest way to configure Axom for compilation is to use the config-build.py Python script located in the Axom
top-level directory:

$./config-build.py -hc path/to/host-config/file/<host-config file name>

The script runs CMake and passes it the given host-config file. See Host-config files for more information.

Running the script, as above, will create two directories to hold the build and install contents for the platform and
compiler with names that match the name of the host-config file.

To build the code and install the header files, libraries, and documentation in the install directory, go into the build
directory and run make and make install:

$ cd {build directory}
$ make
$ make install

Caution: When building on LC systems, please don’t compile on login nodes. You will incur the wrath of others
and you really don’t want that, do you?

Tip: Most make targets can be run in parallel by supplying the ‘-j’ flag along with the number of threads to use. For
example:

$ make -j 8

24 Chapter 7. Axom Copyright and License Information

https://github.com/LLNL/blt
https://llnl-blt.readthedocs.io/en/develop/tutorial/host_configs.html

Axom Documentation

runs make using 8 threads.

The Python helper script accepts other arguments that allow you to specify explicitly the build and install paths and
build type. Following CMake conventions, we support three build types: Release, RelWithDebInfo, and Debug
(default). To see the script options, run the script without any arguments:

$./config-build.py

You can also pass extra CMake configuration variables to the script. For example:

$./config-build.py -hc path/to/host-config/<file name> \
-DBUILD_SHARED_LIBS=ON \
-DENABLE_FORTRAN=OFF

This will configure CMake to build shared libraries and disable Fortran for the generated configuration.

Run CMake directly

You can also configure Axom by running CMake directly and passing it the appropriate arguments. For example, to
configure, build and install a release build with the gcc compiler, you could pass a host-config file to CMake:

$ mkdir build-gcc-release
$ cd build-gcc-release
$ cmake -C {host config file for gcc compiler} \

-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_INSTALL_PREFIX=../install-gcc-release \
../src/

$ make
$ make install

Note: Spack generates a host-config for us with many defaults that can be overridden on the command line. For
example, CMAKE_BUILD_TYPE is set to Release. This can be overriden like the above command after the -C option.

Alternatively, you could forego the host-config file entirely and pass all the arguments you need, including paths to
third-party libraries, directly to CMake; for example:

$ mkdir build-gcc-release
$ cd build-gcc-release
$ cmake -DCMAKE_C_COMPILER={path to gcc compiler} \

-DCMAKE_CXX_COMPILER={path to g++ compiler} \
-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_INSTALL_PREFIX=../install-gcc-release \
-DCONDUIT_DIR={path/to/conduit/install} \
{many other args} \
../src/

$ make
$ make install

7.1. Quickstart Guide 25

Axom Documentation

CMake Configuration Options

The tables in this section summarize the main build system options in Axom.

Axom components, tests, examples, etc.

OPTION De-
fault

Description

AXOM_ENABLE_ALL_COMPONENTSON Enable all components by default
AXOM_ENABLE_<FOO>ON Enable the Axom component named ‘Foo’

(e.g. AXOM_ENABLE_SIDRE) for the Sidre component.
Overrides AXOM_ENABLE_ALL_COMPONENTS for the specified component.

AXOM_ENABLE_EXAMPLESON Build Axom examples
AXOM_ENABLE_TESTSON Build Axom unit tests
EN-
ABLE_BENCHMARKS

OFF Build Axom benchmarks

AXOM_ENABLE_DOCSON Enable Axom documentation to be built as a make target
AXOM_ENABLE_TOOLSON Enable Axom development tools
AXOM_DEPRECATED_TYPESWARNWARN, ALLOW or ERROR on using deprecated types

If AXOM_ENABLE_ALL_COMPONENTS is OFF, you must explicitly enable a desired component (other than ‘core’, which
is always enabled). Similarly, if AXOM_ENABLE_ALL_COMPONENTS is ON, you can disable individual components by
setting AXOM_ENABLE_<FOO> to OFF for the component you want turned off.

See Axom software documentation for a list of Axom components and their dependencies. Note that when enabling
an external dependency for an Axom component, the CMake variable BAR_DIR must be set to a valid path to the
dependency installation. See External Dependencies for a complete listing of configuration variables to specify paths
to Axom external dependencies.

Note: AXOM_ENABLE_EXAMPLES, AXOM_ENABLE_TESTS, and AXOM_ENABLE_DOCS are CMake-dependent options.
Thus, if a variable without the AXOM_ prefix is ON, such as ENABLE_TESTS, tests can be enabled in other packages in
a project build and turned off in Axom by setting the Axom prefix form AXOM_ENABLE_TESTS to OFF.

26 Chapter 7. Axom Copyright and License Information

../../../index.html

Axom Documentation

Axom build options, compiler support, and parallelism

OPTION De-
fault

Description

AXOM_DEBUG_DEFINEDE-
FAULT

Controls whether the AXOM_DEBUG compiler define is enabled
By DEFAULT, it is enabled for Debug and RelWithDebInfo configs but this can be over-
ridden by setting AXOM_DEBUG_DEFINE to ON or OFF

EN-
ABLE_ALL_WARNINGS

ON Enable extra compiler warnings in all build targets

EN-
ABLE_WARNINGS_AS_ERRORS

OFF Compiler warnings treated as errors

BUILD_SHARED_LIBSOFF Build shared libraries. Default is Static libraries
EN-
ABLE_FORTRAN

OFF Enable Fortran compiler support

AXOM_ENABLE_MPIOFF Enable MPI
AXOM_ENABLE_OPENMPOFF Enable OpenMP
AXOM_ENABLE_CUDAOFF Enable CUDA
AXOM_ENABLE_HIPOFF Enable HIP

Note that, in most Axom components, node-level parallelism features, enabled with OpenMP, CUDA (NVIDIA GPUs),
and HIP (AMD GPUs), are implemented using RAJA. See External Dependencies for instructions to set the directory
location of a RAJA installation. In addition, enabling such features may require additional build options to be provided,
which are summarized in the following table.

OPTION Description
RAJA_DIR RAJA installation directory as described in External Dependencies.

RAJA must be built with support enabled for OpenMP, CUDA, or HIP to use features enabled
by those parallel programming models in Axom.

CUDA_TOOLKIT_ROOT_DIRPath to CUDA software stack installation
CMAKE_CUDA_COMPILERPath to CUDA compiler (e.g. nvcc)
CMAKE_CUDA_ARCHITECTURESTarget architecture(s) for CUDA
HIP_ROOT_DIR Path to HIP software stack installation
CMAKE_HIP_ARCHITECTURESTarget architecture(s) for HIP

Note: To configure the version of the C++ standard, you can supply one of the following values for BLT_CXX_STD:
‘c++11’ or ‘c++14’. Axom requires at least ‘c++14’, the default value.

Tools and features primarily intended for developers

OPTION De-
fault

Description

ENABLE_CODECOV ON Enable code coverage via gcov
AXOM_QUEST_ENABLE_EXTRA_REGRESSION_TESTSOFF Enable an expanded set of tests for the Axom Quest

component

7.1. Quickstart Guide 27

Axom Documentation

Axom source code macro constants

Axom developers, please note that Axom provides macro constants to control conditionally-compiled code based on
which built-in and third-party libraries are being used and which Axom components are enabled. Please see Condi-
tionally compiled code for more information.

Make targets

Our system provides a variety of make targets to build individual Axom components, documentation, run tests, exam-
ples, etc. After running CMake (using either the Python helper script or directly), you can see a listing of all available
targets by passing ‘help’ to make; i.e.,:

$ make help

The name of each target should be sufficiently descriptive to indicate what the target does. For example, to run all tests
and make sure the Axom components are built properly, execute the following command:

$ make test

Compiling and Linking with an Application

Please see Preparing Windows WSL/Ubuntu for Axom installation for examples of how to use Axom in your project.

7.2 Axom Core User Guide

The Axom Core component provides fundamental data structures and operations used throughout Axom. Different
compilers and platforms support these essential building blocks in various ways; the Core library provides a uniform
interface.

Axom Core contains numeric limits and a matrix representation with operators in the axom::numerics namespace.
It contains various utilities including a timer class, lexical comparator class, processAbort() function, and nu-
meric, filesystem, and string manipulation utilities in the axom::utilities namespace. Axom Core also contains the
axom::Array and axom::StackArray container classes.

Note: The Core library does not depend on any other Axom components/libraries. In particular, Core does not use
macros from the Axom Slic library for output.

7.2.1 API Documentation

Doxygen generated API documentation can be found here: API documentation

28 Chapter 7. Axom Copyright and License Information

../../../../doxygen/html/coretop.html

Axom Documentation

Core numerics

The axom::numerics namespace was designed for convenient representation and use of matrices and vectors, with
accompanying manipulation and solver routines.

The following example shows some basic vector operations.

namespace numerics = axom::numerics;

// First and second vectors
double u[] = {4., 1., 0.};
double v[] = {1., 2., 3.};
double w[] = {0., 0., 0.};

std::cout << std::endl;

std::cout << "Originally, u and v are" << std::endl
<< "u = [" << u[0] << ", " << u[1] << ", " << u[2] << "]" << std::endl
<< "v = [" << v[0] << ", " << v[1] << ", " << v[2] << "]"
<< std::endl;

std::cout << std::endl;

// Calculate dot and cross products
double dotprod = numerics::dot_product(u, v, 3);
numerics::cross_product(u, v, w);

std::cout << "The dot product is " << dotprod << " and the cross product is"
<< std::endl
<< "[" << w[0] << ", " << w[1] << ", " << w[2] << "]" << std::endl;

std::cout << std::endl;

// Make u orthogonal to v, then normalize v
numerics::make_orthogonal(u, v, 3);
numerics::normalize(v, 3);

std::cout << "Now orthogonal u and normalized v are" << std::endl
<< "u = [" << u[0] << ", " << u[1] << ", " << u[2] << "]" << std::endl
<< "v = [" << v[0] << ", " << v[1] << ", " << v[2] << "]"
<< std::endl;

std::cout << std::endl;

// Fill a linear space
const int lincount = 45;
double s[lincount];
numerics::linspace(1., 9., s, lincount);

// Find the real roots of a cubic equation.
// (x + 2)(x - 1)(2x - 3) = 0 = 2x^3 - x^2 - 7x + 6 has real roots at
// x = -2, x = 1, x = 1.5.
double coeff[] = {6., -7., -1., 2.};
double roots[3];

(continues on next page)

7.2. Axom Core User Guide 29

Axom Documentation

(continued from previous page)

int numRoots;
int result = numerics::solve_cubic(coeff, roots, numRoots);

std::cout << "Root-finding returned " << result
<< " (should be 0, success)."

" Found "
<< numRoots << " roots (should be 3)" << std::endl
<< "at x = " << roots[0] << ", " << roots[1] << ", " << roots[2]
<< " (should be x = -2, 1, 1.5 in arbitrary order)." << std::endl;

When run, the example produces the following output:

Originally, u and v are
u = [4, 1, 0]
v = [1, 2, 3]

The dot product is 6 and the cross product is
[3, -12, 7]

Now orthogonal u and normalized v are
u = [3.57143, 0.142857, -1.28571]
v = [0.267261, 0.534522, 0.801784]

Root-finding returned 0 (should be 0, success). Found 3 roots (should be 3)
at x = 1.5, 1, -2 (should be x = -2, 1, 1.5 in arbitrary order).

The following example code shows how to construct a matrix.

namespace numerics = axom::numerics;

// Here's a 3X3 matrix of double values, initialized from an array.
const int nrows = 3;
const int ncols = 3;
double val[9] = {0.6, 2.4, 1.1, 2.4, 0.6, -.1, 1.1, -.1, 0.6};
numerics::Matrix<double> A(nrows, ncols, val, true);

// We'll make a 3X3 identity matrix.
// The third argument specifies the value to fill the matrix.
numerics::Matrix<double> m(nrows, ncols, 0.);
m.fillDiagonal(1.);

We can add and multiply matrices, vectors, and scalars, find the determinant, and extract upper and lower triangular
matrices as is shown in the next example.

std::cout << "Originally, the matrix A = " << std::endl << A << std::endl;

// Multiply, add matrices
numerics::Matrix<double> result(nrows, ncols, 0.);
numerics::matrix_add(A, m, result);
std::cout << "A + identity matrix = " << std::endl << result << std::endl;
numerics::matrix_scalar_multiply(m, 2.);
numerics::matrix_multiply(A, m, result);
std::cout << "A * 2*(identity matrix) = " << std::endl << result << std::endl;

(continues on next page)

30 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

double x1[3] = {1., 2., -.5};
double b1[3];
std::cout << "Vector x1 = [" << x1[0] << ", " << x1[1] << ", " << x1[2] << "]"

<< std::endl;
numerics::matrix_vector_multiply(A, x1, b1);
std::cout << "A * x1 = [" << b1[0] << ", " << b1[1] << ", " << b1[2] << "]"

<< std::endl;

std::cout << std::endl;

// Calculate determinant
std::cout << "Determinant of A = " << numerics::determinant(A) << std::endl;

// Get lower, upper triangle.
// By default the diagonal entries are copied from A, but you can get the
// identity vector main diagonal entries by passing true as the second
// argument.
numerics::Matrix<double> ltri = lower_triangular(A);
numerics::Matrix<double> utri = upper_triangular(A, true);
std::cout << "A's lower triangle = " << std::endl << ltri << std::endl;
std::cout << "A's upper triangle (with 1s in the main diagonal) = " << std::endl

<< utri << std::endl;

// Get a column from the matrix.
double* col1 = A.getColumn(1);
std::cout << "A's column 1 is [" << col1[0] << ", " << col1[1] << ", "

<< col1[2] << "]" << std::endl;

The example generates the following output:

Originally, the matrix A =
[0.6 2.4 1.1]
[2.4 0.6 -0.1]
[1.1 -0.1 0.6]

A + identity matrix =
[1.6 2.4 1.1]
[2.4 1.6 -0.1]
[1.1 -0.1 1.6]

A * 2*(identity matrix) =
[1.2 4.8 2.2]
[4.8 1.2 -0.2]
[2.2 -0.2 1.2]

Vector x1 = [1, 2, -0.5]
A * x1 = [4.85, 3.65, 0.6]

Determinant of A = -4.5
A's lower triangle =
[0.6 0 0]

(continues on next page)

7.2. Axom Core User Guide 31

Axom Documentation

(continued from previous page)

[2.4 0.6 0]
[1.1 -0.1 0.6]

A's upper triangle (with 1s in the main diagonal) =
[1 2.4 1.1]
[0 1 -0.1]
[0 0 1]

A's column 1 is [2.4, 0.6, -0.1]

We can also extract rows and columns. The preceding example shows how to get a column. Since the underlying
storage layout of Matrix is column-based, retrieving a row is a little more involved: the call to getRow() retrieves the
stride for accessing row elements p as well the upper bound for element indexes in the row. The next selection shows
how to sum the entries in a row.

IndexType p = 0;
IndexType N = 0;
const T* row = A.getRow(i, p, N);

T row_sum = 0.0;
for(IndexType j = 0; j < N; j += p)
{
row_sum += utilities::abs(row[j]);

} // END for all columns

We can use the power method or the Jacobi method to find the eigenvalues and vectors of a matrix. The power method is
a stochastic algorithm, computing many matrix-vector multiplications to produce approximations of a matrix’s eigen-
values and vectors. The Jacobi method is also an iterative algorithm, but it is not stochastic, and tends to converge much
more quickly and stably than other methods. However, the Jacobi method is only applicable to symmetric matrices. In
the following snippet, we show both the power method and the Jacobi method to show that they get the same answer.

Note: As of August 2020, the API of eigen_solve is not consistent with jacobi_eigensolve (eigen_solve
takes a double pointer as input instead of a Matrix and the return codes differ). This is an issue we’re fixing.

// Solve for eigenvectors and values using the power method
// The power method calls rand(), so we need to initialize it with srand().
std::srand(std::time(nullptr));
double eigvec[nrows * ncols];
double eigval[nrows];
int res = numerics::eigen_solve(A, nrows, eigvec, eigval);
std::cout << "Tried to find " << nrows

<< " eigenvectors and values for"
" matrix "

<< std::endl
<< A << std::endl
<< "and the result code was " << res << " (1 = success)." << std::endl
<< std::endl;

if(res > 0)
{
for(int i = 0; i < nrows; ++i)
{

(continues on next page)

32 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

display_eigs(eigvec, eigval, nrows, i);
}

}

std::cout << std::endl;

// Solve for eigenvectors and values using the Jacobi method.
numerics::Matrix<double> evecs(nrows, ncols);
res = numerics::jacobi_eigensolve(A, evecs, eigval);
std::cout << "Using the Jacobi method, tried to find eigenvectors and "

"eigenvalues of matrix "
<< std::endl
<< A << std::endl
<< "and the result code was " << res << " ("
<< numerics::JACOBI_EIGENSOLVE_SUCCESS << " = success)." << std::endl
<< std::endl;

if(res == numerics::JACOBI_EIGENSOLVE_SUCCESS)
{
for(int i = 0; i < nrows; ++i)
{
display_eigs(evecs, eigval, i);

}
}

Here is the output of the code example:

Tried to find 3 eigenvectors and values for matrix
[0.6 2.4 1.1]
[2.4 0.6 -0.1]
[1.1 -0.1 0.6]

and the result code was 1 (1 = success).

Eigenvalue 0 = 3.2033 Eigenvector 0 = [0.711931, 0.645731, 0.276015]
Eigenvalue 1 = -2.07901 Eigenvector 1 = [0.701812, -0.64037, -0.312067]
Eigenvalue 2 = 0.675707 Eigenvector 2 = [0.0247596, -0.415881, 0.909082]

Using the Jacobi method, tried to find eigenvectors and eigenvalues of matrix
[0.6 2.4 1.1]
[2.4 0.6 -0.1]
[1.1 -0.1 0.6]

and the result code was 0 (0 = success).

Eigenvalue 0 = -2.07901 Eigenvector 0 = [0.701812, -0.64037, -0.312067]
Eigenvalue 1 = 0.675707 Eigenvector 1 = [0.0247596, -0.415881, 0.909082]
Eigenvalue 2 = 3.2033 Eigenvector 2 = [0.711931, 0.645731, 0.276015]

We can also solve a linear system directly or by using LU decomposition and back-substitution, as shown in the next
example.

{
(continues on next page)

7.2. Axom Core User Guide 33

Axom Documentation

(continued from previous page)

// Solve a linear system Ax = b
numerics::Matrix<double> A(nrows, ncols);
A(0, 0) = 1;
A(0, 1) = 2;
A(0, 2) = 4;
A(1, 0) = 3;
A(1, 1) = 8;
A(1, 2) = 14;
A(2, 0) = 2;
A(2, 1) = 6;
A(2, 2) = 13;
double b[3] = {3., 13., 4.};
double x[3];

int rc = numerics::linear_solve(A, b, x);

std::cout << "Solved for x in the linear system Ax = b, where" << std::endl
<< "A = " << std::endl
<< A << " and b = [" << b[0] << ", " << b[1] << ", " << b[2]
<< "]." << std::endl
<< std::endl
<< "Result code is " << rc << " (0 = success)" << std::endl;

if(rc == 0)
{
std::cout << "Found x = [" << x[0] << ", " << x[1] << ", " << x[2] << "]"

<< std::endl;
}

}

std::cout << std::endl;

{
// Solve a linear system Ax = b using LU decomposition and back-substitution
numerics::Matrix<double> A(nrows, ncols);
A(0, 0) = 1;
A(0, 1) = 2;
A(0, 2) = 4;
A(1, 0) = 3;
A(1, 1) = 8;
A(1, 2) = 14;
A(2, 0) = 2;
A(2, 1) = 6;
A(2, 2) = 13;
double b[3] = {3., 13., 4.};
double x[3];
int pivots[3];

int rc = numerics::lu_decompose(A, pivots);

std::cout << "Decomposed to " << std::endl
<< A << " with pivots [" << pivots[0] << ", " << pivots[1] << ", "
<< pivots[2] << "]"

(continues on next page)

34 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

<< " with result " << rc << " (" << numerics::LU_SUCCESS
<< " is success)" << std::endl;

rc = numerics::lu_solve(A, pivots, b, x);
if(rc == numerics::LU_SUCCESS)
{
std::cout << "Found x = [" << x[0] << ", " << x[1] << ", " << x[2] << "]"

<< std::endl;
}

}

The example produces the following output:

Solved for x in the linear system Ax = b, where
A =
[3 2.66667 4.66667]
[2 0.666667 5.5]
[1 -0.666667 3]
and b = [3, 13, 4].

Result code is 0 (0 = success)
Found x = [3, 4, -2]

Decomposed to
[3 2.66667 4.66667]
[2 0.666667 5.5]
[1 -0.666667 3]
with pivots [1, 2, 2] with result 0 (0 is success)
Found x = [3, 4, -2]

Core utilities

The axom::utilities namespace contains basic commonly-used functions. Often these started out in another Axom
component and were “promoted” to Axom Core when they were useful in other Axom libraries. In some cases,
axom::utilities brings functionality from recent C++ standards to platforms restricted to older compilers.

Axom can print a self-explanatory message and provide a version string.

std::cout << "Here is a message telling you about Axom." << std::endl;
axom::about();

std::cout << "The version string '" << axom::getVersion()
<< "' is part of the previous message, " << std::endl
<< " and is also available separately." << std::endl;

Here a function showing the usage of string and filesystem facilities available in Axom Core.

void demoFileSystemAndString(const char* argv0)
{
using namespace axom::utilities;

// Get the current directory
(continues on next page)

7.2. Axom Core User Guide 35

Axom Documentation

(continued from previous page)

std::string cwd = filesystem::getCWD();

// Split it on file separator.
#if WIN32
const char pathsep = '\\';

#else
const char pathsep = '/';

#endif
std::vector<std::string> cmp = string::split(cwd, pathsep);

// Count how many start with "ax" or end with "exe"
// (we could also use std::count_if)
int matchcount = 0;
std::string prefix {"ax"};
std::string suffix {"exe"};
const int N = static_cast<int>(cmp.size());
for(int i = 0; i < N; ++i)
{
if(string::startsWith(cmp[i], prefix) || string::endsWith(cmp[i], suffix))
{
matchcount += 1;

}
}
std::cout << "Found " << matchcount << " path components starting with "

<< prefix << " or ending with " << suffix << "." << std::endl;

// Append "hello.txt"
std::string hellofile =
filesystem::joinPath(cwd, "hello.txt", std::string {pathsep});

// Does this exist?
std::cout << "The file \"hello.txt\" ";
if(filesystem::pathExists(hellofile))
{
std::cout << "exists ";

}
else
{
std::cout << "DOES NOT exist ";

}
std::cout << "in the current working directory." << std::endl;

// Does argv0 exist?
if(filesystem::pathExists(argv0))
{
std::cout << argv0 << " exists ";

}
else
{
std::cout << argv0 << " DOES NOT exist ";

}
std::cout << "in the current working directory." << std::endl;

(continues on next page)

36 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

// sleep for a second
sleep(1);

}

Axom Core also includes a Timer class. Here, we time the preceding filesystem example snippet.

axom::utilities::Timer t;

t.start();

if(argc == 1)
{
std::cerr << "Error: no path given on command line" << std::endl;
return 1;

}
else
{
demoFileSystemAndString(argv[0]);

}

t.stop();

std::cout << "The tests took " << t.elapsedTimeInMilliSec() << " ms."
<< std::endl;

There are several other utility functions. Some are numerical functions such as variations on clamp (ensure a variable
is restricted to a given range) and swap (exchange the values of two variables). There are also functions for testing
values with tolerances, such as isNearlyEqual and isNearlyEqualRelative. These are provided since they work
in device (GPU) kernel code, wheras C++ standard library routines do not. There is also processAbort, to gracefully
exit an application. For details, please see the Axom Core API Documentation.

Core containers

Warning: Axom’s containers are currently the target of a refactoring effort. The following information is subject
to change, as are the interfaces for the containers themselves. When changes are made to the Axom containers, the
changes will be reflected here.

Axom Core contains the Array, ArrayView, and StackArray classes. Among other things, these data containers
facilitate porting code that uses std::vector to GPUs.

7.2. Axom Core User Guide 37

../../../../doxygen/html/coretop.html

Axom Documentation

Array

Array is a multidimensional contiguous container template. In the 1-dimensional case, this class behaves similar
to std::vector. In higher dimensions, some vector-like functionality, such as push_back, are not available and
multidimensional-specific operations will mirror the ndarray provided by numpy when possible.

The Array object manages all memory. Typically, the Array object will allocate extra space to facilitate the insertion of
new elements and minimize the number of reallocations. The actual capacity of the array (i.e., total number of elements
that the Array can hold) can be queried via the capacity() method. When allocated memory is used up, inserting
a new element triggers a reallocation. At each reallocation, extra space is allocated according to the resize_ratio
parameter, which is set to 2.0 by default. To return all extra memory, an application can call shrink().

Warning: Reallocations tend to be costly operations in terms of performance. Use reserve() when the number
of nodes is known a priori, or use a constructor that takes an actual size and capacity when possible.

Note: The Array destructor deallocates and returns all memory associated with it to the system.

Here’s an example showing how to use Array instead of std::vector.

// Here is an Array of ints with length three.
axom::Array<int> a(3);
std::cout << "Length of a = " << a.size() << std::endl;
a[0] = 2;
a[1] = 5;
a[2] = 11;

// An Array increases in size if a value is pushed back.
a.push_back(4);
std::cout << "After pushing back a value, a's length = " << a.size()

<< std::endl;

// You can also insert a value in the middle of the Array.
// Here we insert value 6 at position 2 and value 1 at position 4.
showArray(a, "a");
a.insert(2, 6);
a.insert(4, 1);
std::cout << "After inserting two values, ";
showArray(a, "a");

The output of this example is:

Length of a = 3
After appending a value, a's length = 4
Array a = [2, 5, 11, 4]
After inserting two values, Array a = [2, 5, 6, 11, 1, 4]

Applications commonly store tuples of data in a flat array or a std::vector. In this sense, it can be thought of as a
two-dimensional array. Array supports arbitrary dimensionalities but an alias, MCArray (or Multi-Component Array),
is provided for this two-dimensional case.

The MCArray (i.e., Array<T, 2>) class formalizes tuple storage, as shown in the next example.

38 Chapter 7. Axom Copyright and License Information

Axom Documentation

// Here is an MCArray of ints, containing two triples.
const int numTuples = 2;
const int numComponents = 3;
axom::MCArray<int> b(numTuples, numComponents);
// Set tuple 0 to (1, 4, 2).
b(0, 0) = 1;
b(0, 1) = 4;
b(0, 2) = 2;
// Set tuple 1 to one tuple, (8, 0, -1).
// The first argument to set() is the buffer to copy into the MCArray, the
// second is the number of tuples in the buffer, and the third argument
// is the first tuple to fill from the buffer.
int ival[3] = {8, 0, -1};
b.set(ival, 3, 3);

showTupleArray(b, "b");

// Now, insert two tuples, (0, -1, 1), (1, -1, 0), into the MCArray, directly
// after tuple 0.
int jval[6] = {0, -1, 1, 1, -1, 0};
b.insert(1, numTuples * numComponents, jval);

showTupleArray(b, "b");

The output of this example is:

MCArray b with 2 3-tuples = [
[1, 4, 2]
[8, 0, -1]

]
MCArray b with 4 3-tuples = [
[1, 4, 2]
[0, -1, 1]
[1, -1, 0]
[8, 0, -1]

]

ArrayView

It is also often useful to wrap an external, user-supplied buffer without taking ownership of the data. For this pur-
pose Axom provides the ArrayView class, which is a lightweight wrapper over a buffer that provides one- or multi-
dimensional indexing/reshaping semantics. For example, it might be useful to reinterpret a flat (one-dimensional) array
as a two-dimensional array. This is accomplished via MCArrayView which, similar to the MCArray alias, is an alias
for ArrayView<T, 2>.

// The internal buffer maintained by an MCArray is accessible.
int* pa = a.data();
// An MCArray can be constructed with a pointer to an external buffer.
// Here's an Array interpreting the memory pointed to by pa as three 2-tuples.
axom::MCArrayView<int> c(pa, 3, 2);

showArray(a, "a");
(continues on next page)

7.2. Axom Core User Guide 39

Axom Documentation

(continued from previous page)

showTupleArrayView(c, "c");

// Since c is an alias to a's internal memory, changes affect both Arrays.
a[0] = 1;
c(1, 1) = 9;

std::cout
<< "Array a and MCArrayView c use the same memory, a's internal buffer."
<< std::endl;

showArray(a, "a");
showTupleArrayView(c, "c");

The output of this example is:

Array a = [2, 5, 6, 11, 1, 4]
MCArrayView c with 3 2-tuples = [

[2, 5]
[6, 11]
[1, 4]

]
Array a and MCArrayView c use the same memory, a's internal buffer.
Array a = [1, 5, 6, 9, 1, 4]
MCArrayView c with 3 2-tuples = [

[1, 5]
[6, 9]
[1, 4]

]

Note: The set of permissible operations on an ArrayView is somewhat limited, as operations that would cause the
buffer to resize are not permitted.

ArrayView can view memory spaces at regular intervals while ignoring spaces in between. By default, the spacing is
one, meaning adjacent elements are one space apart. A spacing of 2 sees every other elements in memory. A spacing
of N sees every N-th element. Spacing is set in the ArrayView constructor.

The following example creates a 2D array of 4-tuples and uses an ArrayView to access the 3rd item in each 4-tuple.

// An array of tuples can be viewed as a tuple of arrays, by specifying
// the spacing between elements to include. The spacing skips over the
// elements to exclude from the view.
const axom::StackArray<axom::IndexType, 2> shape {2, 3}; // Shape of 2x3 array.
constexpr axom::IndexType TUPSIZE = 4;
// 2D array of tuples (stored as a 3D array).
axom::Array<std::string, 3> arrayOf4tuples(shape[0], shape[1], TUPSIZE);
for(int i = 0; i < shape[0]; ++i)
{
for(int j = 0; j < shape[1]; ++j)
{
for(int t = 0; t < TUPSIZE; ++t)
{
arrayOf4tuples(i, j, t) = axom::fmt::format("({},{}).{}", i, j, t);

(continues on next page)

40 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

}
}

}
// View the 3rd of the 4-tuples, as if they were in their own array.
axom::ArrayView<std::string, 2> viewOfThird(
arrayOf4tuples.data() + 2,
shape,
TUPSIZE); // 2D array of the third component of each tuple

std::cout << "Third components of 2D array of 4-tuples:" << std::endl;
show2DArrayView(viewOfThird);

The output of this example is:

Third components of 2D array of 4-tuples:
a(0,0) = (0,0).2
a(0,1) = (0,1).2
a(0,2) = (0,2).2
a(1,0) = (1,0).2
a(1,1) = (1,1).2
a(1,2) = (1,2).2

In the future, it will also be possible to restride an ArrayView.

Iteration is also identical between the Array and ArrayView classes. In particular:

• operator() indexes into multidimensional data. Currently, the number of indexes passed must match the di-
mensionality of the array.

• operator[] indexes into the full buffer, i.e., arr[i] is equivalent to arr.data()[i].

• begin() and end() refer to the full buffer.

Consider the following example:

// Iteration over multidimensional arrays uses the shape() method
// to retrieve the extents in each dimension.
for(int i = 0; i < c.shape()[0]; i++)
{
for(int j = 0; j < c.shape()[1]; j++)
{
// Note that c's operator() accepts two arguments because it is two-dimensional
std::cout << "In ArrayView c, index (" << i << ", " << j << ") yields "

<< c(i, j) << std::endl;
}

}

// To iterate over the "flat" data in an Array, regardless of dimension,
// use a range-based for loop.
std::cout << "Range-based for loop over ArrayView c yields: ";
for(const int value : c)
{
std::cout << value << " ";

}
std::cout << std::endl;

(continues on next page)

7.2. Axom Core User Guide 41

Axom Documentation

(continued from previous page)

// Alternatively, the "flat" data can be iterated over with operator[]
// from 0 -> size().
std::cout << "Standard for loop over ArrayView c yields: ";
for(int i = 0; i < c.size(); i++)
{
std::cout << c.flatIndex(i) << " ";

}
std::cout << std::endl;

The output of this example is:

In ArrayView c, index (0, 0) yields 1
In ArrayView c, index (0, 1) yields 5
In ArrayView c, index (1, 0) yields 6
In ArrayView c, index (1, 1) yields 9
In ArrayView c, index (2, 0) yields 1
In ArrayView c, index (2, 1) yields 4
Range-based for loop over ArrayView c yields: 1 5 6 9 1 4
Standard for loop over ArrayView c yields: 1 5 6 9 1 4

Using Arrays in GPU Code

Instead of writing kernels and device functions that operate on raw pointers, we can use ArrayView in device code.
The basic “workflow” for this process is as follows:

1. Create an Array allocated in device-accessible memory via either specifying an allocator ID or using a class
template parameter for the desired memory space.

2. Write a kernel that accepts an ArrayView parameter by value, not by reference or pointer.

3. Create an ArrayView from the Array to call the function. For non-templated kernels an implicit conversion is
provided.

The full template signature for Array (ArrayView has an analogous signature) is Array<typename T, int DIM =
1, MemorySpace SPACE = MemorySpace::Dynamic>. Of particular interest is the last parameter, which specifies
the memory space in which the array’s data are allocated. The default, Dynamic, means that the memory space is set
via an allocator ID at runtime.

Note: Allocating Array s in different memory spaces is only possible when Umpire is available. To learn more about
Umpire, see the Umpire documentation

Setting the MemorySpace to an option other than Dynamic (for example, MemorySpace::Device) provides a compile-
time guarantee that data can always be accessed from a GPU. “Locking down” the memory space at compile time
can help to prevent illegal memory accesses and segmentation faults when pointers are dereferenced from the wrong
execution space.

To summarize, there are a couple different options for creating an ArrayView. Consider a function that takes as an
argument an ArrayView on the device:

void takesDeviceArrayView(axom::ArrayView<int, 1, axom::MemorySpace::Device>) { }

To create an argument to this function we can select the space either at runtime or at compile-time as follows:

42 Chapter 7. Axom Copyright and License Information

https://readthedocs.org/projects/umpire

Axom Documentation

constexpr int N = 10;
// An device array can be constructed by either specifying the corresponding allocator␣

→˓ID...
const int device_allocator_id = axom::getUmpireResourceAllocatorID(

umpire::resource::MemoryResourceType::Device);
axom::Array<int> device_array_dynamic(N, N, device_allocator_id);
// ...or by providing the memory space via template parameter:
axom::Array<int, 1, axom::MemorySpace::Device> device_array_template(N);

The first way we can create the required ArrayView is by implicit conversion, which also simplifies the process of
“locking down” a MemorySpace::Dynamic array to an explicit memory space - MemorySpace:Device in this case.

takesDeviceArrayView(device_array_dynamic);
takesDeviceArrayView(device_array_template);

Warning: If we had attempted to convert from a MemorySpace::Dynamic array that had been allocated in host
memory, for example, an error would be produced at runtime.

We can also explicitly construct the ArrayView before calling the function.

using DeviceArrayView = axom::ArrayView<int, 1, axom::MemorySpace::Device>;

DeviceArrayView view_of_dynamic_array(device_array_dynamic);
takesDeviceArrayView(view_of_dynamic_array);

DeviceArrayView view_of_template_array(device_array_template);
takesDeviceArrayView(view_of_template_array);

// Create an explicit ArrayView using Array::view()
auto view_of_array_using_view_method = device_array_dynamic.view();
takesDeviceArrayView(view_of_array_using_view_method);

DeviceArrayView view_of_array_using_operator_equals = device_array_dynamic;
takesDeviceArrayView(view_of_array_using_operator_equals);

DeviceArrayView view_of_array_from_pointer(device_array_dynamic.data(), N);
takesDeviceArrayView(view_of_array_from_pointer);

A more realistic example of this functionality involves a GPU kernel requiring that its argument arrays be allocated in
a specific memory space. To illustrate how different memory spaces can be required, the following kernel requires that
its input arrays A and B are in unified memory and its output array C is in device memory.

// Aliases used for convenience
using UnifiedIntArrayView = axom::ArrayView<int, 1, axom::MemorySpace::Unified>;
using DeviceIntArrayView = axom::ArrayView<int, 1, axom::MemorySpace::Device>;

__global__ void add(const UnifiedIntArrayView A,
const UnifiedIntArrayView B,
DeviceIntArrayView C)

{
for(int i = 0; i < A.size(); i++)

(continues on next page)

7.2. Axom Core User Guide 43

Axom Documentation

(continued from previous page)

{
C[i] = A[i] + B[i];

}
}

The following snippet illustrates how one would create and initialize the inputs/outputs to this kernel.

const int unified_alloc_id = axom::getUmpireResourceAllocatorID(
umpire::resource::MemoryResourceType::Unified);

// The last template parameter specifies a memory space.
// Its default value is Dynamic, which lets the user specify the
// memory space at runtime with a memory allocator ID. The
// third constructor parameter specifies the allocator.
// If this argument is not provided host memory will be allocated.
axom::Array<int> A_dynamic(N, N, unified_alloc_id);

// We also have the option to "lock down" the memory space to allow for
// compile-time guarantees against dereferencing pointers in the wrong memory space.
axom::Array<int, 1, axom::MemorySpace::Unified> B_unified(N);

// Despite having different types, both of these arrays are in unified memory.
for(int i = 0; i < N; i++)
{
A_dynamic[i] = i * 5;
B_unified[i] = i * 2;

}

// The result array is allocated in device memory
axom::Array<int, 1, axom::MemorySpace::Device> C_device(N);

Note: Unless the Dynamic memory space is in use, the Array constructor will ignore an allocator ID that doesn’t
match its memory space, and in debug builds will print a warning at runtime.

We can now launch the kernel and display the results via a transfer back to host-accessible memory:

// Passing by reference is not possible for CUDA kernels, so the three arrays
// are converted to corresponding ArrayViews that are "shallow copies" of the
// original Array.
// Note that even though A's memory space has not been locked down at compile time,
// we are able to pass it as an argument - it will be implicitly converted to an␣

→˓ArrayView
// of the correct type. Also note that if we had not constructed A with the UM␣

→˓allocator ID,
// this conversion would fail and produce an error at runtime.
add<<<1, 1>>>(A_dynamic, B_unified, C_device);

// Since our result array is in device memory, we copy it to host memory so we can␣
→˓view it.
axom::Array<int, 1, axom::MemorySpace::Host> C_host = C_device;
std::cout << "Array C_host = " << C_host << std::endl;

(continues on next page)

44 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

// We can also use a dynamic array, if we specify an allocator ID for host memory in␣
→˓the copy constructor.
axom::Array<int> C_dynamic(C_device, host_alloc_id);
std::cout << "Array C_dynamic = " << C_dynamic << std::endl;

If RAJA is available, we can also use Axom’s acceleration utilities to perform an operation on the GPU via a lambda:

// To use a lambda as a kernel, we create the ArrayViews explicitly.
const UnifiedIntArrayView A_view = A_dynamic;
const UnifiedIntArrayView B_view = B_unified;
// Create a new array for our RAJA result
axom::Array<int, 1, axom::MemorySpace::Device> C_device_raja(N);
DeviceIntArrayView C_view = C_device_raja;

// Write to the underlying array through C_view, which is captured by value
#if defined(__CUDACC__)

using ExecSpace = axom::CUDA_EXEC<1>;
#elif defined(__HIPCC__)

using ExecSpace = axom::HIP_EXEC<1>;
#else

using ExecSpace = axom::SEQ_EXEC;
#endif

axom::for_all<ExecSpace>(0, N, [=] AXOM_HOST_DEVICE(axom::IndexType i) {
C_view[i] = A_view[i] + B_view[i] + 1;

});

// Finally, copy things over to host memory so we can display the data
axom::Array<int, 1, axom::MemorySpace::Host> C_host_raja = C_view;
std::cout << "Array C_host_raja = " << C_host_raja << std::endl;

By default, Array copies and moves will propagate the allocator ID; this ensures that objects with Array members do
not accidentally move their data to the host when copied or moved:

// For a Dynamic space memory array, copies and moves will use the allocator
// from the other array, unless otherwise specified.
axom::Array<int> C_device_copy(C_device);
axom::Array<int> C_device_copy_assign = C_device;
axom::Array<int> C_device_move(std::move(C_device_copy));
axom::Array<int> C_device_move_assign = std::move(C_device_copy_assign);

// An allocator ID may be passed into the copy constructor, which creates an
// array in that memory space.
const int host_alloc_id = axom::getDefaultAllocatorID();
axom::Array<int> C_host_copy(C_device, host_alloc_id);

// The semantics for Arrays with compile-time specified memory spaces is similar:
// when possible, an allocator ID from the other array is used.
axom::Array<int, 1, axom::MemorySpace::Device> C_explicit_device_copy(C_device);

// Just as before, an allocator ID may be specified explicitly.
(continues on next page)

7.2. Axom Core User Guide 45

Axom Documentation

(continued from previous page)

axom::Array<int, 1, axom::MemorySpace::Unified> C_explicit_unified_copy(
C_device,
unified_alloc_id);

// Note that if an allocator ID is incompatible with a memory space, the default
// allocator ID for that memory space is used. Both of these examples will copy
// memory to the host:
axom::Array<int, 1, axom::MemorySpace::Host> C_use_host_alloc(C_device);
// The below will also print a warning in debug mode:
axom::Array<int, 1, axom::MemorySpace::Host> C_use_host_alloc_2(
C_device,
unified_alloc_id);

StackArray

The StackArray class is a work-around for a limitation in older versions of the nvcc compiler, which do not capture
arrays on the stack in device lambdas. More details are in the API documentation and in the tests.

Core acceleration

Axom’s core component provides several utilities for user applications that support execution on hardware accelerators.
Axom lets users control the execution space (i.e. where code runs) using RAJA and movement between memory spaces
using Umpire. As noted in the RAJA documentation, developers of high-performance computing applications have
many options for running code: on the CPU, using OpenMP, or on GPU hardware accelerators, and the options are
constantly evolving.

Note:

• Axom’s memory management and execution space APIs have default implementations when Axom is not con-
figured with Umpire and RAJA, and can be used in all Axom configurations.

• GPU execution support for Axom features is continually exapanding. Axom Core offers an interface that uses
RAJA and Umpire internally and provides easy access to for-loop level acceleration via the parallel-for idiom,
which invokes a given lambda function for every index in range.

The memory management API allows users to leverage either C++ memory functions or Umpire, depending on the
availability of Umpire at compilation. It supports a simple operation set: allocate, deallocate, reallocate, and copy. If
Umpire is used, an allocator can be specified – see Umpire documentation for details. Note that the fall-back to C++
memory functions is automatic, so the same piece of code can handle standard C++ or C++ with Umpire. However,
to use advanced features, such as accessing unified memory, Umpire must be enabled, otherwise errors will occur at
compilation.

Note: We refrain from including the output of the example in this section in the documentation since the output is
verbose. If you are curious, please run the examples yourself.

Here is an example of using Axom’s memory management tools:

int *dynamic_memory_array;
int *dyn_array_dst;

(continues on next page)

46 Chapter 7. Axom Copyright and License Information

https://raja.readthedocs.io/en/main/index.html
https://umpire.readthedocs.io

Axom Documentation

(continued from previous page)

int len = 20;

//Allocation looks similar to use of malloc() in C -- just template
//return type instead of casting.
dynamic_memory_array = axom::allocate<int>(len);

for(int i = 0; i < len; i++)
{
dynamic_memory_array[i] = i;

}

//Print array values after initialization
for(int i = 0; i < len; i++)
{
std::cout << i << " Current value: " << dynamic_memory_array[i] << std::endl;

}

dyn_array_dst = axom::allocate<int>(len);

//Now, a copy operation. It's used exactly like memcpy --
//destination, source, number of bytes.
axom::copy(dyn_array_dst, dynamic_memory_array, sizeof(int) * len);

//Print array values and compare to copy
for(int i = 0; i < len; i++)
{
std::cout << i << " Current value: " << dyn_array_dst[i] << std::endl;
std::cout << "Matches old value? " << std::boolalpha

<< (dynamic_memory_array[i] == dyn_array_dst[i]) << std::endl;
}

//Deallocate is exactly like free. Of course, you cannot access the
//now-deallocated memory after this:
axom::deallocate(dyn_array_dst);

//Reallocate is like realloc -- copies existing contents into new
//memory allocation.
//Slight deviation from realloc() in that second arg is item count,
//rather than bytes.
dynamic_memory_array = axom::reallocate(dynamic_memory_array, len * 2);
for(int i = 20; i < len * 2; i++)
{
dynamic_memory_array[i] = i;

}

for(int i = 0; i < len * 2; i++)
{
std::cout << i << " Current value: " << dynamic_memory_array[i] << std::endl;

}

Here is an Axom example showing sequential execution:

7.2. Axom Core User Guide 47

Axom Documentation

//This part of the code works regardless of Umpire's presence, allowing for generic
//use of axom::allocate in C++ code.
int *A = axom::allocate<int>(N);
int *B = axom::allocate<int>(N);
int *C = axom::allocate<int>(N);

for(int i = 0; i < N; i++)
{
A[i] = i * 5;
B[i] = i * 2;
C[i] = 0;

}

//Axom provides an API for the most basic usage of RAJA, the for_all loop.
axom::for_all<axom::SEQ_EXEC>(
0,
N,
AXOM_LAMBDA(axom::IndexType i) { C[i] = A[i] + B[i]; });

std::cout << "Sums: " << std::endl;
for(int i = 0; i < N; i++)
{
std::cout << C[i] << " ";
C[i] = 0;

}

axom::deallocate(A);
axom::deallocate(B);
axom::deallocate(C);

Here’s the same loop from the above snippet, this time with CUDA or HIP:

//This example requires Umpire to be in use, and Unified memory available.
const int allocator_id = axom::getUmpireResourceAllocatorID(
umpire::resource::MemoryResourceType::Unified);

A = axom::allocate<int>(N, allocator_id);
B = axom::allocate<int>(N, allocator_id);
C = axom::allocate<int>(N, allocator_id);

for(int i = 0; i < N; i++)
{
A[i] = i * 5;
B[i] = i * 2;
C[i] = 0;

}

#if defined(__CUDACC__)
using ExecSpace = axom::CUDA_EXEC<256>;
#elif defined(__HIPCC__)
using ExecSpace = axom::HIP_EXEC<256>;
#else
using ExecSpace = axom::SEQ_EXEC;
#endif

(continues on next page)

48 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

axom::for_all<ExecSpace>(
0,
N,
AXOM_LAMBDA(axom::IndexType i) { C[i] = A[i] + B[i]; });

std::cout << "\nSums (" << axom::execution_space<ExecSpace>::name()
<< ") :" << std::endl;

for(int i = 0; i < N; i++)
{
std::cout << C[i] << " ";

}
std::cout << std::endl;

axom::deallocate(A);
axom::deallocate(B);
axom::deallocate(C);

For more advanced functionality, users can directly call RAJA and Umpire. See the RAJA documentation and the
Umpire documentation.

7.3 Inlet User Guide

Note: Inlet, and this guide, is under heavy development.

Inlet, named because it provides a place of entry, is a C++ library that provides an easy way to read, store, and access
input files for computer simulations in a variety of input languages.

7.3.1 API Documentation

Doxygen generated API documentation can be found here: API documentation

7.3.2 Introduction

Inlet provides an easy and extensible way to handle input files for a simulation code. We provide readers for JSON,
Lua, and YAML. Additional languages can be supported via an implementation of Inlet’s Reader interface.

All information read from the input file is stored via Inlet into a user-provided Sidre DataStore. This allows us to utilize
the functionality of Sidre, such as simulation restart capabilities.

Inlet is used to define the schema of the information expected in your input file. That data is then read via a Reader
class into the Sidre Datastore. You can then verify that the input file met your criteria and use that information later in
your code.

7.3. Inlet User Guide 49

https://raja.readthedocs.io/en/main/index.html
https://umpire.readthedocs.io
../../../../doxygen/html/inlettop.html

Axom Documentation

7.3.3 Requirements

• Sidre - Inlet stores all data from the input file in the Sidre DataStore

• (Optional) Lua - Inlet provides a Lua reader class that assists in Lua input files

7.3.4 Glossary

• inlet::Container: Internal nodes of the Inlet hierarchy

• inlet::Field: Terminal nodes of the Inlet hierarchy that store primitive types (bool, int, string, double)

• inlet::Function: Terminal nodes of the Inlet hierarchy that store function callbacks

• inlet::Proxy: Provides type-erased access to data in the Inlet hierarchy - can refer to either a Container,
Field, or Function internally

• struct: Refers to something that maps to a C++ struct. This can be a Lua table, a YAML dictionary, or a JSON
object.

• dictionary: Refers to an associative array whose keys are either strings or a mix of strings and integers, and
whose values are of homogeneous type

• array: Refers to either a contiguous array or an integer-keyed associative array whose values are of homogeneous
type

• collection: Refers to either an array or dictionary

Quick Start

Inlet’s workflow is broken into the four following steps:

• Defining the schema of your input file and reading in the user-provided input file

• Verifying that the user-provided input file is valid

• Accessing the input data in your program

• Optional Generating documentation based on defined schema

Defining Schema

The first step in using Inlet is to define the schema of your input file. Inlet defines an input file into two basic classes:
Containers and Fields. Basically Fields are individual values and Containers hold groups of Fields and Containers.

Define the schema by using the following functions, on either the main Inlet class, for global Containers and Fields, or
on individual Container instances, for Containers and Fields under that Container:

Name Description
addContainer Adds a Container to the input file schema with the given name.
addBool Adds a boolean Field to the global or parent Container with the given name.
addDouble Adds a double Field to the global or parent Container with the given name.
addInt Adds a integer Field to the global or parent Container with the given name.
addString Adds a string Field to the global or parent Container with the given name.

All possible Containers and Fields that are can be found in the input file must be defined at this step. The value of the
Field is read and stored into the Sidre datastore when you call the appropriate add function. Use the required class

50 Chapter 7. Axom Copyright and License Information

Axom Documentation

member function on the Container and Field class to indicate that they have to present in the given input file. You can
also set a default value to each field via the type-safe Field::defaultValue() member functions. Doing so will
populate the corresponding Fields value if the specific Field is not present in the input file. The following example
shows these concepts:

// defines a required global field named "dimensions" with a default value of 2
myInlet.addInt("dimensions").required(true).defaultValue(2);

// _inlet_verification_container_start
// defines a required container named vector with an internal field named 'x'
auto& v = myInlet.addStruct("vector").required(true);
// _inlet_verification_container_end
v.addDouble("x");

Verification

This step helps ensure that the given input file follows the rules expected by the code. This should be done after
completely defining your schema, which also reads in the values in the input file. This allows you to access any other
part of the user-provided input. These rules are not verified until you call Inlet::verify(). Doing so will return
true/false and output SLIC warnings to indicate which Field or Container violated which rule.

As shown above, both Containers and Fields can be marked as required. Fields have two additional basic rules that
can be enforced with the following Field class member functions:

Name Description
validValues Indicates the Field can only be set to one of the given values.
range Indicates the Field can only be set to inclusively between two values.

Inlet also provides functionality to write your own custom rules via callable lambda verifiers. Fields and Containers
can both register one lambda each via their registerVerifier() member functions. The following example adds a
custom verifier that simply verifies that the given dimensions field match the length the given vector:

v.registerVerifier([&myInlet](const axom::inlet::Container& container) -> bool {
int dim = myInlet["dimensions"];
bool x_present = container.contains("x") &&
(container["x"].type() == axom::inlet::InletType::Double);

bool y_present = container.contains("y") &&
(container["y"].type() == axom::inlet::InletType::Double);

bool z_present = container.contains("z") &&
(container["z"].type() == axom::inlet::InletType::Double);

if(dim == 1 && x_present)
{
return true;

}
else if(dim == 2 && x_present && y_present)
{
return true;

}
else if(dim == 3 && x_present && y_present && z_present)
{
return true;

(continues on next page)

7.3. Inlet User Guide 51

Axom Documentation

(continued from previous page)

}
return false;

});

std::string msg;
// We expect verification to be unsuccessful since the only Field
// in vector is x but 2 dimensions are expected
SLIC_INFO("This should fail due to a missing dimension:");
myInlet.verify() ? msg = "Verification was successful\n"

: msg = "Verification was unsuccessful\n";
SLIC_INFO(msg);

// Add required dimension to schema
v.addDouble("y");

// We expect the verification to succeed because vector now contains
// both x and y to match the 2 dimensions
SLIC_INFO("After adding the required dimension:");
myInlet.verify() ? msg = "Verification was successful\n"

: msg = "Verification was unsuccessful\n";
SLIC_INFO(msg);

Note: Inlet::getGlobalContainer()->registerVerifier() can be used to add a verifier to apply rules to the
Fields at the global level.

For a full description of Inlet’s verification rules, see Verification.

Accessing Data

After the input file has been read and verified by the previous steps, you can access the data by name via Inlet::get()
functions. These functions are type-safe, fill the given variable with what is found, and return a boolean whether the
Field was present in the input file or had a default value it could fall back on. Variables, on the Inlet side, are used in a
language-agnostic way and are then converted to the language-specific version inside of the appropriate Reader. For
example, Inlet refers to the Lua variable vector={x=3} or vector.x as vector/x on all Inlet function calls.

For example, given the previous verificiation example, this access previously read values:

// Get dimensions if it was present in input file
auto proxy = myInlet["dimensions"];
if(proxy.type() == axom::inlet::InletType::Integer)
{
msg = "Dimensions = " + std::to_string(proxy.get<int>()) + "\n";
SLIC_INFO(msg);

}

// Get vector information if it was present in input file
bool x_found = myInlet["vector/x"].type() == axom::inlet::InletType::Double;
bool y_found = myInlet["vector/y"].type() == axom::inlet::InletType::Double;
if(x_found && y_found)
{

(continues on next page)

52 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

msg = "Vector = " + std::to_string(myInlet["vector/x"].get<double>()) +
"," + std::to_string(myInlet["vector/y"].get<double>()) + "\n";

SLIC_INFO(msg);
}

Generating Documentation

We provide a slightly more complex but closer to a real world Inlet usage example of the usage of Inlet. You can find
that example in our repository here.

Once you have defined your schema, call write() on your Inlet class, passing it a concrete instantiation of a Writer
class.

inlet.write(SphinxWriter("example_doc.rst"));

We provided a basic Sphinx documentation writing class but you may want to customize it to your own style. The
links below show the example output from the documentation_generation.cpp, mfem_coefficient.cpp, and
nested_structs.cpp examples:

Example Output: Input file Options

thermal_solver

Table 7.1: Fields

Field Name Description Default Value Range/Valid Val-
ues

Required

timestepper thermal solver
timestepper

quasistatic quasistatic, for-
wardeuler, back-
wardeuler

order polynomial order 1 to 2147483647

7.3. Inlet User Guide 53

https://github.com/LLNL/axom/blob/develop/src/axom/inlet/examples/documentation_generation.cpp

Axom Documentation

solver

Table 7.2: Fields

Field Name Description Default Value Range/Valid Val-
ues

Required

dt time step 1.000000 0.000e+00 to
1.798e+308

steps number of
steps/cycles to
take

1 1 to 2147483647

print_level solver print/debug
level

0 0 to 3

rel_tol solver relative toler-
ance

0.000001 0.000e+00 to
1.798e+308

max_iter maximum iteration
limit

100 1 to 2147483647

abs_tol solver absolute toler-
ance

0.000000 0.000e+00 to
1.798e+308

kappa

Table 7.3: Fields

Field Name Description Default Value Range/Valid Val-
ues

Required

constant thermal conductiv-
ity constant

type description for
kappa type

constant, function

mesh

Table 7.4: Fields

Field Name Description Default Value Range/Valid Val-
ues

Required

parallel 1 1 to 2147483647
filename mesh filename
serial number of serial re-

finements
1 0 to 2147483647

54 Chapter 7. Axom Copyright and License Information

Axom Documentation

u0

Table 7.5: Fields

Field Name Description Default Value Range/Valid Val-
ues

Required

func description for u0
func

type description for u0
type

constant constant, function

MFEM Coefficient Output: Input file Options

bcs

Collection contents:

Description: List of boundary conditions

The input schema defines a collection of this container. For brevity, only one instance is displayed here.

Table 7.6: Functions

Function Name Description Signature Required
coef The function representing

the BC coefficient
Double(Vector, Double)

vec_coef The function representing
the BC coefficient

Vector(Vector, Double)

attrs

Collection contents:

Description: List of boundary attributes

Table 7.7: Fields

Field Name Description Default Value Range/Valid Val-
ues

Required

1
2
3

7.3. Inlet User Guide 55

Axom Documentation

Nested Structs Output: Input file Options

shapes

Collection contents:

The input schema defines a collection of this container. For brevity, only one instance is displayed here.

Table 7.8: Fields

Field Name Description Default Value Range/Valid Val-
ues

Required

material Material of the
shape

steel, wood, plastic

name Name of the shape

geometry

Description: Geometric information on the shape

Table 7.9: Fields

Field Name Description Default Value Range/Valid Val-
ues

Required

start_dimensions Dimension in which
to begin applying
operations

3

units Units for length cm cm, m
path Path to the shape file
format File format for the

shape

operators

Collection contents:

Description: List of shape operations to apply

The input schema defines a collection of this container. For brevity, only one instance is displayed here.

Table 7.10: Fields

Field Name Description Default Value Range/Valid Val-
ues

Required

rotate Degrees of rotation -1.800e+02 to
1.800e+02

56 Chapter 7. Axom Copyright and License Information

Axom Documentation

slice

Description: Options for a slice operation

Table 7.11: Fields

Field Name Description Default Value Range/Valid Val-
ues

Required

z z-axis point to slice
on

y y-axis point to slice
on

x x-axis point to slice
on

translate

Collection contents:

Description: Translation vector

Table 7.12: Fields

Field Name Description Default Value Range/Valid Val-
ues

Required

0
1
2

Inlet also provides a utility for generating a JSON schema from your input file schema. This allows for integration with
text editors like Visual Studio Code, which allows you to associate a JSON schema with an input file and subsequently
provides autocompletion, linting, tooltips, and more. VSCode and other editors currently support verification of JSON
and YAML input files with JSON schemas.

Using the same documentation_generation.cpp example, the automatically generated schema can be used to assist
with input file writing:

Readers

Inlet has built-in support for three input file languages: JSON, Lua, and YAML. Due to language features, not all
readers support all Inlet features. Below is a table that lists supported features:

7.3. Inlet User Guide 57

https://json-schema.org/

Axom Documentation

Table 7.13: Supported Language Features

JSON Lua YAML
Primitive Types bool, double, int, string bool, double, int, string bool, double, int, string
Dictionaries X X X
Arrays X X X
Non-contiguous Arrays X
Mixed-typed key Arrays X
Callback Functions X

Extra Lua Functionality

The LuaReader class has the ability to access the entire Lua State via the protected member function
LuaReader::solState(). This allows you fully utilize the Sol library, documented in Sol’s documentation. This is
an advanced feature and not recommended unless there is a good reason. We provide an example on how to create a
derived reader class here:

// Header required here because `axom::sol::state` is only forward declared in LuaReader.
→˓hpp.
#include "axom/sol.hpp"

class SolStateReader : public axom::inlet::LuaReader
{
public:
using LuaReader::solState;

};

Inlet opens four Lua libraries by default: base, math, string, package. All libraries are documented in Sol’s
open_library documentation.

For example, you can add the io library by doing this:

// Create Inlet Reader that supports Lua input files
auto reader = std::make_unique<SolStateReader>();

// Load extra io Lua library
reader->solState()->open_libraries(axom::sol::lib::io);

// Parse example input string
reader->parseString(input);

Simple Types

To help structure your input file, Inlet categorizes the information into two types: Fields and Containers.

Fields refer to the individual scalar values that are either at the global level or that are contained inside of a Container.

Containers can contain multiple Fields, other sub-Containers, as well as a single array or a single dictionary.

Note: There is a global Container that holds all top-level Fields. This can be accessed via your Inlet class instance.

58 Chapter 7. Axom Copyright and License Information

https://sol2.readthedocs.io/en/v2.20.6/index.html
https://sol2.readthedocs.io/en/v2.20.6/api/state.html?highlight=open_libraries#enumerations
https://sol2.readthedocs.io/en/v2.20.6/api/state.html?highlight=open_libraries#enumerations

Axom Documentation

Fields

In Inlet, Fields represent an individual scalar value of primitive type. There are four supported field types: bool, int,
double, and string.

In this example we will be using the following part of an input file:

a_simple_bool = true
a_simple_int = 5
a_simple_double = 7.5
a_simple_string = 'such simplicity'

Defining And Storing

This example shows how to add the four simple field types with descriptions to the input file schema and add their
values, if present in the input file, to the Sidre DataStore to be accessed later.

// Define and store the values in the input file

// Add an optional top-level boolean
inlet.addBool("a_simple_bool", "A description of a_simple_bool");

// Add an optional top-level integer
inlet.addInt("a_simple_int", "A description of a_simple_int");

// Add a required top-level double
inlet.addDouble("a_simple_double", "A description of a_simple_double").required();

// Add an optional top-level string
inlet.addString("a_simple_string", "A description of a_simple_string");

// Add an optional top-level integer with a default value of 17 if not defined by the␣
→˓user
inlet.addInt("a_defaulted_int", "An int that has a default value").defaultValue(17);

// Add an optional top-level string not defined in the input file for example purposes
inlet.addString("does_not_exist",

"Shows that not all fields need to be present in input file");

You can also add default values to Fields to fall back to if they are not defined in your input file. The last added Field
was intentionally not present in the input file. Not all fields need to be present, unless they are marked required, like
a_simple_double.

7.3. Inlet User Guide 59

Axom Documentation

Accessing

Accessing field values stored in Inlet can be accessed via their name with the [] operator or through the templated
get<T> function. The [] operator is more streamlined but can lead to compile time ambiquity depending on how it is
used. The example below shows an example of this.

Prior to accessing optional fields, you should verify they were provided by the user via the contains function.

The contains function returns true if the field was either provided by the user or via a default. To check if the field
was provided by the user (and not via a default), you can use the isUserProvided method, which returns true if the
value was provided by the user in the input file.

Accessing a value that was not provided by the user, or a default value, will result in a runtime error.

// Access values stored in the Datastore via Inlet

// Check if input file contained info before accessing optional fields
if(inlet.contains("a_simple_bool"))
{
// Access field via "[]" operator, save value first to avoid type ambiquity
bool a_simple_bool = inlet["a_simple_bool"];
std::cout << "a_simple_bool = " << a_simple_bool << std::endl;

}

if(inlet.contains("a_simple_int"))
{
// Access field via `get<T>` directly, no ambiquity
std::cout << "a_simple_int = " << inlet.get<int>("a_simple_int") << std::endl;

}

// Because this field was marked required, we do not have to call contains before␣
→˓accessing
std::cout << "a_simple_double = " << inlet.get<double>("a_simple_double")

<< std::endl;

if(inlet.contains("a_simple_string"))
{
std::string a_simple_string = inlet["a_simple_string"];
std::cout << "a_simple_string = " << a_simple_string << std::endl;

}

// If the user did not provide a value, the default value will be used. Safe to use
// without checking contains
int a_defaulted_int = inlet["a_defaulted_int"];
std::cout << "a_defaulted_int = " << a_defaulted_int << std::endl;
// We can also verify that the user did not provided a value
std::cout << "a_defaulted_int provided by user: "

<< inlet.isUserProvided("a_defaulted_int") << std::endl;

Note: The field does_not_exist was purposefully left this out of the user-provided input file to show no warn-
ings/errors are thrown during runtime for defining optional fields in the schema.

60 Chapter 7. Axom Copyright and License Information

Axom Documentation

Containers

Containers help with grouping associated data together into a single collection. Containers can contain multiple indi-
vidually named Fields, multiple sub-Containers, as well as a single array or a single dictionary.

In this example, we will be using the following part of an input file:

driver = {
name = "Speed Racer",
car = {

make = "BestCompany",
seats = 2,
horsepower = 200

}
}

Defining And Storing

This example shows how to add a Container with a nested Container to the input file schema and add the underlying
field values to the Sidre DataStore to be accessed later.

auto& driver_schema = inlet.addStruct("driver", "A description of driver");
driver_schema.addString("name", "Name of driver");

auto& car_schema = driver_schema.addStruct("car", "Car of driver");
car_schema.addString("make", "Make of car");
car_schema.addString("color", "Color of car").defaultValue("red");
car_schema.addInt("seats", "Number of seats");
car_schema.addInt("horsepower", "Amount of horsepower");

This example also shows that the color Field that was not given in the input file but used the default value that was
specified in the schema.

Note: Inlet also has an addStruct member for defining more complex types, such as nested structures. See Advanced
Types for more details

Accessing

Field values stored inside a container can be accessed via their name with the [] operator. They can be accessed from
the Inlet class instance with their fully qualified name or you can get the Container instance first, then access it with the
relative name.

// Access values by fully qualified name from Inlet instance
std::string name = inlet["driver/name"];

// ... or... Get car container then access values from there
auto car = inlet["driver/car"];
std::string make = car["make"];
std::string color = car["color"];

(continues on next page)

7.3. Inlet User Guide 61

Axom Documentation

(continued from previous page)

int seats = car["seats"];
int horsepower = car["horsepower"];

Arrays

Coming soon!

Defining And Storing

Coming soon!

Accessing

Coming soon!

Dictionaries

Coming soon!

Defining And Storing

Coming soon!

Accessing

Coming soon!

Advanced Types

In addition to Inlet’s primitive types (bool, int, double, string), user-defined types and functions can also be defined as
part of an input file.

In this section, we first describe how Individual Structs can be added to our schemas. We then extend it to Arrays and
Dictionaries of Structs.

Individual Structs

Defining And Storing

To add a single (i.e., not array) user-defined type to the input file, use the addStruct method of the Inlet or Container
classes to add a Container (collection of Fields and sub-Containers) that will represent the fields of the struct.

Consider a simple Lua table that contains only primitive types, whose definition might look like:

62 Chapter 7. Axom Copyright and License Information

Axom Documentation

car = {
make = "BestCompany",
seats = 2,
horsepower = 200,
color = "blue"

}

or in YAML, something like:

car:
make: BestCompany
seats: 2
horsepower: 200
color: blue

Its Inlet schema can be defined as follows:

struct Car
{
std::string make;
std::string color;
int seats;
int horsepower;

// A function can be used to define a schema for a particular struct
// For convenience, it can be implemented as a static method of the struct
static void defineSchema(inlet::Container& car_schema)
{
car_schema.addString("make", "Make of car");
car_schema.addString("color", "Color of car").defaultValue("red");
car_schema.addInt("seats", "Number of seats").range(2, 7);
car_schema.addInt("horsepower", "Amount of horsepower");

}
};

This would be used by creating an inlet::Container for the Car instance and then defining the struct schema on
that subcontainer, e.g.:

// Create a container off the global container for the car object
// then define its schema
auto& car_schema = inlet.addStruct("car", "Vehicle description");
Car::defineSchema(car_schema);

Note: The definition of a static defineSchema member function is not required, and is just used for convenience.
The schema definition for a class or struct could also be implemented as a free function for third-party types, or even
in the same place as the sub-container declaration.

7.3. Inlet User Guide 63

Axom Documentation

Accessing

In order to convert from Inlet’s internal representation to a custom C++ struct, you must provide deserialization logic.
This is accomplished by a specialization of the FromInlet<T> functor for your type T, which implements a member
function with the signature T operator()(const inlet::Container&). This function should return an instance
of type T with its members populated with the corresponding fields in the input file. For the simple Car example whose
schema is defined above, the specialization might look like:

template <>
struct FromInlet<Car>
{
Car operator()(const inlet::Container& input_data)
{
Car result;
result.make = input_data["make"];
result.color = input_data["color"];
result.seats = input_data["seats"];
result.horsepower = input_data["horsepower"];
return result;

}
};

In the above snippet, Container::operator[] is used to extract data from Inlet’s internal representation which is
automatically converted to the correct member variable types when the function’s return value is constructed. This
conversion does not happen automatically for user-defined types. If a Car object as defined above is located at the path
“car” within the input file, it can be retrieved as follows:

Car car = inlet["car"].get<Car>();

Arrays and Dictionaries of Structs

Arrays of user-defined types are also supported in Inlet.

Defining And Storing

Consider a collection of cars, described in Lua as:

fleet = {
{
make = "Globex Corp",
seats = 3,
horsepower = 155,
color = "green"

},
{
make = "Initech",
seats = 4,
horsepower = 370
-- uses default value for color

},
{

(continues on next page)

64 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

make = "Cyberdyne",
seats = 1,
horsepower = 101,
color = "silver"

}
}

or in YAML, as:

fleet:
- make: Globex Corp
seats: 3
horsepower: 155
color: green

- make: Initech
seats: 4
horsepower: 370
uses default value for color

- make: Cyberdyne
seats: 1
horsepower: 101
color: silver

First, use the addStructArray function to create a subcontainer, then define the schema on that container using the
same Car::defineSchema used above:

// Create a fleet of cars with the same Car::defineSchema
auto& fleet_schema = inlet.addStructArray("fleet", "A collection of cars");
Car::defineSchema(fleet_schema);

Note: The schema definition logic for a struct is identical between individual instances of structs and arrays of structs.
The distinction is made by Container on which the struct schema is defined - specifically, whether it is obtained via
addStruct or addStructArray.

Associative arrays are also supported, using string keys or a mixture of string and integer keys. The
addStructDictionary function can be used analogously to the addStructArray function for these associative
arrays.

Note: Although many of Inlet’s input file languages do not distinguish between a “dictionary” type and a “record”
type, Inlet treats them differently for type safety reasons:

Dictionaries use arbitrary strings or integers for their keys, and their values (entries) can only be retreived as a homo-
geneous type. In other words, dictionaries must map to std::unordered_map<Key, Value> for fixed key and value
types.

Structs contain a fixed set of named fields, but these fields can be of any type. As the name suggests, these map to
structs in C++.

7.3. Inlet User Guide 65

Axom Documentation

Accessing

As with the schema definition, the FromInlet specialization for a user-defined type will work for both single instances
of the type and arrays of the type.

To retrieve an array of structs as a contiguous array of user-defined type, use std::vector:

auto fleet = base["fleet"].get<std::vector<Car>>();

Some input file languages support non-contiguous array indexing, so you can also retrieve arrays as
std::unordered_map<int, T>:

auto fleet = inlet["fleet"].get<std::unordered_map<int, Car>>();

Note: If a non-contiguous array is retrieved as a (contiguous) std::vector, the elements will be ordered by increasing
index.

String-keyed dictionaries are implemented as std::unordered_map<std::string, T> and can be retrieved in the
same way as the array above. For dictionaries with a mix of string and integer keys, the inlet::VariantKey type can
be used, namely, by retrieving a std::unordered_map<inlet::VariantKey, T>.

Function Callbacks

For input file types that support functions, e.g., Lua, functions can also be read from the input file into a
std::function, the wrapper for callables provided by the C++ standard library.

Defining And Storing

This is accomplished by calling addFunction on an Inlet or Container object.

Consider the following Lua function that accepts a vector in R2 or R3 and returns a double:

coef = function (v)
if v.dim == 2 then
return v.x + (v.y * 0.5)

else
return v.x + (v.y * 0.5) + (v.z * 0.25)

end
end

The schema for this function would be defined as follows:

schema
.addFunction("coef",

inlet::FunctionTag::Double,
{inlet::FunctionTag::Vector, inlet::FunctionTag::Double},
"The function representing the BC coefficient")

The return type and argument types are described with the inlet::FunctionTag enumeration, which has the follow-
ing members:

• Double - corresponds to a C++ double

66 Chapter 7. Axom Copyright and License Information

Axom Documentation

• String - corresponds to a C++ std::string

• Vector - corresponds to a C++ inlet::InletVector

• Void - corresponds to C++ void, should only be used for functions that don’t return a value

Note that a single type tag is passed for the return type, while a vector of tags is passed for the argument types. Currently
a maximum of two arguments are supported. To declare a function with no arguments, simply leave the list of argument
types empty.

Note: The InletVector type (and its Lua representation) are statically-sized vectors with a maximum dimension of
three. That is, they can also be used to represent two-dimensional vectors.

In Lua, the following operations on the Vector type are supported (for Vector s u, v, and w):

1. Construction of a 3D vector: u = Vector.new(1, 2, 3)

2. Construction of a 2D vector: u = Vector.new(1, 2)

3. Construction of an empty vector (default dimension is 3): u = Vector.new()

4. Vector addition and subtraction: w = u + v, w = u - v

5. Vector negation: v = -u

6. Scalar multiplication: v = u * 0.5, v = 0.5 * u

7. Indexing (1-indexed for consistency with Lua): d = u[1], u[1] = 0.5

8. L2 norm and its square: d = u:norm(), d = u:squared_norm()

9. Normalization: v = u:unitVector()

10. Dot and cross products: d = u:dot(v), w = u:cross(v)

11. Dimension retrieval: d = u.dim

12. Component retrieval: d = u.x, d = u.y, d = u.z

Accessing

To retrieve a function, both the implicit conversion and get<T> syntax is supported. For example, a function can be
retrieved as follows:

// Retrieve the function (makes a copy) to be moved into the lambda
auto func =
base["coef"].get<std::function<double(FunctionType::Vector, double)>>();

It can also be assigned directly to a std::function without the need to use get<T>:

std::function<double(FunctionType::Vector)> coef = inlet["coef"];

Additionally, if a function does not need to be stored, the overhead of a copy can be eliminated by calling it directly:

double result = inlet["coef"].call<double>(axom::inlet::FunctionType::Vector{3, 5, 7});

7.3. Inlet User Guide 67

Axom Documentation

Note: Using call<ReturnType>(ArgType1, ArgType2, ...) requires both that the return type be explicitly
specified and that argument types be passed with the exact type as used in the signature defined as part of the schema.
This is because the arguments do not participate in overload resolution.

Verification

Before input file data can be accessed, it must first be verified by calling the verify() method of the top-level Inlet
object. This will return a bool indicating whether the provided input conformed to the schema and specific violations
of the schema are logged via SLIC by default. If you would like to suppress the SLIC warnings and process the list of
verification errors instead, you can pass a std::vector<inlet::VerificationError> to the verify() method
as follows:

std::vector<inlet::VerificationError> errors;
inlet.verify(&errors);

You can then iterate over the list of errors, each of which contains the path within the input file of the offending
Container, Field, or Function and the corresponding message.

This section describes the verification rules that apply to each possible element of the Inlet hierarchy, namely,
Container, Field, and Function.

Container Verification

If a Container is marked as required (via the required()) method, then the Container must have a Field or
Function that was present in the input or contain a sub-Container that does. This does not apply to a Container
that corresponds to an array or dictionary, as empty collections provided by the user are considered valid. Consider the
following definition and input file:

addIntArray("foo").required();

foo = { }

Inlet verification will succeed for the above snippets.

If a Container corresponds to an array or dictionary, the elements of the array must all be of the requested type, if
any were provided. This restriction applies even if the array/dictionary was not marked as required.

If a verification function was provided via the registerVerifier() method, this function must return true when
passed the corresponding Container object.

Note: Since a Container represents internal nodes in the Inlet hierarchy, its verification status is dependent on that
of its child objects. A Container is only considered valid if all of its child Container, Field, and Function objects
are also valid.

68 Chapter 7. Axom Copyright and License Information

Axom Documentation

Field Verification

If a Field is marked as required (via the required()) method, then a value must be provided in the input.

Providing a value of the wrong type will result in verification failure, even if the field was not marked as required.

If a range (inclusive upper/lower bounds) of valid values is specified with the range()method, both the provided value
(if applicable) and default value (if specified with defaultValue()) must fall within the range.

If a set of valid values is specified with the validValues() method, both the provided value (if applicable) and default
value (if specified with defaultValue()) must be included in the set.

If a verification function was provided via the registerVerifier() method, this function must return true when
passed the corresponding Field object.

Function Verification

If a Function is marked as required (via the required()) method, then a function must be provided in the input.

If a verification function was provided via the registerVerifier() method, this function must return true when
passed the corresponding Function object.

Unexpected Entries in Input Files

In order to better detect user error, e.g., misspelled names, Inlet provides a method to retrieve the names of entries in
the input file that were not requested in the schema definition phase. Consider the following input:

const std::string input = R"(
dimensions = 2
dim = 2 -- An example typo, should be "dimensions" and not "dim"
vector = {
x = 1.0,
y = 2.0,
z = 3.0 -- Only 2 component vectors are supported

}
)";

The full set of unexpected names across the entire input file can be retrieved from the top-level Inlet object as follows:

const std::vector<std::string> all_unexpected_names =
myInlet.unexpectedNames(); // {"dim", "vector/z"}

The list of unexpected names can also be retrieved relative to an individual Container - that is, anywhere within/below
that container:

// defines a required container named vector with an internal field named 'x'
auto& v = myInlet.addStruct("vector").required(true);

const std::vector<std::string> vector_unexpected_names =
v.unexpectedNames(); // {"vector/z"}

These lists of unexpected names can be useful if you’d like to implement custom/targeted error messages - in the
example above, one might wish to provide a message indicating that dimension should be used instead of just dim.
In other cases, it may be sufficient to just require that all or part of the input file have no unexpected entries. This is

7.3. Inlet User Guide 69

Axom Documentation

supported via the strict() method, which will cause a Container to fail verification if it contains any unexpected
entries:

v.strict();

7.4 Klee User Guide

Klee provides a way to embed 2D and 3D non-conformal geometry in a mesh.

Contents:

7.4.1 Specifying Shapes

“Shaping”, or “painting”, is the process of adding non-conformal material regions to a mesh. Traditionally, this has
been done in code-specific formats by each code that provides such a capability. Axom’s Klee library provides a way
to read shape specifications in YAML files and apply the specified geometry to a mesh.

Basics

Shapes in Klee are specified in YAML. A basic file consists of a list of shapes. Each one specifies its name and
material, as well as a description of its geometry.

In addition to the shapes themselves, a file must specify the number of dimensions of the shapes (only 2 and 3 are
allowed). This will be important later when specifying transformations and slices.

dimensions: 3

shapes:
- name: wheel
material: steel
geometry:
format: stl
path: wheel.stl
units: cm

- name: windshield
material: glass
geometry:
format: stl
path: windshield.stl
units: in

The above example describes a series of 3D shapes. The first is a wheel made of steel. Its geometry is specified in an
STL file named wheel.stl. Since STL files don’t have units embedded in them, we must specify them. The second
shape is named “windshield”, is made of “glass”, and its geometry is specified in windshield.stl. Note that Klee
does not specify what a particular material means. A material is simply a label which can be used by a host code to
apply properties to part of a mesh.

70 Chapter 7. Axom Copyright and License Information

Axom Documentation

Paths

The paths specified in shapes are specified either as absolute paths (begin with a /), or as relative paths. Absolute
paths are evaluated as absolute paths in the file systems. Relative paths are evaluated relative to the YAML file (not
the current working directory). For example, in the file /path/to/my_shapes.yaml, the table below illustrates how
different paths would be specified.

Path in /path/to/my_shapes.yaml Path in file system
/an/absolute/path.stl /an/absolute/path.stl
just_a_file.stl /path/to/just_a_file.stl
dir/and/a/file.stl /path/to/dir/and/a/file.stl

Changing Dimensions on a Per-Shape Basis

Sometimes it is useful to bring in a geometry file in a different dimensionality than the one you are working in. For
example, you may be working in 2D, but may want to bring in a 3D file and then slice it (slices are described below).
To do this, you need to specify the start_dimensions field on the geometry of a shape.

dimensions: 2

shapes:
- name: wheel
material: steel
geometry:
format: stl
path: wheel.stl
start_dimensions: 3
units: cm
operators:

- slice:
x: 10

Overlay Rules

Shapes are added to meshes in the order in which they appear in the YAML file. By default, each one replaces all
materials that occupy the space specified by its geometry file. This can be overridden by using the replaces and
does_not_replace properties.

dimensions: 3
units: cm

shapes:
- name: wheel
material: steel
replaces: [rubber, air]
geometry:
format: stl
path: wheel.stl

- name: windshield
does_not_replace: [steel]

(continues on next page)

7.4. Klee User Guide 71

Axom Documentation

(continued from previous page)

material: glass
geometry:
format: stl
path: windshield.stl

In the example above, the wheel would only replace rubber and air. Any other materials that happen to be in the same
space as it would be left untouched. The windshield would replace everything except steel.

Warning: It is an error to specify both replaces and does_not_replace for the same shape.

Operators

When assembling complex geometries, it is often the case that different parts are specified in different coordinate
systems. For example, a description of the wheel of a car might be specified around its center, not its position relative
to the rest of the car. To help with this, Klee provides a mechanism to apply transformations to shapes.

dimensions: 3

shapes:
- name: windshield
material: glass
geometry:
format: stl
path: windshield.stl
units: cm
operators:

- rotate: 90
axis: [0, 1, 0]
center: [0, 0, -10]

- translate: [10, 20, 30]

In the example above, the wheel is rotated 90 degrees counterclockwise around an axis centered at the point (0, 0,
-10) and pointing in the direction of the vector (0, 1, 0). It is then translated by the vector (10, 20, 30).

Regardless of whether the geometry file has embedded units and what those may be, units must be specified whenever
specifying operators. These are the units that will be used to interpret any lengths and points specified in operators.
Units may be specified in one of two ways: by specifying units, or by specifying start_units and end_units.
Specifying units is the same as giving the same value for start_units and end_units. Being able to change units
is useful for situations where your geometry file is in one set units, but you’re thinking about your larger assembly in
another set of units. For example:

dimensions: 3

shapes:
- name: windshield
material: glass
geometry:
format: stl
path: windshield.stl
start_units: in
end_units: ft

(continues on next page)

72 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

operators:
Orient the windshield about its own coordinate system,
working in its native units (inches)
- translate: [10, 20, 30] # inches
- rotate: 90
axis: [0, 1, 0]
center: [0, 0, -10] # inches

switch to feet to put in the right place while thinking of
of the car in car in different units
- convert_units_to: ft
- translate: [2, 3, 4] # feet

It is an error if the end_units do not match the units after the last operator.

Supported Operators

The supported operators are listed below. Unless otherwise specified, the only difference between the 2D and 3D
versions are that whenever points or vectors are expected, the points and vectors must be of the dimensionality specified
by the shape file.

Operators take the form of operator_name: value, where operator_name is the name of the operator, and value
is the value specifying the parameters of the operation. Operators may also have additional required or optional pa-
rameters.

• Translations

description
Translate the shape by a given vector.

name
translate

value
a vector specifying the amount by which to translate the shape

example

Translate by vector (1, 2, 3)
translate: [1, 2, 3]

• Rotations

description
Rotate the shape by a given amount around a specified axis

name
rotate

value
an angle, in degrees by which the shape will be rotated counterclockwise.

additional required parameters

axis
(3D only) the axis of rotation

optional arguments

7.4. Klee User Guide 73

Axom Documentation

center
a point specifying the center of rotation

example

Rotate 45 degrees counterclockwise around the ray passing through
the point (1, 2, 3) and pointing in the direction of the vector
(4, 5, 6)
rotate: 45
center: [1, 2, 3]
axis: [4, 5, 6]

• Scaling

description
Scale the shape by a specified amount

name
scale

value
a vector specifying the amount by which to scale in each dimension, or a single value specifying
by which to scale in all dimensions

example

Scale by 2x in the x direction 0.5x in y, and 1.5x in z
scale: [2.0, 0.5, 1.5]

• Changing Units

description
Change the units in which subsequent operators are expressed. This is the same as scaling by the
appropriate factor.

name
convert_units_to

value
the name of the units to convert to. Must be one of the named units.

example

geometry:
...
start_units: in
end_units: cm
operators:
- translate: [2, 3] # in inches
- convert_units_to: cm # same as scale: 2.54
- translate: [5, 6] # in centimeters

• Slices

description
Slice a 3D object and convert it into a 2D object. This is accomplished by defining a cut plane
which will be used to determine what slice of the geometry to take. In addition, a point on the
plane is picked as the new origin, and a vector is used to specify how the plane should be oriented
with the 2D axes.

74 Chapter 7. Axom Copyright and License Information

Axom Documentation

name
slice

value
an object with the the following properties

origin
the point to use as the origin of the new coordinate system

normal
a vector normal to the slice plane

up
a vector which will be mapped to the positive Y direction on the cut plane.

optional arguments

x
a single value specifying that the cut plane perpendicular to the x-axis at this value.
See defaults table below.

y
a single value specifying that the cut plane perpendicular to the y-axis at this value.
See defaults table below.

z
a single value specifying that the cut plane perpendicular to the z-axis at this value.
See defaults table below.

If a plane is specified by just giving “x”, “y”, or “z”, then the origin, normal, and up vectors are
given the default values specified in the table below. They can be overridden so long as the origin
is still on the plane, and the normal is a multiple of the default normal.

Usage origin normal up

x: <val> (<val>, 0, 0) (1, 0, 0) (0, 0, 1)
y: <val> (0, <val>, 0) (0, 1, 0) (1, 0, 0)
z: <val> (0, 0, <val>) (0, 0, 1) (0, 1, 0)

example

Cut a 3D object with a plane that passes through the point
[10, 20, 30] and is normal to the vector [4, 5, 6]. The vector
[-5, 4, 0] will be mapped to the positive Y axis. [10, 20, 30] will
be mapped to the origin.
slice:
origin: [10, 20, 30]
normal: [4, 5, 6]
up: [-5, 4, 0]

7.4. Klee User Guide 75

Axom Documentation

Named Operators

It can often be useful to name and reuse operators. For example, you may have several parts of an assembly specified
in one coordinate system that you then need to transform to another. To enable reuse, we provide support for named
operators.

Named operators are specified via the top-level named_operators object. This is a list where each entry has the
following values:

name (required)
the name of the operator. This is how it is referenced later.

value (required)
A list of operators. This is identical to the operators entry in the geometry object of a shape.

start_dimensions (optional)
the number of initial dimensions of the operator. Must be 2 or 3. If not specified, the number of
dimensions of the document is used.

units (required, must specify this or start_units and end_units)
the units in which the operator is specified

start_units (optional, must specify this or units)
the units in which the first operator is specified

end_units (optional, must specify this or units)
the units in which the last operator is specified. It is an error if the units aren’t properly converted to
end_units after applying all operations.

The example below demonstrates how to create and then use a named operator. Notice how we can use multiple ref
entries in the list of operators and we can intermix these with other operators as needed.

dimensions: 2

named_operators:
- name: MyFirstOperator
units: cm
value:
- translate: [10, 20]
- scale: 1.5

- name: AnotherOperator
unit: cm
value:
- translate: [30, 40]

shapes:
- name: wheel
material: steel
geometry:
format: c2c
path: wheel.contour
units: cm
operators:
- ref: MyFirstOperator
- rotate: 90
- ref: AnotherOperator

76 Chapter 7. Axom Copyright and License Information

Axom Documentation

An important thing to note is that the units of the named operator and the shape that uses it do not have to match. The ap-
propriate conversions will be done automatically if needed. This allows you to not worry about how the transformation
was defined when you use it.

dimensions: 2

named_operators:
- name: MySampleOperator
start_units: cm
end_units: mm
value:
- translate: [10, 20] # cm
- convert_units_to: mm
- translate: [30, 40] # mm

shapes:
- name: wheel
material: steel
geometry:
format: c2c
path: wheel.contour
units: in
operators:
Automatic conversion from in to cm
- ref: MySampleOperator
Automatic conversion from mm to in
- translate: [50, 60] # in

In addition to using ref in an individual shape’s operators, you can also use it in other named operators. The only
restriction is that it be defined in the list before it is used.

dimensions: 2
units: cm

named_operators:
- name: SomeOperator
units: cm
value:
- translate: [10, 20]
- scale: 1.5

- name: AnotherOperator
units: cm
value:
- rotate: 90
- ref: SomeOperator

7.4. Klee User Guide 77

Axom Documentation

7.5 Lumberjack User Guide

Lumberjack, named because it cuts down logs, is a C++ library that provides scalable logging while reducing the
amount of messages written out the screen or file system.

7.5.1 API Documentation

Doxygen generated API documentation can be found here: API documentation

7.5.2 Introduction

Lumberjack was created to provide scalable logging with a simple programming model while allowing developers to
customize its behavior. It is named Lumberjack because it cuts down logs. It uses MPI and a scalable binary tree
reduction scheme to combine duplicate messages and limit output to only the root node.

7.5.3 Requirements

• MPI - MPI is fundamental to Lumberjack and without MPI, Lumberjack is not useful.

7.5.4 Code Guarding

You tell if Axom was built with Lumberjack enabled by using the following include and compiler define:

#include "axom/config.hpp"
#ifdef AXOM_USE_LUMBERJACK

// Lumberjack code
#endif

Quick Start

This quick start guide goes over the bare minimum you need to do to get up and running with Lumberjack. You can
find this example in the repository under Lumberjack’s examples directory.

This example uses the Binary Tree Communicator and queues one unique message and three similar messages per rank.
They are combined and then pushed fully through the tree.

The following files need to be included for Lumberjack:

Lumberjack specific header
#include "axom/lumberjack.hpp"

MPI and C++
#include <mpi.h>
#include <iostream>

Basic MPI setup and information:

78 Chapter 7. Axom Copyright and License Information

../../../../doxygen/html/lumberjacktop.html

Axom Documentation

// Initialize MPI and get rank and comm size
MPI_Init(&argc, &argv);

int commRank = -1;
MPI_Comm_rank(MPI_COMM_WORLD, &commRank);
int commSize = -1;
MPI_Comm_size(MPI_COMM_WORLD, &commSize);

Initialize Lumberjack:

// Determine how many ranks we want to individually track per message
int ranksLimit = commSize/2;

// Initialize which lumberjack communicator we want
axom::lumberjack::BinaryTreeCommunicator communicator;
communicator.initialize(MPI_COMM_WORLD, ranksLimit);

// Initialize lumberjack
axom::lumberjack::Lumberjack lj;
lj.initialize(&communicator, ranksLimit);

This queues the individual messages into Lumberjack:

// Queue messages into lumberjack
if (commRank == 0){

lj.queueMessage("This message will not be combined");
}
else {

lj.queueMessage("This message will be combined");
lj.queueMessage("This message will be combined");
lj.queueMessage("This message will be combined");

}

This is how you fully push all Messages through the Communicator, which also combines Messages before and after
pushing :

// Push messages fully through lumberjack's communicator
lj.pushMessagesFully();

Optionally, you could spread the pushing over the course of your work by doing the following:

int cycleCount = 0;
int cycleLimit = 10;
for (int i = 0; i < someLoopLength; ++i){

//
// Do some work
//
lj.queueMessage("This message will combine")
++cycleCount;
if (cycleCount > cycleLimit) {

// Incrementally push messages through system
lj.pushMessagesOnce();
cycleCount = 0;

(continues on next page)

7.5. Lumberjack User Guide 79

Axom Documentation

(continued from previous page)

}
}

Once you are ready to retrieve your messages, do so by the following:

// Determine if this is an output node
if (lj.isOutputNode()){

// Get Messages from Lumberjack
std::vector<axom::lumberjack::Message*> messages = lj.getMessages();
for(int i=0; i<(int)(messages.size()); ++i){

// Output a single Message at a time to screen
std::cout << "(" << messages[i]->stringOfRanks() << ") " << messages[i]->count()

→˓<<
" '" << messages[i]->text() << "'" << std::endl;

}
// Clear already outputted Messages from Lumberjack
lj.clearMessages();

}

Finalize Lumberjack, the Lumberjack Communicator and MPI in the following order to guarantee nothing goes wrong:

// Finalize lumberjack
lj.finalize();
// Finalize the lumberjack communicator
communicator.finalize();
// Finalize MPI
MPI_Finalize();

Core Concepts

The following are core concepts required to understand how Lumberjack works.

Combining

Combining Messages is how Lumberjack cuts down on the number of Messages output from your program. It does
so by giving the currently held Messages at the current node, two at a time, to the Combiner classes that are currently
registered to Lumberjack when a Push happens.

Lumberjack provides one Combiner as default, the TextTagCombiner. You can write your own Combiners and register
them with Lumberjack. The idea is that each Combiner would have its own criteria for whether a Message should be
combined and how to combine that specific Message with another of the same type.

Combiner’s have two main functions, shouldMessagesBeCombined and combine.

The function shouldMessagesBeCombined, returns True if the pair of messages satisfy the associated criteria. For
example in the TextTagCombiner, if the Text strings and tag strings are exactly equal, it signals they should be combined.

The function combine, takes two Messages and combines them in the way that is specific to that Combiner class. For
example in the TextTagCombiner, the only thing that happens is the second Message’s ranks gets added to the first and
the message count is increased. This is because the text strings were equal. This may not be the case for all Combiners
that you write yourself.

80 Chapter 7. Axom Copyright and License Information

Axom Documentation

Communication

Communicating Messages between nodes in an intelligent way is how Lumberjack scales logging Messages. The
Communicator class instance handles the specifics on how the communication is implemented. For example, it handles
where a specific node passes its Messages and which nodes are allowed to output messages. As of now, there are two
implemented Communicators: BinaryTreeCommunicator and RootCommunicator.

BinaryTreeCommunicator, as the name implies, utilizes a standard Binary Tree algorithm to define how the nodes are
connected. Children pass their Messages to their parent and the root node is the only node allowed to output Messages.

RootCommunicator has a very simple communication scheme that does not scale well but is useful in some cases for
its simplicity. All nodes connect directly to the root node which is also the only node allowed to output Messages.

Pushing

A push has three steps: combining, sending, and receiving Messages. When you queue a Message into Lumberjack, it
is held at the node that generated the Message until you indicate the Lumberjack to push, either once or fully. If you
do not push, then only the Messages generated at the root node will be outputed.

In a single push, nodes send their currently held Messages to the nodes their are connected to based on the Communi-
cator’s communcation scheme. For example in the BinaryTreeCommunicator, children nodes send their Messages to
their parent. While the root node only receives Messages. After a single push, it is not guaranteed that all Messages
will be ready to be outputted.

A full push is a number of single pushes until all currently held Messages. The Communicator tells the Lumberjack class
how many single pushes it takes to fully flush the system of Messages. For example in the BinaryTreeCommunicator,
it is the log of the number of nodes.

Lumberjack Classes

Basic

• Lumberjack - Performs all high level functionality for the Lumberjack library.

• Message - Holds all information pertaining to a Message.

Combiners

Handles Message combination and tests whether Message classes should be combined.

• Combiner - Abstract base class that all Combiners must inherit from.

• TextTagCombiner - Combines Message classes that have equal Text and Tag member variables.

• TextEqualityCombiner - Combines Message classes that have equal Text member variables.

7.5. Lumberjack User Guide 81

Axom Documentation

Communicators

Handles all node-to-node Message passing.

• Communicator - Abstract base class that all Communicators must inherit from.

• BinaryTreeCommunicator - Main Communicator that is implemented with a scalable Binary Tree scheme.

• RootCommunicator - non-scalable communication scheme that all nodes connect to the root node. This is given
for diagnostic purposes only.

Lumberjack Class

The Lumberjack class is where all high-level functionality of the library is done, such as adding, retrieving, and com-
bining messages and telling the given Communicator to push Messages through the communication scheme. You can
also add and remove Combiner classes, as well as tell if the current node is supposed to output any messages.

Functions

General

Name Description
initialize Starts up Lumberjack. Must be called before anything else.
finalize Cleans up Lumberjack. Must be called when done with Lumberjack.
isOutputNode Returns whether this node should output messages.
ranksLimit Sets the limit on individually tracked ranks
ranksLimit Gets the limit on individually tracked ranks

Combiners

Name Description
addCombiner Adds a combiner to Lumberjack
removeCombiner Removes a specific combiner from Lumberjack
clearCombiners Removes all currently registered Combiners from Lumberjack

Messages

Name Description
clearMessages Delete all Messages currently held by this node.
getMessages Get all Messages currently held by this node.
queueMessage Adds a Message to Lumberjack
pushMessagesOnce Moves Messages up the communication scheme once
pushMessagesFully Moves all Messages through the communication scheme to the output node.

82 Chapter 7. Axom Copyright and License Information

Axom Documentation

Combiner Class

The Combiner class is an abstract base class that defines the interface for all Combiner classes. Concrete instances
need to inherit from this class and implement these functions to be used when Message classes are combined by the
Lumberjack class.

Functions

Name Description
id Returns the unique differentiating identifier for the class instance.
shouldMessagesBeCombined Indicates if two messages should be combined.
combine Combines the second message into the first.

Concrete Instances

TextTagCombiner

This Combiner combines the two given Messages if the Message text strings and tag strings are equal. It does so by
adding the second Message’s ranks to the first Message (if not past the ranksLimit) and incrementing the Message’s
count as well. This is handled by Message.addRanks().

Note: This is the only Combiner automatically added to Lumberjack for you. You can remove it by calling Lumber-
jack::removeCombiner(“TextTagCombiner”).

TextEqualityCombiner

This Combiner combines the two given Messages if the Message text strings are equal. It does so by adding the second
Message’s ranks to the first Message (if not past the ranksLimit) and incrementing the Message’s count as well. This
is handled by Message.addRanks().

Note: You can add this Combiner by calling Lumberjack::addCombiner(new TextEqualityCombiner).

Communicator Class

The Communicator class is an abstract base class that defines the interface for all Communicator classes. Concrete
instances need to inherit from this class and implement these functions to be used when the Lumberjack class does any
communication work.

7.5. Lumberjack User Guide 83

Axom Documentation

Functions

Name Description
initialize Starts up the Communicator. Must be called before anything else.
finalize Cleans up the Communicator. Must be called when finished.
rank Returns the rank of the current node.
ranksLimit Getter/Setter for the limit on individually stored ranks.
numPushesToFlush Returns the number of individual pushes to completely flush all Messages.
push Pushes all currently held Messages once up structure.
isOutputNode Returns whether this node should output messages.

Concrete Instances

BinaryTreeCommunicator

Note: This is the recommended Communicator.

This Communicator uses a standard Binary Tree design to scalably pass Messages between nodes. Rank 0 is the root of
the Binary Tree and the only node allowed to output messages. For each single push, the child nodes send their currently
held messages to their parents without waiting to receive messages themselves. For a full push, this communicator takes
the log of nodes to completely flush all currently held messages to the root node.

RootCommunicator

Note: This Communicator is useful for debugging purposes, but will not scale as well as the recommended Binary-
TreeCommunicator.

This Communicator has all nodes directly connecting to the root node which is rank 0. The root node is the only node
allowed to output messages. Each single push, the child nodes send their currently held messages to the root. After
each push the tree is completely flushed.

Message Class

The Message class holds the information about a single message or multiple messages that were combined via a Com-
biner instance.

84 Chapter 7. Axom Copyright and License Information

Axom Documentation

Information

The Message class contains the following information. All fields have their respective getters and setters.

Name Description
text Contents of the message
ranks Truncated list of where the message originated
count Total count of how many individual messages occurred
fileName File name that generated the message
lineNumber Line number that generated the message
level Message severity (error, warning, debug, etc.)
tag Tag for showing what part of the code generated the message

Functions

The Message class also contains the following helper functions to ease use of the class.

Name Description
stringOfRanks Returns a string of the ranks
pack Returns a packed version of all the message’s information
unpack Takes a packed message and overwrites all the message’s information
addRank Add a rank to the message to the given limit
addRanks Add ranks to the message to the given limit

7.6 Mint User Guide

Mint provides a comprehensive mesh data model and a mesh-aware, fine-grain, parallel execution model that underpins
the development of computational tools and numerical discretization methods. Thereby, enable implementations that
are born parallel and portable to new and emerging architectures.

7.6.1 API Documentation

Doxygen generated API documentation can be found here: API documentation

7.6.2 Key Features

• Support for 1D/2D/3D mesh geometry.

• Efficient data structures to represent Particle Mesh, Structured Mesh and Unstructured Mesh types, including
unstructured meshes with Mixed Cell Type Topology.

• Native support for a variety of commonly employed Cell Types.

• A flexible Mesh Storage Management system, which can optionally inter-operate with Sidre as the underlying,
in-memory, hierarchical datastore, facilitating the integration across packages.

• Basic support for Finite Elements, consisting of commonly employed shape functions and quadratures.

7.6. Mint User Guide 85

../../../../doxygen/html/minttop.html
../../../sidre/docs/sphinx/index.html

Axom Documentation

• A Mesh-Aware Execution Model, based on the RAJA programming model abstraction layer that supports on-
node parallelism for mesh-traversals, enabling the implementation of computational kernels that are born parallel
and portable across different processor architectures.

7.6.3 Requirements

Mint is designed to be light-weight and self-contained. The only requirement for using Mint is a C++11 compliant
compiler. However, to realize the full spectrum of capabilities, support for the following third-party libraries is pro-
vided:

• RAJA, used for the parallel execution and portability layer.

• Conduit , for using Sidre as the Mesh Storage Management system.

• Umpire, for memory management on next-generation architectures.

For further information on how to build the Axom Toolkit using these third-party libraries, consult the Axom Quick
Start Guide.

7.6.4 About this Guide

This guide discusses the basic concepts and architecture of Mint.

• The Getting Started with Mint section provides a quick introduction to Mint, designed to illustrate high-level
concepts and key capabilities, in the context of a small working example.

• The Tutorial section provides code snippets that demonstrate specific topics in a structured and simple format.

• For complete documentation of the interfaces of the various classes and functions in Mint consult the Mint
Doxygen API Documentation.

• Complete examples and code walk-throughs of mini-apps using Mint are provided in the Examples section.

Additional questions, feature requests or bug reports on Mint can be submitted by creating a new issue on Github or by
sending e-mail to the Axom Developers mailing list at axom-dev@llnl.gov.

Getting Started with Mint

This section presents a complete code walk-through of an example Mint application, designed to illustrate some
of the key concepts and capabilities of Mint. The complete Mint Application Code Example, is included in the
Appendix section and is also available in the Axom source code under src/axom/mint/examples/user_guide/
mint_getting_started.cpp.

The example Mint application demonstrates how Mint is used to develop kernels that are both mesh-agnostic and
device-agnostic.

Tip: Mint’s RAJA-based Execution Model helps facilitate the implementation of various computational kernels that
are both mesh-agnostic and device-agnostic. Both kernels discussed in this example do not make any assumptions about
the underlying mesh type or the target execution device, e.g. CPU or GPU. Consequently, the same implementation
can operate on both Structured Mesh and Unstructured Mesh types and run sequentially or in parallel on all execution
devices supported through RAJA.

86 Chapter 7. Axom Copyright and License Information

https://raja.readthedocs.io/en/main/index.html
https://raja.readthedocs.io/en/main/index.html
https://llnl-conduit.readthedocs.io/en/latest/index.html
../../../sidre/docs/sphinx/index.html
https://umpire.readthedocs.io/en/develop/
../../../../index.html
../../../../docs/sphinx/quickstart_guide/index.html
../../../../docs/sphinx/quickstart_guide/index.html
../../../../doxygen/html/minttop.html
../../../../doxygen/html/minttop.html
https://github.com/LLNL/axom/issues
mailto:axom-dev@llnl.gov
https://raja.readthedocs.io/en/main/index.html
https://raja.readthedocs.io/en/main/index.html

Axom Documentation

Prerequisites

Understanding the discussion and material presented in this section requires:

• Working knowledge of C++ templates and Lambda Expression functions.

• High-level understanding of nested memory hierarchies on heterogeneous architectures and CUDA Unified Mem-
ory.

• Basics of the Execution Model (recommended)

Note: Mint does not provide a memory manager. The application must explicitly specify the desired allocation strategy
and memory space to use. This is facilitated by using Umpire for memory management. Specifically, this example uses
CUDA Unified Memory when compiled with RAJA and CUDA enabled by setting the default Umpire allocator in the
beginning of the program as follows:

// NOTE: use unified memory if we are using CUDA or HIP
const int allocID = axom::execution_space<ExecPolicy>::allocatorID();
axom::setDefaultAllocator(allocID);

When Umpire , RAJA and CUDA are not enabled, the code will use the malloc() internally to allocate memory on
the host and all kernels will be executed on the CPU.

Goals

Completion of the walk-though of this simple code example should only require a few minutes. Upon completion, the
user will be familiar with using Mint to:

• Create and evaluate fields on a mesh

• Use the Node Traversal Functions and Cell Traversal Functions of the Execution Model to implement kernels
that operate on the mesh and associated fields.

• Plot the mesh and associated fields in VTK for visualization.

Step 1: Add Header Includes

First, the Mint header must be included for the definition of the various Mint classes and functions. Note, this example
also makes use of Axom’s Matrix class, which is also included by the following:

1 #include "axom/config.hpp" // compile time definitions
2 #include "axom/core/execution/execution_space.hpp" // for execution_space traits
3

4 #include "axom/mint.hpp" // for mint classes and functions
5 #include "axom/core/numerics/Matrix.hpp" // for numerics::Matrix

7.6. Mint User Guide 87

https://www.cprogramming.com/c++11/c++11-lambda-closures.html
https://devblogs.nvidia.com/unified-memory-cuda-beginners/
https://devblogs.nvidia.com/unified-memory-cuda-beginners/
https://umpire.readthedocs.io/en/develop/
https://devblogs.nvidia.com/unified-memory-cuda-beginners/
https://raja.readthedocs.io/en/main/index.html
https://umpire.readthedocs.io/en/develop/
https://umpire.readthedocs.io/en/develop/
https://raja.readthedocs.io/en/main/index.html

Axom Documentation

Step 2: Get a Mesh

The example application is designed to operate on either a Structured Mesh or an Unstructured Mesh. The type of mesh
to use is specified by a runtime option that can be set by the user at the command line. See Step 7: Run the Example
for more details.

To make the code work with both Structured Mesh and Unstructured Mesh instances the kernels are developed in terms
of the The Mesh Base Class, mint::Mesh.

The pointer to a mint::Mesh object is acquired as follows:

1 mint::Mesh* mesh =
2 (Arguments.useUnstructured) ? getUnstructuredMesh() : getUniformMesh();

When using a Uniform Mesh, the mesh is constructed by the following:

1 mint::Mesh* getUniformMesh()
2 {
3 // construct a N x N grid within a domain defined in [-5.0, 5.0]
4 const double lo[] = {-5.0, -5.0};
5 const double hi[] = {5.0, 5.0};
6 mint::Mesh* m = new mint::UniformMesh(lo, hi, Arguments.res, Arguments.res);
7 return m;
8 }

This creates an 𝑁 ×𝑁 Uniform Mesh, defined on a domain given by the interval ℐ : [−5.0, 5.0]× [−5.0, 5.0], where
𝑁 = 25, unless specified otherwise by the user at the command line.

When an Unstructured Mesh is used, the code will generate the Uniform Mesh internally and triangulate it by subdi-
viding each quadrilateral element into four triangles. See the complete Mint Application Code Example for details.

See the Tutorial for more details on how to Create a Uniform Mesh or Create an Unstructured Mesh.

Step 3: Add Fields

Fields are added to the mesh by calling the createField() method on the mesh object:

1 // add a cell-centered and a node-centered field
2 double* phi = mesh->createField<double>("phi", mint::NODE_CENTERED);
3 double* hc = mesh->createField<double>("hc", mint::CELL_CENTERED);
4

5 constexpr int NUM_COMPONENTS = 2;
6 double* xc =
7 mesh->createField<double>("xc", mint::CELL_CENTERED, NUM_COMPONENTS);

• The node-centered field, phi, stores the result, computed in Step 4: Evaluate a Scalar Field

• The cell-centered field, hc, stores the nodal average of phi, computed in Step 5: Average to Cell Centers

• The cell-centered field, xc, stores the cell-centers, computed in Step 5: Average to Cell Centers

Note, the template argument to the createField() method indicates the underlying field type, e.g. double, int ,
etc. In this case, all three fields have a double field type.

The first required argument to the createField() method is a string corresponding to the name of the field. The
second argument, which is also required, indicates the centering of the field, i.e. node-centered, cell-centered or face-
centered.

88 Chapter 7. Axom Copyright and License Information

Axom Documentation

A third, optional, argument may be specified to indicate the number of components of the corresponding field. In this
case, the node-centered field, phi, is a scalar field. However, the cell-centered field, xc, is a 2D vector quantity, which
is specified explicitly by supplying the third argument in the createField() method invocation.

Note: Absence of the third argument when calling createField() indicates that the number of components of the
field defaults to 1 and thereby the field is assumed to be a scalar quantity.

See the Tutorial for more details on Working with Fields on a mesh.

Step 4: Evaluate a Scalar Field

The first kernel employs the for_all_nodes() traversal function of the Execution Model to iterate over the constituent
mesh Nodes and evaluate Himmelblau’s Function at each node:

1 // loop over the nodes and evaluate Himmelblaus Function
2 mint::for_all_nodes<ExecPolicy, xargs::xy>(
3 mesh,
4 AXOM_LAMBDA(IndexType nodeIdx, double x, double y) {
5 const double x_2 = x * x;
6 const double y_2 = y * y;
7 const double A = x_2 + y - 11.0;
8 const double B = x + y_2 - 7.0;
9

10 phi[nodeIdx] = A * A + B * B;
11 });

• The arguments to the for_all_nodes() function consists of:

1. A pointer to the mesh object, and

2. The kernel that defines the per-node operations, encapsulated within a Lambda Expression, using the con-
venience AXOM_LAMBDA Macro.

• In addition, the for_all_nodes() function has two template arguments:

1. ExecPolicy: The execution policy specifies, where and how the kernel is executed. It is a required template
argument that corresponds to an Execution Policy defined by the Execution Model.

2. xargs::xy: Indicates that in addition to the index of the node, nodeIdx, the kernel takes the x and y node
coordinates as additional arguments.

Within the body of the kernel, Himmelblau’s Function is evaluated using the supplied x and y node coordinates. The
result is stored in the corresponding field array, phi, which is captured by the Lambda Expression, at the corresponding
node location, phi[nodeIdx].

See the Tutorial for more details on using the Node Traversal Functions of the Execution Model.

7.6. Mint User Guide 89

https://en.wikipedia.org/wiki/Himmelblau%27s_function
https://www.cprogramming.com/c++11/c++11-lambda-closures.html
https://en.wikipedia.org/wiki/Himmelblau%27s_function
https://www.cprogramming.com/c++11/c++11-lambda-closures.html

Axom Documentation

Step 5: Average to Cell Centers

The second kernel employs the for_all_cells() traversal function of the Execution Model to iterate over the con-
stituent mesh Cells and performs the following:

1. computes the corresponding cell centroid, a 2D vector quantity,

2. averages the node-centered field, phi, computed in Step 4: Evaluate a Scalar Field, at the cell center.

1 // loop over cells and compute cell centers
2 mint::for_all_cells<ExecPolicy, xargs::coords>(
3 mesh,
4 AXOM_LAMBDA(IndexType cellIdx,
5 const numerics::Matrix<double>& coords,
6 const IndexType* nodeIds) {
7 // NOTE: A column vector of the coords matrix corresponds to a nodes coords
8

9 // Sum the cell's nodal coordinates
10 double xsum = 0.0;
11 double ysum = 0.0;
12 double hsum = 0.0;
13

14 const IndexType numNodes = coords.getNumColumns();
15 for(IndexType inode = 0; inode < numNodes; ++inode)
16 {
17 const double* node = coords.getColumn(inode);
18 xsum += node[mint::X_COORDINATE];
19 ysum += node[mint::Y_COORDINATE];
20

21 hsum += phi[nodeIds[inode]];
22 } // END for all cell nodes
23

24 // compute cell centroid by averaging the nodal coordinate sums
25 const IndexType offset = cellIdx * NUM_COMPONENTS;
26 const double invnnodes = 1.f / static_cast<double>(numNodes);
27 xc[offset] = xsum * invnnodes;
28 xc[offset + 1] = ysum * invnnodes;
29

30 hc[cellIdx] = hsum * invnnodes;
31 });

• Similarly, the arguments to the for_all_cells() function consists of:

1. A pointer to the mesh object, and

2. The kernel that defines the per-cell operations, encapsulated within a Lambda Expression, using the con-
venience AXOM_LAMBDA Macro.

• In addition, the for_all_cells() function has two template arguments:

1. ExecPolicy: As with the for_all_nodes() function, the execution policy specifies, where and how the
kernel is executed.

2. xargs::coords: Indicates that in addition to the index of the cell, cellIdx, the supplied kernel takes two
additional arguments:

a. coords, a matrix that stores the node coordinates of the cell, and

90 Chapter 7. Axom Copyright and License Information

https://www.cprogramming.com/c++11/c++11-lambda-closures.html

Axom Documentation

b. nodeIds, an array that stores the IDs of the constituent cell nodes.

The cell node coordinates matrix, defined by axom::numerics::Matrix is organized such that:

• The number of rows of the matrix corresponds to the cell dimension, and,

• The number of columns of the matrix corresponds to the number of cell nodes.

• The 𝑖𝑡ℎ column vector of the matrix stores the coordinates of the 𝑖𝑡ℎ cell node.

In this example, the 2D Uniform Mesh, consists of 2D rectangular cells, which are defined by 4 nodes. Consequently,
the supplied node coordinates matrix to the kernel, coords, will be a 2× 4 matrix of the following form:(︂

𝑥0 𝑥1 𝑥2 𝑥3

𝑦0 𝑦1 𝑦2 𝑦3

)︂
Within the body of the kernel, the centroid of the cell is calculated by averaging the node coordinates. The code loops
over the columns of the coords matrix (i.e., the cell nodes) and computes the sum of each node coordinate in xsum
and ysum respectively. Then, the average is evaluated by multiplying each coordinate sum with 1/𝑁 , where 𝑁 is the
number of nodes of a cell. The result is stored in the corresponding field array, xc, which is captured by the Lambda
Expression.

Since, the cell centroid is a 2D vector quantity, each cell entry has an x-component and y-component. Multi-component
fields in Mint are stored using a 2D row-major contiguous memory layout, where, the number of rows corresponds to
the number of cells, and the number of columns correspond to the number of components of the field. Consequently,
the x-component of the centroid of a cell with ID, cellIdx is stored at xc[cellIIdx * NUM_COMPONENTS] and
the y-component is stored at xc[cellIdx * NUM_COMPONENTS + 1], where NUM_COMPONENTS=2.

In addition, the node-centered quantity, phi, computed in Step 4: Evaluate a Scalar Field is averaged and stored at
the cell centers. The kernel first sums all the nodal contributions in hsum and then multiplies by 1/𝑁 , where 𝑁 is the
number of nodes of a cell.

See the Tutorial for more details on using the Cell Traversal Functions of the Execution Model.

Step 6: Output the Mesh in VTK

Last, the resulting mesh and data can be output in the Legacy VTK File Format, which can be visualized by a variety
of visualization tools, such as VisIt and ParaView as follows:

1 // write the mesh in a VTK file for visualization
2 std::string vtkfile =
3 (Arguments.useUnstructured) ? "unstructured_mesh.vtk" : "uniform_mesh.vtk";
4 mint::write_vtk(mesh, vtkfile);

A VTK file corresponding to the VTK File Format specification for the mesh type used will be generated.

Step 7: Run the Example

After building the Axom Toolkit, the basic Mint example may be run from within the build space directory as follows:

> ./examples/mint_getting_started_ex

By default the example will use a 25× 25 Uniform Mesh domain defined on the interval ℐ : [−5.0, 5.0]× [−5.0, 5.0].
The resulting VTK file is stored in the specified file, uniform_mesh.vtk. A depiction of the mesh showing a plot of
Himmelblau’s Function computed over the constituent Nodes of the mesh is illustrated in Fig. 7.1.

The user may choose to use an Unstructured Mesh instead by specifying the --unstructured option at the command
line as follows:

7.6. Mint User Guide 91

https://www.cprogramming.com/c++11/c++11-lambda-closures.html
https://www.cprogramming.com/c++11/c++11-lambda-closures.html
https://vtk.org/Wiki/images/5/51/VTK-File-Formats.pdf
https://wci.llnl.gov/simulation/computer-codes/visit
https://www.paraview.org/
https://vtk.org/Wiki/images/5/51/VTK-File-Formats.pdf
../../../../../index.html
https://en.wikipedia.org/wiki/Himmelblau%27s_function

Axom Documentation

Fig. 7.1: Plot of Himmelblau’s Function computed over the constituent Nodes of the Uniform Mesh.

92 Chapter 7. Axom Copyright and License Information

https://en.wikipedia.org/wiki/Himmelblau%27s_function

Axom Documentation

> ./examples/mint_getting_started_ex --unstructured

The code will generate an Unstructured Mesh by triangulating the Uniform Mesh such that each quadrilateral is subdi-
vided into four triangles. The resulting unstructured mesh is stored in a VTK file, unstructured_mesh.vtk, depicted
in Fig. 7.2.

Fig. 7.2: Plot of Himmelblau’s Function computed over the constituent Nodes of the Unstructured Mesh.

By default the resolution of the mesh is set to 25 × 25. A user may set the desired resolution to use at the command
line, using the --resolution [N] command line option.

For example, the following indicates that a mesh of resolution 100×100will be used instead when running the example.

> ./examples/mint_getting_started_ex --resolution 100

Note: This example is designed to run:

• In parallel on the GPU when the Axom Toolkit is compiled with RAJA and CUDA enabled.

• In parallel on the CPU when the Axom Toolkit is compiled with RAJA and OpenMP enabled.

7.6. Mint User Guide 93

https://en.wikipedia.org/wiki/Himmelblau%27s_function
../../../../../index.html
https://raja.readthedocs.io/en/main/index.html
../../../../../index.html
https://raja.readthedocs.io/en/main/index.html

Axom Documentation

• Sequentially on the CPU, otherwise.

Preliminary Concepts

A mesh (sometimes also called a grid), denoted by ℳ(Ω), provides a discrete represenation of a geometric domain of
interest, Ω, on which, the underlying mathematical model is evaluated. The mathematical model is typically defined
by a system of governing Partial Differential Equations (PDEs) and associated boundary and initial conditions. The
solution to the governing PDE predicts a physical process that occurs and evolves onΩ over time. For example, consider
the flow around an aircraft, turbulence modeling, blast wave propagation over complex terrains, or, heat transfer in
contacting objects, to name a few. Evolving the mathematical model to predict such a physical process is typically
done numerically, which requires discretizing the governing PDE by a numerical scheme, such as a Finite Difference
(FD), Finite Volume (FV), or, the Finite Element Method (FEM), chief among them.

Fig. 7.3: Mesh discretization of a geometric domain: (a) Sample geometric domain, Ω. (b) Corresponding mesh of
the domain, ℳ(Ω). The nodes and cells of the mesh, depicted in red, correspond to the discrete locations where the
unknown variables of the governing PDE are stored and evaluated.

Discretization of the governing PDE requires the domain to be approximated with a mesh. For example, Fig. 7.3 (a)
depicts a geometric domain, Ω. The corresponding mesh, ℳ(Ω), is illustrated in Fig. 7.3 (b). The mesh approximates
the geometric domain, Ω, by a finite number of simple geometric entities, such as nodes and cells, depicted in red in
Fig. 7.3 (b). These geometric entities comprising the mesh define the discrete locations, in space and time, at which the
unknown variables, i.e., the degrees of freedom of the governing PDE, are evaluated, by the numerical scheme being
employed.

There are a variety of different Mesh Types one can choose from. The type of mesh employed depends on the choice of
the underlying numerical discretization scheme. For example, a finite difference scheme typically requires a Structured
Mesh. However, the finite volume and finite element methods may be implemented for both Structured Mesh and
Unstructured Mesh types. In contrast, meshless or mesh-free methods, such as Smoothed Particle Hydrodynamics
(SPH), discretize the governing PDE over a set of particles or nodes, using a Particle Mesh representation.

94 Chapter 7. Axom Copyright and License Information

Axom Documentation

Mesh Representation

Irrespective of the mesh type, a mesh essentially provides a data structure that enables efficient storage, management
and access of:

1. Mesh Geometry information (i.e., nodal coordinates),

2. Mesh Topology information (i.e., cell-to-node connectivity, etc.), and

3. Field Data stored on a mesh

The underlying, concrete representation of the Geometry and Topology of a mesh is the key distinguishing characteristic
used to classify a mesh into the different Mesh Types. As a prerequisite to the proceeding discussion on the taxonomy of
the various Mesh Types, this section provides a high level description of the key constituents of the Mesh Representation.
Namely, the Topology, Geometry and Field Data comprising a mesh.

Topology

The topology of a mesh, ℳ(Ω) ∈ R𝑑, is defined by the collection of topological entities, e.g. the Cells, Faces
and Nodes, comprising the mesh and the associated adjacency information that encodes the topological connections
between them, broadly referred to as Connectivity information. Each topological entity in the mesh is identified by
a unique index, as depicted in the sample Unstructured Mesh shown in Fig. 7.4. This provides a convenient way to
traverse and refer to individual entities in the mesh.

Fig. 7.4: Sample unstructured mesh. Each node, cell and face on the mesh has a unique index.

In Mint, the three fundamental topological entities comprising a mesh are (1) Cells, (2) Faces, and (3) Nodes.

Note: The current implementation does not provide first class support for edges and associated edge data in 3D.

7.6. Mint User Guide 95

Axom Documentation

However, this is a feature we are planning to support in future versions of Mint.

Cells

A cell, 𝒞𝑖, is given by an ordered list of Nodes, 𝒞𝑖 = {𝑛0, 𝑛1, ...𝑛𝑘}, where each entry, 𝑛𝑗 ∈ 𝒞𝑖, corresponds to a unique
node index in the mesh. The order of Nodes defining a cell is determined according to a prescribed local numbering
convention for a particular cell type. See Fig. 7.15 and Fig. 7.16. All Mint Cell Types follow the CGNS Numbering
Conventions.

Faces

Similarly, a face, ℱ𝑖, is defined by an ordered list of Nodes, ℱ𝑖 = {𝑛0, 𝑛1, ..., 𝑛𝑘}. Faces are essentially Cells whose
topological dimension is one less than the dimension of the Cells they are bound to. See Fig. 7.5. Consequently, the
constituent faces of a 3D cell are 2D topological entities, such as triangles or quads, depending on the cell type. The
faces of a 2D cell are 1D topological entities, i.e. segments. Last, the faces of a 1D cell are 0D topological entities, i.e.
Nodes.

Note: In 1D the Faces of a cell are equivalent to the constituent mesh Nodes, hence, Mint does not explicitly support
Faces in 1D.

Fig. 7.5: Constituent faces of a cell in 2D and 3D respectively. the constituent faces of a 3D cell are 2D topological
entities, such as triangles or quads, depending on the cell type. The faces of a 2D cell are 1D topological entities, i.e.
segments.

Face Types

A mesh face can be bound to either one or two Cells:

96 Chapter 7. Axom Copyright and License Information

https://cgns.github.io/CGNS_docs_current/sids/conv.html#unstructgrid.
https://cgns.github.io/CGNS_docs_current/sids/conv.html#unstructgrid.

Axom Documentation

• Faces bound to two Cells, within the same domain, are called internal faces.

• Faces bound to two Cells, across different domains (or partitions), are called internal boundary faces. Internal
boundary faces define the communication boundaries where ghost data is exchanged between domains.

• Faces bound to a single cell are called external boundary faces. External boundary faces (and/or their con-
sistuent nodes) are typically associated with a boundary condition.

Face Orientation

As with Cells, the ordering of the constituent nodes of a face is determined by the cell type. However, by convention,
the orientation of a face is according to an outward pointing face normal, as illustrated in Fig. 7.6.

Fig. 7.6: Face Orientation. (a) From the viewpoint of a cell, its constituent faces are oriented according to an outward
facing normal. (b) From the viewpoint of a face, a face is oriented according to an outward facing normal with respect
to the first cell abutting to the face, denoted by, 𝒞0.

From the viewpoint of a cell, 𝒞𝑘, its constituent faces, defined in the local node numbering of the cell, are oriented
according to an outward facing normal with respect to the cell, 𝒞𝑘. For example, in Fig. 7.6 (a), the triangle, 𝒞𝑘,
has three faces that are oriented according to an outward facing normal and defined using local node numbers with
respect to their cell as follows, ℱ0 = {0, 1}, ℱ1 = {1, 2} and ℱ2 = {2, 0}

As noted earlier, a face can have at most two adjacent Cells, denoted by 𝒞0 and 𝒞1. By convention, from the viewpoint
of a face, ℱ𝑘, defined using global node numbers, the face is oriented according to an outward facing normal with
respect to the cell corresponding to 𝒞0. As depicted in Fig. 7.6 (b), the face denoted by ℱ𝑘 has an outward facing
normal with respect to 𝒞0, consequently it is defined as follows, ℱ𝑘 = {1, 2}.

Note: By convention, 𝒞1 is set to −1 for external boundary faces, which are bound to a single cell.

7.6. Mint User Guide 97

Axom Documentation

Nodes

The Nodes are zero dimensional topological entities and hence, are the lowest dimensional constituent
entities of a mesh. The Nodes are associated with the spatial coordinates of the mesh and are used in
defining the topology of the higher dimensional topological entities comprising the mesh, such as the
Cells, Faces, etc., as discussed earlier. In a sense, the Nodes provide the means to link the Topology of the
mesh to its constituent Geometry and thereby instantiate the mesh in physical space.

Definition

A mesh node, ∖⟩, is associated with a point, 𝑝𝑖 ∈ R𝑑 and provides the means to:

1. Link the Topology of the mesh to its constituent Geometry

2. Support one or more degrees of freedom, evaluated at the given node location.

Notably, the nodes of a mesh may be more than just the vertices of the mesh. As discussed in the Preliminary Concepts
section, a mesh is a discretization of a PDE. Recall, the primary purpose of the mesh is to define the discrete locations,
in both space and time, at which the unknown variables or degrees of freedom of the governing PDE are evaluated.
Depending on the numerical scheme employed and the Cell Types used, additional mesh Nodes may be located on the
constituent cell faces, edges and in the cell interior. For example, in the Finite Element Method (FEM), the nodes for
the linear Lagrange Finite Elements, see Fig. 7.15, are located at the cell vertices. However, for quadratic Cell Types,
see Fig. 7.16, the Lagrange 𝑃 2 finite element, for the quadrilateral and hexahedron (in 3D) cells, includes as Nodes,
the cell, face and edge (in 3D) centroids in addition to the cell vertices. Other higher order finite elements may involve
additional nodes for each edge and face as well as in the interior of the cell.

Connectivity

The topological connections or adjecencies between the Cells, Faces and Nodes comprising the mesh, give rise to a
hierarchical topological structure, depicted in Fig. 7.7, that is broadly referred to as Connectivity information. At the
top level, a mesh consists of one or more Cells, which constitute the highest dimensional entity comprising the mesh.
Each cell is bounded by zero or more Faces, each of which is bounded by one or more Nodes.

The topological connections between the constituent entities of the mesh can be distinguished in (a) downward and (b)
upward topological connections, as illustrated in Fig. 7.7.

• The downward topological connections encode the connections from higher dimensional mesh entities to lower
dimensional entities, such as cell-to-node, face-to-node or cell-to-face.

• The upward topological connections, also called reverse connectivities, encode the connections from lower di-
mensional mesh entities to higher dimensional entities, such as face-to-cell.

Two key guiding considerations in the design and implementation of mesh data structures are storage and computational
efficiency. In that respect, the various Mesh Types offer different advantages and tradeoffs. For example, the inherent
regular topology of a Structured Mesh implicitly defines the Connectivity information. Consequently, the topological
connections between mesh entities can be efficiently computed on-the-fly. However, for an Unstructured Mesh, the
Connectivity information has to be extracted and stored explicitly so that it is readily available for computation.

An Unstructured Mesh representation that explicitly stores all 0 to 𝑑 topological entities and associated downward
and upward Connectivity information is said to be a full mesh representation. Otherwise, it is called a reduced mesh
representation. In practice, it can be prohibitively expensive to store a full mesh representation. Consequently, most
applications keep a reduced mesh representation.

The question that needs to be addressed at this point is what Connectivity information is generally required. The answer
can vary depending on the application. The type of operations performed on the mesh impose the requirements for the

98 Chapter 7. Axom Copyright and License Information

Axom Documentation

Fig. 7.7: Hierarchical topological structure illustrating the downward and upward topological connections of the con-
stituent mesh entities supported in Mint.

7.6. Mint User Guide 99

Axom Documentation

Connectivity information needed. The minimum sufficient representation for an Unstructured Mesh is the cell-to-node
Connectivity, since, all additional Connectivity information can be subsequently computed based on this information.

In an effort to balance both flexibility and simplicity, Mint, in its simplest form, employs the minumum sufficient
Unstructured Mesh representation, consisting of the cell-to-node Connectivity. This allows applications to employ a
fairly light-weight mesh representation when possible. However, for applications that demand additional Connectivity
information, Mint provides methods to compute the needed additional information.

Warning: The present implementation of Mint provides first class support for cell-to-node, cell-to-face, face-to-
cell and face-to-node Connectivity information for all the Mesh Types. Support for additional Connectivity infor-
mation will be added in future versions based on demand by applications.

Geometry

The Geometry of a mesh is given by a set of Nodes. Let 𝒩 = {𝑛0, 𝑛1, 𝑛2, ..., 𝑛𝑘} be the finite set of nodes comprising
a mesh, ℳ(Ω) ∈ R𝑑, where 𝑑 is the spatial dimension, 𝑑 ∈ {1, 2, 3}. Each node, 𝑛𝑖 ∈ 𝒩 , corresponds to a point,
𝑝𝑖 ∈ R𝑑, whose spatial coordinates, i.e. an ordered tuple, define the physical location of the node in space, 𝑛𝑖 ∈ R𝑑 .
The Nodes link the Geometry of the mesh to its Topology. The Geometry and Topology of the mesh collectively define
the physical shape, size and location of the mesh in space.

Field Data

The Field Data are used to define various physical quantities over the constituent mesh entities, i.e. the Cells, Faces
and Nodes of the mesh. Each constituent mesh entity can be associated with zero or more fields, each of which may
correspond to a scalar, vector or tensor quantity, such as temperature, velocity, pressure, etc. Essentially, the Field
Data are used to define the solution to the unknown variables of the governing PDE that are evaluated on a given mesh,
as well as, any other auxiliary variables or derived quantities that an application may need.

Warning: The present implementation of Mint supports Field Data defined on Cells, Faces and Nodes. Support
for storing Field Data on edges will be added in future versions based on application demand.

Mesh Types

The underlying, concrete, representation of the constituent Geometry and Topology of a mesh is the key defining
charachteristic used in classifying a mesh into the different Mesh Types. The Geometry and Topology of a mesh is
specified in one of the following three representations:

1. Implicit Representation: based on mesh metadata

2. Explicit Representation: employs explicitly stored information.

3. Semi-Implicit Representation: combines mesh metadata and explicitly stored information.

The possible representation combinations of the constituent Geometry and Topology comprising a mesh define a tax-
onomy of Mesh Types summarized in the table below.

100 Chapter 7. Axom Copyright and License Information

Axom Documentation

Mesh Type Geometry Topology
Curvilinear Mesh explicit implicit
Rectilinear Mesh semi-implicit implicit
Uniform Mesh implicit implicit
Unstructured Mesh explicit explicit
Particle Mesh explicit implicit

A brief overview of the distinct characteristics of each of the Mesh Types is provided in the following sections.

Structured Mesh

A Structured Mesh discretization is characterized by its ordered, regular, Topology. A Structured Mesh divides the
computational domain into Cells that are logically arranged on a regular grid. The regular grid topology allows for the
constituent Nodes, Cells and Faces of the mesh to be identified using an IJK ordering scheme.

Numbering and Ordering Conventions in a Structured Mesh

The IJK ordering scheme employs indices along each dimension, typically using the letters i,j,k for the 1st, 2nd and
3rd dimension respectively. The IJK indices can be thought of as counters. Each index counts the number of Nodes
or Cells along a given dimension. As noted in the general Mesh Representation section, the constituent entities of the
mesh Topology are associated with a unique index. Therefore, a convention needs to be established for mapping the
IJK indices to the corresponding unique index and vice-versa.

The general convention and what Mint employs is the following:

• All Nodes and Cells of a Structured Mesh are indexed first along the I-direction, then along the J-direction and
last along the K-direction.

• Likewise, the Faces of a Structured Mesh are indexed by first counting the Faces of each of the Cells along the
I-direction (I-Faces), then the J-direction (J-Faces) and last the K-direction (K-Faces).

One of the important advantages of a Structured Mesh representation is that the constituent Topology of the mesh is
implicit. This enables a convenient way for computing the Connectivity information automatically without the need to
store this information explicitly. For example, an interior 2D cell (i.e., not at a boundary) located at 𝐶 = (𝑖, 𝑗), will
always have four face neighbors given by the following indices:

• 𝑁0 = (𝑖− 1, 𝑗),

• 𝑁1 = (𝑖+ 1, 𝑗),

• 𝑁2 = (𝑖, 𝑗 − 1) and

• 𝑁3 = (𝑖, 𝑗 + 1)

Notably, the neighboring information follows directly from the IJK ordering scheme and therefore does not need to be
stored explicitly.

In addition to the convenience of having automatic Connectivity, the IJK ordering of a Structured Mesh offers one other
important advantage over an Unstructured Mesh discretization. The IJK ordering results in coefficient matrices that
are banded. This enables the use of specialized algebraic solvers that rely on the banded structure of the matrix that
are generally more efficient.

While a Structured Mesh discretization offers several advantages, there are some notable tradeoffs and considerations.
Chief among them, is the implied restriction imposed by the regular topology of the Structured Mesh. Namely, the
number of Nodes and Cells on opposite sides must be matching. This requirement makes local refinement less effec-
tive, since grid lines need to span across the entire range along a given dimension. Moreover, meshing of complex

7.6. Mint User Guide 101

Axom Documentation

geometries, consisting of sharp features, is complicated and can lead to degenerate Cells that can be problematic in
the computation. These shortcomings are alleviated to an extent using a block-structured meshing strategy and/or
patch-based AMR, however the fundamental limitations still persist.

All Structured Mesh types have implicit Topology. However, depending on the underlying, concrete representation of
the consituent mesh Geometry, a Structured Mesh is distinguished into three subtypes:

1. Curvilinear Mesh,

2. Rectilinear Mesh, and,

3. Uniform Mesh

The key characteristics of each of theses types is discussed in more detail in the following sections.

Curvilinear Mesh

The Curvilinear Mesh, shown in Fig. 7.8, is logically a regular mesh, however in contrast to the Rectilinear Mesh and
Uniform Mesh, the Nodes of a Curvilinear Mesh are not placed along the Cartesian grid lines. Instead, the equations
of the governing PDE are transformed from the Cartesian coordinates to a new coordinate system, called a curvilinear
coordinate system. Consequently, the Topology of a Curvilinear Mesh is implicit, however its Geometry, given by the
constituent Nodes of the mesh, is explicit.

Fig. 7.8: Sample Curvilinear Mesh example.

The mapping of coordinates to the curvilinear coordinate system facilitates the use of structured meshes for bodies of
arbitrary shape. Note, the axes defining the curvilinear coordinate system do not need to be straight lines. They can
be curves and align with the contours of a solid body. For this reason, the resulting Curvilinear Mesh is often called a
mapped mesh or body-fitted mesh.

See the Tutorial for an example that demonstrates how to Create a Curvilinear Mesh.

102 Chapter 7. Axom Copyright and License Information

Axom Documentation

Rectilinear Mesh

A Rectilinear Mesh, depicted in Fig. 7.9, divides the computational domain into a set of rectangular Cells, arranged on
a regular lattice. However, in contrast to the Curvilinear Mesh, the Geometry of the mesh is not mapped to a different
coordinate system. Instead, the rows and columns of Nodes comprising a Rectilinear Mesh are parallel to the axis of the
Cartesian coordinate system. Due to this restriction, the geometric domain and resulting mesh are always rectangular.

Fig. 7.9: Sample Rectilinear Mesh example.

The Topology of a Rectilinear Mesh is implicit, however its constituent Geometry is semi-implicit. Although, the
Nodes are aligned with the Cartesian coordinate axis, the spacing between adjacent Nodes can vary. This allows
a Rectilinear Mesh to have tighter spacing over regions of interest and be sufficiently coarse in other parts of the
domain. Consequently, the spatial coordinates of the Nodes along each axis are specified explicitly in a seperate array
for each coordinate axis, i.e. 𝑥, 𝑦 and 𝑧 arrays for each dimension respectively. Given the IJK index of a node, its
corresponding physical coordinates can be obtained by taking the Cartesian product of the corresponding coordinate
along each coordinate axis. For this reason, the Rectilinear Mesh is sometimes called a product mesh.

See the Tutorial for an example that demonstrates how to Create a Rectilinear Mesh.

Uniform Mesh

A Uniform Mesh, depicted in Fig. 7.10, is the simplest of all three Structured Mesh types, but also, relatively the most
restrictive of all Mesh Types. As with the Rectilinear Mesh, a Uniform Mesh divides the computational domain into
a set of rectangular Cells arranged on a regular lattice. However, a Uniform Mesh imposes the additional restriction
that Nodes are uniformly distributed parallel to each axis. Therefore, in contrast to the Rectilinear Mesh, the spacing
between adjacent Nodes in a Uniform Mesh is constant.

The inherent constraints of a Uniform Mesh allow for a more compact representation. Notably, both the Topology and
Geometry of a Uniform Mesh are implicit. Given the origin of the mesh, 𝑋0 = (𝑥0, 𝑦0, 𝑧0)

𝑇 , i.e. the coordinates of the
lowest corner of the rectangular domain, and spacing along each direction, 𝐻 = (ℎ𝑥, ℎ𝑦, ℎ𝑧)

𝑇 , the spatial coordinates

7.6. Mint User Guide 103

Axom Documentation

Fig. 7.10: Sample Uniform Mesh example.

of any point, 𝑝 = (𝑝𝑥, 𝑝𝑦, 𝑝𝑧)
𝑇 , corresponding to a node with lattice coordinates, (𝑖, 𝑗, 𝑘), are computed as follows:

𝑝𝑥 = 𝑥0 +
𝑖 × ℎ𝑥 (7.1)

𝑝𝑦 = 𝑦0 +
𝑗 × ℎ𝑦 (7.2)
𝑝𝑧 = 𝑧0 +
𝑘 × ℎ𝑧 (7.3)

(7.4)

See the Tutorial for an example that demonstrates how to Create a Uniform Mesh.

Unstructured Mesh

The impetus for an Unstructured Mesh discretization is largely prompted by the need to model physical phenomena
on complex geometries. In relation to the various Mesh Types, an Unstructured Mesh discretization provides the most
flexibility. Notably, an Unstructured Mesh can accomodate different Cell Types and does not enforce any constraints or
particular ordering on the constituent Nodes and Cells. This makes an Unstructured Mesh discretization particularly
attractive, especially for applications that require local adaptive mesh refinement (i.e., local h-refinement) and deal with
complex geometries.

Generally, the advantages of using an Unstructured Mesh come at the cost of an increase in memory requirements
and computational intensity. This is due to the inherently explicit, Mesh Representation required for an Unstructured
Mesh. Notably, both Topology and Geometry are represented explicitly thereby increasing the storage requirements
and computational time needed per operation. For example, consider a stencil operation. For a Structured Mesh, the
neighbor indices needed by the stencil can be automatically computed directly from the IJK ordering, a relatively
fast and local operation. However, to obtain the neighbor indices in an Unstructured Mesh, the arrays that store the

104 Chapter 7. Axom Copyright and License Information

Axom Documentation

associated Connectivity information need to be accessed, resulting in additional load/store operations that are generaly
slower.

Depending on the application, the constituent Topology of an Unstructured Mesh may employ a:

1. Single Cell Type Topology, i.e. consisting of Cells of the same type, or,

2. Mixed Cell Type Topology, i.e. consisting of Cells of different type, i.e. mixed cell type.

There are subtle differrences in the underlying Mesh Representation that can result in a more compact and efficient
representation when the Unstructured Mesh employs a Single Cell Type Topology. The following sections discuss briefly
these differences and other key aspects of the Single Cell Type Topology and Mixed Cell Type Topology representations.
Moreover, the list of natively supported Cell Types that can be used with an Unstructured Mesh is presented, as well
as, the steps necessary to Add a New Cell Type in Mint.

Note: In an effort to balance both flexibility and simplicity, Mint, in its simplest form, employs the minumum suffi-
cient Unstructured Mesh Mesh Representation, consisting of the cell-to-node Connectivity. This allows applications
to employ a fairly light-weight mesh representation when possible. However, for applications that demand additional
Connectivity information, Mint provides methods to compute the needed additional information.

Single Cell Type Topology

An Unstructured Mesh with Single Cell Type Topology consists of a collection of Cells of the same cell type. Any
Structured Mesh can be treated as an Unstructured Mesh with Single Cell Type Topology, in which case, the resulting
Cells would either be segments (in 1D), quadrilaterals (in 2D) or hexahedrons (in 3D). However, an Unstructured
Mesh can have arbitrary Connectivity and does not impose any ordering constraints. Moreover, the Cells can also be
triangular (in 2D) or tetrahedral (in 3D). The choice of cell type generally depends on the application, the physics
being modeled, and the numerical scheme employed. An example tetrahedral Unstructured Mesh of the F-17 blended
wing fuselage configuration is shown in Fig. 7.11. For this type of complex geometries it is nearly impossible to obtain
a Structured Mesh that is adequate for computation.

Mint’s Mesh Representation of an Unstructured Mesh with Single Cell Type Topology consists of a the cell type spec-
ification and the cell-to-node Connectivity information. The Connectivity information is specified with a flat array
consisting of the node indices that comprise each cell. Since the constituent mesh Cells are of the same type, cell-
to-node information for a particular cell can be obtained by accessing the Connectivity array with a constant stride,
where the stride corresponds to the number of Nodes of the cell type being used. This is equivalent to a 2D row-major
array layout where the number of rows corresponds to the number of Cells in the mesh and the number of columns
corresponds to the stride, i.e. the number of Nodes per cell.

This simple concept is best illustrated with an example. Fig. 7.12 depicts a sample Unstructured Mesh with Single Cell
Type Topology consisting of 𝑁𝑐 = 4 triangular Cells. Each triangular cell, 𝐶𝑖, is defined by ||𝐶𝑖|| Nodes. In this case,
||𝐶𝑖|| = 3.

Note: The number of Nodes of the cell type used to define an Unstructured Mesh with Single Cell Type Topology,
denoted by ||𝐶𝑖||, corresponds to the constant stride used to access the flat cell-to-node Connectivity array.

Consequently, the length of the cell-to-node Connectivity array is then given by 𝑁𝑐 × ||𝐶𝑖||. The node indices for each
of the cells are stored from left to right. The base offset for a given cell is given as a multiple of the cell index and the
stride. As illustrated in Fig. 7.12, the base offset for cell 𝐶0 is 0× 3 = 0, the offest for cell 𝐶1 is 1× 3 = 3, the offset
for cell 𝐶2 is 2× 3 = 6 and so on.

Direct Stride Cell Access in a Single Cell Type Topology UnstructuredMesh

7.6. Mint User Guide 105

Axom Documentation

Fig. 7.11: Sample unstructured tetrahedral mesh of the F-17 blended wing fuselage configuration.

Fig. 7.12: Mesh Representation of an Unstructured Mesh with Single Cell Type Topology consiting of triangular Cells.
Knowing the cell type enables traversing the cell-to-node Connectivity array with a constant stride of 3, which corre-
sponds to the number of constituent Nodes of each triangle.

106 Chapter 7. Axom Copyright and License Information

Axom Documentation

In general, the Nodes of a cell, 𝐶𝑖, of an Unstructured Mesh with Single Cell Type Topology and cell stride ||𝐶𝑖|| = 𝑘,
can be obtained from a given cell-to-node Connectivity array as follows:

𝑛0 = 𝑐𝑒𝑙𝑙_𝑡𝑜_𝑛𝑜𝑑𝑒[𝑖× 𝑘] (7.5)
𝑛1 = 𝑐𝑒𝑙𝑙_𝑡𝑜_𝑛𝑜𝑑𝑒[𝑖× 𝑘 + 1] (7.6)
... (7.7)
𝑛𝑘 = 𝑐𝑒𝑙𝑙_𝑡𝑜_𝑛𝑜𝑑𝑒[𝑖× 𝑘 + (𝑘 − 1)] (7.8)

Cell Type Stride Topological Dimension Spatial Dimension
Quadrilateral 4 2 2,3
Triangle 3 2 2,3
Hexahdron 8 3 3
Tetrahedron 4 3 3

The same procedure follows for any cell type. Thereby, the stride for a mesh consisting of quadrilaterals is 4, the stride
for a mesh consisting of tetrahedrons is 4 and the stride for a mesh consisting of hexahedrons is 8. The table above
summarizes the possible Cell Types that can be employed for an Unstructured Mesh with Single Cell Type Topology,
corresponding stride and applicalble topological and spatial dimension.

See the Tutorial for an example that demonstrates how to Create an Unstructured Mesh.

Mixed Cell Type Topology

An Unstructured Mesh with Mixed Cell Type Topology provides the most flexibility relative to the other Mesh Types.
Similar to the Single Cell Type Topology Unstructured Mesh, the constituent Nodes and Cells of a Mixed Cell Type
Topology Unstructured Mesh can have arbitrary ordering. Both Topology and Geometry are explicit. However, a
Mixed Cell Type Topology Unstructured Mesh may consist Cells of different cell type. Hence, the cell topology and
cell type is said to be mixed.

Note: The constituent Cells of an Unstructured Mesh with Mixed Cell Type Topology have a mixed cell type. For this
reason, an Unstructured Mesh with Mixed Cell Type Topology is sometimes also called a mixed cell mesh or hybrid
mesh.

Several factors need to be taken in to account when selecting the cell topology of the mesh. The physics being modeled,
the PDE discretization employed and the required simulation fidelity are chief among them. Different Cell Types
can have superior properties for certain calculations. The continuous demand for increasing fidelity in physics-based
predictive modeling applications has prompted practitioners to employ a Mixed Cell Type Topology Unstructured Mesh
discretization in order to accurately capture the underlying physical phenomena.

For example, for Navier-Stokes viscous fluid-flow computations, at high Reynolds numbers, it is imperative to capture
the high gradients across the boundary layer normal to the wall. Typically, high-aspect ratio, anisotropic triangular
prisms or hexahedron Cells are used for discretizing the viscous region of the computational domain, while isotropic
tetrahedron or hexahedron Cells are used in the inviscid region to solve the Euler equations. The sample Mixed Cell
Type Topology Unstructured Mesh, of a Generic Wing/Fuselage configuration, depicted in Fig. 7.13, consists of tri-
angular prism Cells for the viscous boundary layer portion of the domain that are stitched to tetrahedra Cells for the
inviscid/Euler portion of the mesh.

The added flexibility enabled by employing a Mixed Cell Type Topology Unstructured Mesh imposes additional re-
quirements to the underlying Mesh Representation. Most notably, compared to the Single Cell Type Topology Mesh
Representation, the cell-to-node Connectivity array can consist Cells of different cell type, where each cell can have

7.6. Mint User Guide 107

Axom Documentation

Fig. 7.13: Sample Unstructured Mesh with Mixed Cell Type Topology of a Generic wing/fuselage configuration. The
mesh consists of high-aspect ratio prism cells in the viscous region of the computational domain to accurately capture
the high gradients across the boundary layer and tetrahedra cells for the inviscid/Euler portion of the mesh.

108 Chapter 7. Axom Copyright and License Information

Axom Documentation

a different number of Nodes. Consequently, the simple stride array access indexing scheme, used for the Single Cell
Type Topology Mesh Representation, cannot be employed to obtain cell-to-node information. For a Mixed Cell Type
Topology an indirect addressing access scheme must be used instead.

Fig. 7.14: Mesh Representation of a Mixed Cell Type Topology Unstructured Mesh with a total of 𝑁 = 3 Cells, 2
triangles and 1 quadrilateral. The Mixed Cell Type Topology representation consists of two additional arrays. First,
the Cell Offsets array, an array of size 𝑁 +1, where the first 𝑁 entries store the starting position to the flat cell-to-node
Connectivity array for each cell. The last entry of the Cell Offsets array stores the total length of the Connectivity array.
Second, the Cell Types array , an array of size 𝑁 , which stores the cell type of each constituent cell of the mesh.

There are a number of ways to represent a Mixed Cell Type Topology mesh. In addition to the cell-to-node Connectivity
array, Mint’s Mesh Representation for a Mixed Cell Type Topology Unstructured Mesh employs two additional arrays.
See sample mesh and corresponding Mesh Representation in Fig. 7.14. First, the Cell Offsets array is used to provide
indirect addressing to the cell-to-node information of each constituent mesh cell. Second, the Cell Types array is used
to store the cell type of each cell in the mesh.

The Cell Offsets is an array of size 𝑁 + 1, where the first 𝑁 entries, corresponding to each cell in the mesh, store the
start index position to the cell-to-node Connectivity array for the given cell. The last entry of the Cell Offsets array
stores the total length of the Connectivity array. Moreover, the number of constituent cell Nodes for a given cell can be
directly computed by subtracting a Cell’s start index from the next adjacent entry in the Cell Offsets array.

However, knowing the start index position to the cell-to-node Connectivity array and number of constituent Nodes for
a given cell is not sufficient to disambiguate and deduce the cell type. For example, both tetrahedron and quadrilateral
Cells are defined by 4 Nodes. The cell type is needed in order to correctly interpret the Topology of the cell according
to the cell’s local numbering. Consequently, the Cell Types array, whose length is 𝑁 , corresponding to the number of
cells in the mesh, is used to store the cell type for each constituent mesh cell.

Indirect Address Cell Access in a Mixed Cell Type Topology UnstructuredMesh

In general, for a given cell, 𝐶𝑖, of a Mixed Cell Type Topology Unstructured Mesh, the number of Nodes that define the

7.6. Mint User Guide 109

Axom Documentation

cell, ||𝐶𝑖||, is given by:

𝑘 = ||𝐶𝑖|| = 𝑐𝑒𝑙𝑙𝑠_𝑜𝑓𝑓𝑠𝑒𝑡[𝑖+ 1]− 𝑐𝑒𝑙𝑙𝑠_𝑜𝑓𝑓𝑠𝑒𝑡[𝑖] (7.9)
(7.10)

The corresponding cell type is directly obtained from the Cell Types array:

𝑐𝑡𝑦𝑝𝑒 = 𝑐𝑒𝑙𝑙_𝑡𝑦𝑝𝑒𝑠[𝑖] (7.11)
(7.12)

The list of constituent cell Nodes can then obtained from the cell-to-node Connectivity array as follows:

offset = cells_offset[i+1] (7.13)

k = cells_offset[i + 1] - cell_offset[i] (7.14)
(7.15)

n0 = 𝑐𝑒𝑙𝑙_𝑡𝑜_𝑛𝑜𝑑𝑒[𝑜𝑓𝑓𝑠𝑒𝑡](7.16)

n1 = 𝑐𝑒𝑙𝑙_𝑡𝑜_𝑛𝑜𝑑𝑒[𝑜𝑓𝑓𝑠𝑒𝑡+ 1](7.17)

... (7.18)

n𝑘 = 𝑐𝑒𝑙𝑙_𝑡𝑜_𝑛𝑜𝑑𝑒[𝑜𝑓𝑓𝑠𝑒𝑡+ (𝑘 − 1)](7.19)

See the Tutorial for an example that demonstrates how to Create a Mixed Unstructured Mesh.

Cell Types

Mint currently supports the common Linear Cell Types, depicted in Fig. 7.15, as well as, support for quadratic, quadri-
lateral and hexahedron Cells, see Fig. 7.16.

Note: All Mint Cell Types follow the CGNS Numbering Conventions.

Moreover, Mint is designed to be extensible. It is relatively straightforward to Add a New Cell Type in Mint. Each of
the Cell Types in Mint simply encode the following attributes:

• the cell’s topology, e.g. number of nodes, faces, local node numbering etc.,

• the corresponding VTK type, used for VTK dumps, and,

• the associated blueprint name, conforming to the Blueprint conventions, used for storing the mesh in Sidre

Warning: The Blueprint specification does not currently support the following cell types:

1. Transitional cell types, Pyramid(mint::PYRAMID) and Prism(mint::PRISM)

2. Quadratic cells, the 9-node, quadratic Quadrilateral(mint::QUAD9) and the 27-node, quadratic Hexahe-
dron(mint::HEX27)

110 Chapter 7. Axom Copyright and License Information

https://cgns.github.io/CGNS_docs_current/sids/conv.html#unstructgrid.
https://llnl-conduit.readthedocs.io/en/latest/blueprint.html
../../../../sidre/docs/sphinx/index.html
https://llnl-conduit.readthedocs.io/en/latest/blueprint.html

Axom Documentation

Fig. 7.15: List of supported linear cell types and their respective local node numbering.

Fig. 7.16: List of supported quadratic cell types and their respective local node numbering.

7.6. Mint User Guide 111

Axom Documentation

Add a New Cell Type

Warning: This section is under construction.

Particle Mesh

A Particle Mesh, depicted in Fig. 7.17, discretizes the computational domain by a set of particles which correspond to
the Nodes at which the solution is evaluated. A Particle Mesh is commonly employed in the so called particle methods,
such as Smoothed Particle Hydrodynamics (SPH) and Particle-In-Cell (PIC) methods, which are used in a variety of
applications ranging from astrophysics and cosmology simulations to plasma physics.

There is no special ordering imposed on the particles. Therefore, the particle coordinates are explicitly specified by
nodal coordinates, similar to an Unstructured Mesh. However, the particles are not connected to form a control volume,
i.e. a filled region of space. Consequently, a Particle Mesh does not have Faces and any associated Connectivity
information. For this reason, methods that employ a Particle Mesh discretization are often referred to as meshless or
mesh-free methods.

Fig. 7.17: Sample Particle Mesh within a box domain.

A Particle Mesh can be thought of as having explicit Geometry, but, implicit Topology. Mint’s Mesh Representation
for a Particle Mesh, associates the constituent particles with the Nodes of the mesh. The Nodes of the Particle Mesh
can also be thought of as Cells that are defined by a single node index. However, since this information can be trivially
obtained there is no need to be stored explicitly.

Note: A Particle Mesh can only store variables at its constituent particles, i.e. the Nodes of the mesh. Consequently,
a Particle Mesh in Mint can only be associated with node-centered Field Data.

112 Chapter 7. Axom Copyright and License Information

Axom Documentation

Component Architecture

This section links the core concepts, presented in the Mesh Representation and Mesh Types sections, to the underlying
implementation of the Mint mesh data model. The Component Architecture of Mint’s mesh data model consists of a
class hierarchy that follows directly the taxonomy of Mesh Types discussed earlier. The constituent classes of the mesh
data model are combined using a mix of class inheritance and composition, as illustrated in the class diagram depicted
in Fig. 7.18.

Fig. 7.18: Component Architecture of the Mint mesh data model, depicting the core mesh classes and the inter-
relationship between them. The solid arrows indicate an inheritance relationship, while the dashed arrows indicate
an ownership relationship between two classes.

At the top level, The Mesh Base Class, implemented in mint::Mesh, stores common mesh attributes and fields. More-
over, it defines a unified Application Programming Interface (API) for the various Mesh Types. See the Mint Doxygen
API Documentation for a complete specification of the API. The Concrete Mesh Classes extend The Mesh Base Class
and implement the Mesh Representation for each of the Mesh Types respectively. The mint::ConnectivityArray
and mint::MeshCoordinates classes, are the two main internal support classes that underpin the implementation of
the Concrete Mesh Classes and facilitate the representation of the constituent Geometry and Topology of the mesh.

Note: All Mint classes and functions are encapsulated in the axom::mint namespace.

The Mesh Base Class

The Mesh Base Class stores common attributes associated with a mesh. Irrespective of the mesh type, a Mint mesh
has two identifiers. The mesh BlockID and mesh DomainID, which are assigned by domain decomposition. Notably,
the computational domain can consist of one or more blocks, which are usually defined by the user or application.
Each block is then subsequently partitioned to multiple domains that are distributed across processing units for parallel
computation. For example, a sample block and domain decomposition is depicted in Fig. 7.19. Each of the constituent
domains is represented by a corresponding mint::Mesh instance, which in aggregate define the entire problem domain.

7.6. Mint User Guide 113

../../../../../doxygen/html/minttop.html
../../../../../doxygen/html/minttop.html

Axom Documentation

Fig. 7.19: Sample block & domain decomposition of the computational domain. The computational domain is defined
using 3 blocks (left). Each block is further partitioned into two or more domains(right). A mint::Mesh instance
represents one of the constituent domains used to define the overall problem domain.

Note: A mint::Mesh instance provides the means to store the mesh BlockID and DomainID respectively. However,
Mint does not impose a numbering or partitioning scheme. Assignment of the BlockID and DomainID is handled at
the application level and by the underlying mesh partitioner that is being employed.

Moreover, each mint::Mesh instance has associated Mesh Field Data, represented by the mint::FieldData class.
Each of the constituent topological mesh entities, i.e. the Cells, Faces and Nodes comprising the mesh, has a handle to
a corresponding mint::FieldData instance. The mint::FieldData object essentialy provides a container to store
and manage a collection of fields, defined over the corresponding mesh entity.

Warning: Since a Particle Mesh is defined by a set of Nodes, it can only store Field Data at its constituent Nodes.
All other supported Mesh Types can have Field Data associated with their constituent Cells, Faces and Nodes.

Mesh Field Data

A mint::FieldData instance typically stores multiple fields. Each field is represented by an instance of a
mint::Field object and defines a named numerical quantity, such as mass, velocity, temperature, etc., defined on
a given mesh. Moreover, a field can be either single-component, i.e. a scalar quantity, or, multi-component, e.g. a
vector or tensor quantity. Typically, a field represents some physical quantity that is being modeled, or, an auxiliary
quantity that is needed to perform a particular calculation.

In addition, each mint::Field instance can be of different data type. The mint::FieldData object can store dif-
ferent types of fields. For example, floating point quantities i.e., float or double, as well as, integral quantities,
i.e. int32_t, int64_t, etc. This is accomplished using a combination of C++ templates and inheritance. The
mint::Field object is an abstract base class that defines a type-agnostic interface to encapsulate a field. Since
mint::Field is an abstract base class, it is not instantiated directly. Instead, all fields are created by instantiating
a mint::FieldVariable object, a class templated on data type, that derives from the mint::Field base class. For
example, the code snippet below illustrates how fields of different type can be instantiated.

114 Chapter 7. Axom Copyright and License Information

Axom Documentation

...

// create a scalar field to store mass as a single precision quantity
mint::Field* mass = new mint::FieldVariable< float >("mass", size);

// create a velocity vector field as a double precision floating point quantity
constexpr int NUM_COMPONENTS = 3;
mint::Field* vel = new mint::FieldVariable< double >("vel", size, NUM_COMPONENTS);

...

Generally, in application code, it is not necessary to create fields using the mint::FieldVariable class directly. The
mint::Mesh object provides convenience methods for adding, removing and accessing fields on a mesh. Consult the
Tutorial for more details on Working with Fields on a Mesh.

Concrete Mesh Classes

The Concrete Mesh Classes, extend The Mesh Base Class and implement the underlying Mesh Representation of the
various Mesh Types, depicted in Fig. 7.20.

Fig. 7.20: Depiction of the supported Mesh Types with labels of the corresponding Mint class used for the underlying
Mesh Representation.

Structured Mesh

All Structured Mesh types in Mint can be represented by an instance of the mint::StructuredMesh class, which
derives directly from The Mesh Base Class, mint::Mesh. The mint::StructuredMesh class is also an abstract
base class that encapsulates the implementation of the implicit, ordered and regular Topology that is common to all
Structured Mesh types. The distinguishing characteristic of the different Structured Mesh types is the representation
of the constituent Geometry. Mint implements each of the different Structured Mesh types by a corresponding class,
which derives directly from mint::StructuredMesh and thereby inherit its implicit Topology representation.

Consequently, support for the Uniform Mesh is implemented in mint::UniformMesh. The Geometry of a Uniform
Mesh is implicit, given by two attributes, the mesh origin and spacing. Consequently, the mint::UniformMesh con-

7.6. Mint User Guide 115

Axom Documentation

sists of two data members to store the origin and spacing of the Uniform Mesh and provides functionality for evaluating
the spatial coordinates of a node given its corresponding IJK lattice coordinates.

Similarly, support for the Rectilinear Mesh is implemented in mint::RectilinearMesh. The constituent Geometry
representation of the Rectilinear Mesh is semi-implicit. The spatial coordinates of the Nodes along each axis are
specified explicitly while the coordinates of the interior Nodes are evaluated by taking the Cartesian product of the
corresponding coordinate along each coordinate axis. The mint::RectilinearMesh consists of seperate arrays to
store the coordinates along each axis for the semi-implicit Geometry representation of the Rectilinear Mesh.

Support for the Curvilinear Mesh is implemented by the mint::CurvilinearMesh class. The Curvilinear Mesh
requires explicit representation of its constituent Geometry. The mint::CurvilinearMesh makes use of the
mint::MeshCoordinates class to explicitly represent the spatial coordinates associated with the constituent Nodes
of the mesh.

Unstructured Mesh

Mint’s Unstructured Mesh representation is provided by the mint::UnstructuredMesh class, which derives directly
from the The Mesh Base Class, mint::Mesh. An Unstructured Mesh has both explicit Geometry and Topology. As
with the mint::CurvilinearMesh class, the explicit Geometry representation of the Unstructured Mesh employs
the mint::MeshCoordinates. The constituent Topology is handled by the mint::ConnectivityArray, which is
employed for the representation of all the topological Connectivity information, i.e. cell-to-node, face-to-node, face-
to-cell, etc.

Note: Upon construction, a mint::UnstructuredMesh instance consists of the minimum sufficient representation
for an Unstructured Mesh comprised of the cell-to-node Connectivity information. Applications that require face Con-
nectivity information must explicitly call the initializeFaceConnectivity() method on the corresponding Un-
structured Mesh object.

Depending on the cell Topology being employed, an Unstructured Mesh can be classified as either a Single Cell Type
Topology Unstructured Mesh or a Mixed Cell Type Topology Unstructured Mesh. To accomodate these two different
representations, the mint::UnstructuredMesh class, is templated on CELL_TOPOLOGY. Internally, the template ar-
gument is used to indicate the type of mint::ConnectivityArray to use, i.e. whether, stride access addressing or
indirect addressing is used, for Single Cell Type Topology and Mixed Cell Type Topology respectively.

Particle Mesh

Support for the Particle Mesh representation is implemented in mint::ParticleMesh, which derives directly from
The Mesh Base Class, mint::Mesh. A Particle Mesh discretizes the domain by a set of particles, which correspond
to the constituent Nodes of the mesh. The Nodes of a Particle Mesh can also be thought of as Cells, however, since
this information is trivially obtrained, there is not need to be stored explicitly, e.g. using a Single Cell Type Topology
Unstructured Mesh representation. Consequently, the Particle Mesh representation consists of explicit Geometry and
implicit Topology. As with the mint::CurvilinearMesh and mint::UnstructuredMesh, the explicit Geometry of
the Particle Mesh is represented by employing the mint::MeshCoordinates as an internal class member.

The following code snippet provides a simple examples illustrating how to construct and operate on a Particle Mesh.

1 // Copyright (c) 2017-2024, Lawrence Livermore National Security, LLC and
2 // other Axom Project Developers. See the top-level LICENSE file for details.
3 //
4 // SPDX-License-Identifier: (BSD-3-Clause)
5

6 /*!
(continues on next page)

116 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

7 * \file
8 *
9 * \brief Illustrates how to construct and use a ParticleMesh to perform

10 * operations on a set of particles.
11 */
12

13 // Axom utilities
14 #include "axom/core.hpp"
15 #include "axom/mint.hpp"
16

17 // namespace aliases
18 namespace mint = axom::mint;
19 namespace utilities = axom::utilities;
20

21 //--
22 int main(int AXOM_UNUSED_PARAM(argc), char** AXOM_UNUSED_PARAM(argv))
23 {
24 using int64 = axom::IndexType;
25 const axom::IndexType NUM_PARTICLES = 100;
26 const int DIMENSION = 3;
27

28 const double HI = 10.0;
29 const double LO = -10.0;
30 const double VLO = 0.0;
31 const double VHI = 1.0;
32

33 // STEP 0: create the ParticleMesh
34 mint::ParticleMesh particles(DIMENSION, NUM_PARTICLES);
35

36 // STEP 1: Add fields to the Particles
37 double* vx = particles.createField<double>("vx", mint::NODE_CENTERED);
38 double* vy = particles.createField<double>("vy", mint::NODE_CENTERED);
39 double* vz = particles.createField<double>("vz", mint::NODE_CENTERED);
40 int64* id = particles.createField<int64>("id", mint::NODE_CENTERED);
41

42 // STEP 2: grab handle to the particle position arrays
43 double* px = particles.getCoordinateArray(mint::X_COORDINATE);
44 double* py = particles.getCoordinateArray(mint::Y_COORDINATE);
45 double* pz = particles.getCoordinateArray(mint::Z_COORDINATE);
46

47 // STEP 3: loop over the particle data
48 const int64 numParticles = particles.getNumberOfNodes();
49 for(int64 i = 0; i < numParticles; ++i)
50 {
51 px[i] = utilities::random_real(LO, HI);
52 py[i] = utilities::random_real(LO, HI);
53 pz[i] = utilities::random_real(LO, HI);
54

55 vx[i] = utilities::random_real(VLO, VHI);
56 vy[i] = utilities::random_real(VLO, VHI);
57 vz[i] = utilities::random_real(VLO, VHI);
58

(continues on next page)

7.6. Mint User Guide 117

Axom Documentation

(continued from previous page)

59 id[i] = i;
60

61 } // END
62

63 // STEP 4: write the particle mesh in VTK format for visualization
64 mint::write_vtk(&particles, "particles.vtk");
65

66 return 0;
67 }

Mesh Storage Management

Mint provides a flexible Mesh Storage Management system that can optionally interoperate with Sidre as the under-
lying, in-memory, hierarchichal datastore. This enables Mint to natively conform to Conduit’s Blueprint protocol for
representing a computational mesh in memory and thereby, facilitate with the integration across different physics pack-
ages.

Mint’s Mesh Storage Management substrate supports three storage options. The applicable operations and ownership
state of each storage option are summarized in the table below, followed by a brief description of each option.

Modify Reallocate Ownership
Native Storage ✓ ✓ Mint
External Storage ✓ Application
Sidre Storage ✓ ✓ Sidre

Native Storage

A Mint object using Native Storage owns all memory and associated data. The data can be modified and the associated
memory space can be reallocated to grow and shrink as needed. However, once the Mint object goes out-of-scope, all
data is deleted and the memory is returned to the system.

See the Tutorial for more information and a set of concrete examples on how to create a mesh using Native Storage.

External Storage

A Mint object using External Storage has a pointer to a supplied application buffer. In this case, the data can be
modified, but the application maintains ownership of the underlying memory. Consequently, the memory space cannot
be reallocated and once the Mint object goes out-of-scope, the data is not deleted. The data remains persistent in the
application buffers until it is deleted by the application.

See the Tutorial for more information on Using External Storage.

118 Chapter 7. Axom Copyright and License Information

../../../../sidre/docs/sphinx/index.html
https://llnl-conduit.readthedocs.io/en/latest/index.html
https://llnl-conduit.readthedocs.io/en/latest/blueprint.html
../../../../sidre/docs/sphinx/index.html

Axom Documentation

Sidre Storage

A Mint object using Sidre Storage is associated with a Sidre Group object which has owneship of the mesh data. In this
case the data can be modified and the associated memory can be reallocated to grow and shrink as needed. However,
when the Mint object goes out-of-scope, the data remains persistent in Sidre.

See the Tutorial for more information and a set of concrete examples on Using Sidre.

Execution Model

Mint provides a mesh-aware Execution Model, based on the RAJA programming model abstraction layer. The ex-
ecution model supports on-node fine-grain parallelism for mesh traversals. Thereby, enable the implementation of
computational kernels that are born parallel and portable across different processor architectures.

Note: To utilize NVIDIA GPUs, using the RAJA CUDA backend, Axom needs to be compiled with CUDA support
and linked to a CUDA-enabled RAJA library. Consult the Axom Quick Start Guide for more information.

The execution model consists of a set of templated functions that accept two arguments:

1. A pointer to a mesh object corresponding to one of the supported Mesh Types.

2. The kernel that defines the operations on the supplied mesh, which is usually specified by a C++11 Lambda
Expression.

Note: Instead of a C++11 Lambda Expression a C++ functor may also be used to encapsulate a kernel. However,
in our experience, using C++11 functors, usually requires more boiler plate code, which reduces readability and may
potentially have a negative impact on performance.

The Execution Model provides Node Traversal Functions, Cell Traversal Functions and Face Traversal Functions to
iterate and operate on the constituent Nodes, Cells and Faces of the mesh respectively. The general form of these
functions is shown in Fig. 7.21.

Fig. 7.21: General form of the constituent templated functions of the Execution Model

As shown in Fig. 7.21, the key elements of the functions that comprise the Execution Model are:

• The Iteration Space: Indicated by the function suffix, used to specify the mesh entities to traverse and operate
upon, e.g. the Nodes, Cells or Faces of the mesh.

• The Execution Policy: Specified as as the first, required, template argument to the constituent functions of the
Execution Model. The Execution Policy specifies where and how the kernel is executed.

• The Execution Signature: Specified by a second, optional, template argument to the constituent functions of the
Execution Model. The Execution Signature specifies the type of arguments supplied to a given kernel.

• The Kernel: Supplied as an argument to the constituent functions of the Execution Model. It defines the body
of operations performed on the supplied mesh.

7.6. Mint User Guide 119

../../../../sidre/docs/sphinx/index.html
../../../../sidre/docs/sphinx/index.html
https://raja.readthedocs.io/en/main/index.html
https://raja.readthedocs.io/en/main/index.html
https://raja.readthedocs.io/en/main/index.html
../../../../../docs/sphinx/quickstart_guide/index.html
https://www.cprogramming.com/c++11/c++11-lambda-closures.html

Axom Documentation

See the Tutorial for code snippets that illustrate how to use the Node Traversal Functions, Cell Traversal Functions and
Face Traversal Functions of the Execution Model.

Execution Policy

The Execution Policy is specifed as the first template argument and is required by all of the constituent functions of the
Execution Model. Axom defines a set of high-level execution spaces, summarized in the table below.

Execution Policy Requirements Description
SEQ_EXEC None. Sequential execution on the CPU.
OMP_EXEC RAJA + OpenMP Parallel execution on the CPU using

OpenMP.
CUDA_EXEC< BLOCK-
SIZE >

RAJA + CUDA + Umpire (memory
management)

Parallel execution on CUDA-enabled
GPUs.

CUDA_EXEC< BLOCK-
SIZE, ASYNC >

RAJA + CUDA + Umpire (memory
management)

Asynchronous parallel execution on
CUDA-enabled GPUs.

Internally, the implementation uses the axom::execution_space traits object to map each execution space to corre-
sponding RAJA execution policies and bind the default memory space for a given execution space. For example, the
default memory space for the axom::CUDA_EXEC execution space is unified memory, which can be accessed from both
the host (CPU) and device (GPU).

Execution Signature

The Execution Signature is specified as the second, optional template argument to the constituent functions of the
Execution Model. The Execution Signature indicates the list of arguments that are supplied to the user-specified kernel.

Note: If not specified, the default Execution Signature is set to mint::xargs::index, which indicates that the
supplied kernel takes a single argument that corresponds to the index of the corresponding iteration space, i.e, the loop
index.

The list of currently available Execution Signature options is based on commonly employed access patterns found in
various mesh processing and numerical kernels. However, the Execution Model is designed such that it can be extended
to accomodate additional access patterns.

• mint::xargs::index

– Default Execution Signature to all functions of the Execution Model

– Indicates that the supplied kernel takes a single argument that corresponds to the index of the iteration
space, i.e. the loop index.

• mint::xargs::ij/mint::xargs::ijk

– Applicable only with a Structured Mesh.

– Used with Node Traversal Functions (mint::for_all_nodes()) and Cell Traversal Functions
(mint::for_all_cells()).

– Indicates that the supplied kernel takes the corresonding (𝑖, 𝑗) or (𝑖, 𝑗, 𝑘) indices, in 2D or 3D respec-
tively, as additional arguments.

• mint::xargs::x/mint::xargs::xy/mint::xargs::xyz

120 Chapter 7. Axom Copyright and License Information

https://raja.readthedocs.io/en/main/index.html
https://raja.readthedocs.io/en/main/index.html
https://umpire.readthedocs.io/en/develop/
https://raja.readthedocs.io/en/main/index.html
https://umpire.readthedocs.io/en/develop/
https://raja.readthedocs.io/en/main/index.html

Axom Documentation

– Used with Node Traversal Functions (mint::for_all_nodes()).

– Indicates that the supplied kernel takes the corresponding nodal coordinates, 𝑥 in 1D, (𝑥, 𝑦) in 2D and
(𝑥, 𝑦, 𝑧) in 3D, in addition to the corresponding node index, nodeIdx.

• mint::xargs::nodeids

– Used with Cell Traversal Functions (mint::for_all_cells()) and Face Traversal Functions
(mint::for_all_faces()).

– Indicates that the specified kernel is supplied the constituent node IDs as an array argument to the
kernel.

• mint::xargs::coords

– Used with Cell Traversal Functions (mint::for_all_cells()). and Face Traversal Functions
(mint::for_all_faces())

– Indicates that the specified kernel is supplied the constituent node IDs and corresponding coordinates
as arguments to the kernel.

• mint::xargs::faceids

– Used with the Cell Traversal Functions (mint::for_all_cells()).

– Indicates that the specified kernel is supplied an array consisting of the constituent cell face IDs as an
additional argument.

• mint::xargs::cellids

– Used with the Face Traversal Functions (mint::for_all_faces()).

– Indicates that the specified kernel is supplied the ID of the two abutting Cells to the given. By con-
ventions, tor external boundary Faces, that are bound to a single cell, the second cell is set to −1.

Warning: Calling a traversal function with an unsupported Execution Signature will result in a compile time error.

Finite Elements

The Finite Element Method (FEM) is a widely used numerical technique, employed for the solution of partial differen-
tial equations (PDEs), arising in structural engineering analysis and more broadly in the field of continuum mechanics.

However, due to their generality and mathematically sound foundation, Finite Elements, are often employed in the
implementation of other numerical schemes and for various computational operators, e.g. interpolation, integration,
etc.

Mint provides basic support for Finite Elements that consists:

1. Lagrange Basis shape functions for commonly employed Cell Types

2. Corresponding Quadratures (under development)

3. Routines for forward/inverse Isoparametric Mapping, and

4. Infrastructure to facilitate adding shape functions for new Cell Types, as well as, to Add a New Finite Element
Basis.

This functionality is collectively exposed to the application through the mint::FiniteElement class. Concrete ex-
amples illustrating the usage of the mint::FiniteElement class within an application code are provided in the Finite
Elements tutorial section.

7.6. Mint User Guide 121

Axom Documentation

A Finite Element Basis consists of a family of shape functions corresponding to different Cell Types. Mint currently
supports Lagrange isoparametric Finite Elements.

Lagrange Basis

The Lagrange basis consists of Cell Types whose shape functions are formed from products of the one-dimensional
Lagrange polynomial. This section provides a summary of supported Lagrange Basis Cell Types, their associated shape
functions, and summarize the process to Add a New Lagrange Element.

Note: The shape functions of all Lagrange Cells in Mint, follow the CGNS Numbering Conventions and are defined
within a reference coordinate system, on the closed interval 𝜉 ∈ [0, 1].

QUAD: Linear Quadrilateral

𝑁0 = (1− 𝜉) × (1− 𝜂)
𝑁1 = 𝜉 × (1− 𝜂)
𝑁2 = 𝜉 × 𝜂
𝑁3 = (1− 𝜉) × 𝜂

122 Chapter 7. Axom Copyright and License Information

https://cgns.github.io/CGNS_docs_current/sids/conv.html#unstructgrid.

Axom Documentation

QUAD9: Quadratic Quadrilateral

𝑁0 = (𝜉 − 1)(2𝜉 − 1) × (𝜂 − 1)(2𝜂 − 1)
𝑁1 = 𝜉(2𝜉 − 1) × (𝜂 − 1)(2𝜂 − 1)
𝑁2 = 𝜉(2𝜉 − 1) × 𝜂(2𝜂 − 1)
𝑁3 = (𝜉 − 1)(2𝜉 − 1) × 𝜂(2𝜂 − 1)

𝑁4 = 4𝜉(1− 𝜉) × (𝜂 − 1)(2𝜂 − 1)
𝑁5 = 𝜉(2𝜉 − 1) × 4𝜂(1− 𝜂)
𝑁6 = 4𝜉(1− 𝜉) × 𝜂(2𝜂 − 1)
𝑁7 = (𝜉 − 1)(2𝜉 − 1) × 4𝜂(1− 𝜂)

𝑁8 = 4𝜉(1− 𝜉) × 4𝜂(1− 𝜂)

TRIANGLE: Linear Triangle

𝑁0 = 1− 𝜉 − 𝜂
𝑁1 = 𝜉
𝑁2 = 𝜂

7.6. Mint User Guide 123

Axom Documentation

HEX: Linear Hexahedron

𝑁0 = (1− 𝜉) × (1− 𝜂) × (1− 𝜁)
𝑁1 = 𝜉 × (1− 𝜂) × (1− 𝜁)
𝑁2 = 𝜉 × 𝜂 × (1− 𝜁)
𝑁3 = (1− 𝜉) × 𝜂 × (1− 𝜁)

𝑁4 = (1− 𝜉) × (1− 𝜂) × 𝜁
𝑁5 = 𝜉 × (1− 𝜂) × 𝜁
𝑁6 = 𝜉 × 𝜂 × 𝜁
𝑁7 = (1− 𝜉) × 𝜂 × 𝜁

124 Chapter 7. Axom Copyright and License Information

Axom Documentation

HEX27: Quadratic Hexahedron

𝑁0 = (𝜉 − 1)(2𝜉 − 1) × (𝜂 − 1)(2𝜂 − 1) × (𝜁 − 1)(2𝜁 − 1)
𝑁1 = 𝜉(2𝜉 − 1) × (𝜂 − 1)(2𝜂 − 1) × (𝜁 − 1)(2𝜁 − 1)
𝑁2 = 𝜉(2𝜉 − 1) × 𝜂(2𝜂 − 1) × (𝜁 − 1)(2𝜁 − 1)
𝑁3 = (𝜉 − 1)(2𝜉 − 1) × 𝜂(2𝜂 − 1) × (𝜁 − 1)(2𝜁 − 1)

𝑁4 = (𝜉 − 1)(2𝜉 − 1) × (𝜂 − 1)(2𝜂 − 1) × 𝜁(2𝜁 − 1)
𝑁5 = 𝜉(2𝜉 − 1) × (𝜂 − 1)(2𝜂 − 1) × 𝜁(2𝜁 − 1)
𝑁6 = 𝜉(2𝜉 − 1) × 𝜂(2𝜂 − 1) × 𝜁(2𝜁 − 1)
𝑁7 = (𝜉 − 1)(2𝜉 − 1) × 𝜂(2𝜂 − 1) × 𝜁(2𝜁 − 1)

𝑁8 = 4𝜉(1− 𝜉) × (𝜂 − 1)(2𝜂 − 1) × (𝜁 − 1)(2𝜁 − 1)
𝑁9 = 𝜉(2𝜉 − 1) × 4𝜂(1− 𝜂) × (𝜁 − 1)(2𝜁 − 1)
𝑁10 = 4𝜉(1− 𝜉) × 𝜂(2𝜂 − 1) × (𝜁 − 1)(2𝜁 − 1)
𝑁11 = (𝜉 − 1)(2𝜉 − 1) × 4𝜂(1− 𝜂) × (𝜁 − 1)(2𝜁 − 1)

𝑁12 = 4𝜉(1− 𝜉) × (𝜂 − 1)(2𝜂 − 1) × 𝜁(2𝜁 − 1)
𝑁13 = 𝜉(2𝜉 − 1) × 4𝜂(1− 𝜂) × 𝜁(2𝜁 − 1)
𝑁14 = 4𝜉(1− 𝜉) × 𝜂(2𝜂 − 1) × 𝜁(2𝜁 − 1)
𝑁15 = (𝜉 − 1)(2𝜉 − 1) × 4𝜂(1− 𝜂) × 𝜁(2𝜁 − 1)

𝑁16 = (𝜉 − 1)(2𝜉 − 1) × (𝜂 − 1)(2𝜂 − 1) × 4𝜁(1− 𝜁)
𝑁17 = 𝜉(2𝜉 − 1) × (𝜂 − 1)(2𝜂 − 1) × 4𝜁(1− 𝜁)
𝑁18 = 𝜉(2𝜉 − 1) × 𝜂(2𝜂 − 1) × 4𝜁(1− 𝜁)
𝑁19 = (𝜉 − 1)(2𝜉 − 1) × 𝜂(2𝜂 − 1) × 4𝜁(1− 𝜁)

𝑁20 = (𝜉 − 1)(2𝜉 − 1) × 4𝜂(1− 𝜂) × 4𝜁(1− 𝜁)
𝑁21 = 𝜉(2𝜉 − 1) × 4𝜂(1− 𝜂) × 4𝜁(1− 𝜁)
𝑁22 = 4𝜉(1− 𝜉) × (𝜂 − 1)(2𝜂 − 1) × 4𝜁(1− 𝜁)
𝑁23 = 4𝜉(1− 𝜉) × 𝜂(2𝜂 − 1) × 4𝜁(1− 𝜁)
𝑁24 = 4𝜉(1− 𝜉) × 4𝜂(1− 𝜂) × (𝜁 − 1)(2𝜁 − 1)
𝑁25 = 4𝜉(1− 𝜉) × 4𝜂(1− 𝜂) × 𝜁(2𝜁 − 1)

𝑁26 = 4𝜉(1− 𝜉) × 4𝜂(1− 𝜂) × 4𝜁(1− 𝜁)

7.6. Mint User Guide 125

Axom Documentation

PYRAMID: Linear Pyramid

𝑁0 = (1− 𝜉) × (1− 𝜂) × (1− 𝜁)
𝑁1 = 𝜉 × (1− 𝜂) × (1− 𝜁)
𝑁2 = 𝜉 × 𝜂 × (1− 𝜁)
𝑁3 = (1− 𝜉) × 𝜂 × (1− 𝜁)
𝑁4 = 𝜁

126 Chapter 7. Axom Copyright and License Information

Axom Documentation

PRISM: Linear Prism/Wedge

𝑁0 = (1− 𝜉)− 𝜂 × (1− 𝜁)
𝑁1 = 𝜉 × (1− 𝜁)
𝑁2 = 𝜂 × (1− 𝜁)
𝑁3 = (1− 𝜉)− 𝜂 × 𝜁
𝑁4 = 𝜉 × 𝜁
𝑁5 = 𝜂 × 𝜁

Add a New Lagrange Element

Warning: This section is under construction.

Isoparametric Mapping

Warning: This section is under construction.

Quadratures

Warning: Support for Quadratures in Mint is under development.

Add a New Finite Element Basis

Warning: This section is under construction.

7.6. Mint User Guide 127

Axom Documentation

Tutorial

The Tutorial section consists of simple examples and code snippets that illustrate how to use Mint’s core classes and
functions to construct and operate on the various supported Mesh Types. The examples presented herein aim to illustrate
specific Mint concepts and capabilities in a structured and simple format. To quickly learn basic Mint concepts and
capabilities through an illustrative walk-through of a complete working code example, see the Getting Started with
Mint section. Additional code examples, based on Mint mini-apps, are provided in the Examples section. For thorough
documentation of the interfaces of the various classes and functions in Mint, developers are advised to consult the Mint
Doxygen API Documentation, in conjunction with this Tutorial.

Create a Uniform Mesh

A Uniform Mesh is relatively the simplest Structured Mesh type, but also, the most restrictive mesh out of all Mesh
Types. The constituent Nodes of the Uniform Mesh are uniformly spaced along each axis on a regular lattice. Conse-
quently, a Uniform Mesh can be easily constructed by simply specifying the spatial extents of the domain and desired
dimensions, e.g. the number of Nodes along each dimension.

For example, a 50×50 Uniform Mesh, defined on a bounded domain given by the interval ℐ : [−5.0, 5.0]× [−5.0, 5.0],
can be easily constructed as follows:

1 const double lo[] = {-5.0, -5.0};
2 const double hi[] = {5.0, 5.0};
3 mint::UniformMesh mesh(lo, hi, 50, 50);

The resulting mesh is depicted in Fig. 7.22.

Fig. 7.22: Resulting Uniform Mesh.

128 Chapter 7. Axom Copyright and License Information

../../../../../doxygen/html/minttop.html
../../../../../doxygen/html/minttop.html

Axom Documentation

Create a Rectilinear Mesh

A Rectilinear Mesh, also called a product mesh, is similar to a Uniform Mesh. However, the constituent Nodes of a
Rectilinear Mesh are not uniformly spaced. The spacing between adjacent Nodes can vary arbitrarily along each axis,
but the Topology of the mesh remains a regular Structured Mesh Topology. To allow for this flexibility, the coordinates
of the Nodes along each axis are explicitly stored in separate arrays, i.e. 𝑥, 𝑦 and 𝑧, for each coordinate axis respectively.

The following code snippet illustrates how to construct a 25×25Rectilinear Mesh where the spacing of the Nodes grows
according to an exponential stretching function along the 𝑥 and 𝑦 axis respectively. The resulting mesh is depicted in
Fig. 7.23.

1 constexpr double beta = 0.1;
2 const double expbeta = exp(beta);
3 const double invf = 1 / (expbeta - 1.0);
4

5 // construct a N x N rectilinear mesh
6 constexpr axom::IndexType N = 25;
7 mint::RectilinearMesh mesh(N, N);
8 double* x = mesh.getCoordinateArray(mint::X_COORDINATE);
9 double* y = mesh.getCoordinateArray(mint::Y_COORDINATE);

10

11 // fill the coordinates along each axis
12 x[0] = y[0] = 0.0;
13 for(int i = 1; i < N; ++i)
14 {
15 const double delta = (exp(i * beta) - 1.0) * invf;
16 x[i] = x[i - 1] + delta;
17 y[i] = y[i - 1] + delta;
18 }

Create a Curvilinear Mesh

A Curvilinear Mesh, also called a body-fitted mesh, is the most general of the Structured Mesh types. Similar to the
Uniform Mesh and Rectilinear Mesh types, a Curvilinear Mesh also has regular Structured Mesh Topology. However,
the coordinates of the Nodes comprising a Curvilinear Mesh are defined explicitly, enabling the use of a Structured Mesh
discretization with more general geometric domains, i.e., the domain may not be necessarily Cartesian. Consequently,
the coordinates of the Nodes are specified explicitly in separate arrays, 𝑥, 𝑦, and 𝑧.

The following code snippet illustrates how to construct a 25 × 25 Curvilinear Mesh. The coordinates of the Nodes
follow from the equation of a cylinder with a radius of 2.5. The resulting mesh is depicted in Fig. 7.24.

1 constexpr double R = 2.5;
2 constexpr double M = (2 * M_PI) / 50.0;
3 constexpr double h = 0.5;
4 constexpr axom::IndexType N = 25;
5

6 // construct the curvilinear mesh object
7 mint::CurvilinearMesh mesh(N, N);
8

9 // get a handle on the coordinate arrays
10 double* x = mesh.getCoordinateArray(mint::X_COORDINATE);
11 double* y = mesh.getCoordinateArray(mint::Y_COORDINATE);
12

(continues on next page)

7.6. Mint User Guide 129

Axom Documentation

Fig. 7.23: Resulting Rectilinear Mesh.

(continued from previous page)

13 // fill the coordinates of the curvilinear mesh
14 const axom::IndexType jp = mesh.nodeJp();
15 for(axom::IndexType j = 0; j < N; ++j)
16 {
17 const axom::IndexType j_offset = j * jp;
18

19 for(axom::IndexType i = 0; i < N; ++i)
20 {
21 const axom::IndexType nodeIdx = i + j_offset;
22

23 const double xx = h * i;
24 const double yy = h * j;
25 const double alpha = yy + R;
26 const double beta = xx * M;
27

28 x[nodeIdx] = alpha * cos(beta);
29 y[nodeIdx] = alpha * sin(beta);
30 } // END for all i
31

32 } // END for all j

130 Chapter 7. Axom Copyright and License Information

Axom Documentation

Fig. 7.24: Resulting Curvilinear Mesh.

7.6. Mint User Guide 131

Axom Documentation

Create an Unstructured Mesh

An Unstructured Mesh with Single Cell Type Topology has both explicit Topology and Geometry. However, the cell
type that the mesh stores is known a priori, allowing for an optimized underlying Mesh Representation, compared to
the more general Mixed Cell Type Topology Mesh Representation.

Since both Geometry and Topology are explicit, an Unstructured Mesh is created by specifying:

1. the coordinates of the constituent Nodes, and

2. the Cells comprising the mesh, defined by the cell-to-node Connectivity

Fig. 7.25: Resulting Single Cell Type Topology Unstructured Mesh

The following code snippet illustrates how to create the simple Unstructured Mesh depicted in Fig. 7.25.

1 constexpr int DIMENSION = 2;
2 constexpr mint::CellType CELL_TYPE = mint::TRIANGLE;
3

4 // Construct the mesh object
5 mint::UnstructuredMesh<mint::SINGLE_SHAPE> mesh(DIMENSION, CELL_TYPE);
6

7 // Append the mesh nodes
8 const axom::IndexType n0 = mesh.appendNode(0.0, 0.0);
9 const axom::IndexType n1 = mesh.appendNode(2.0, 0.0);

10 const axom::IndexType n2 = mesh.appendNode(1.0, 1.0);
11 const axom::IndexType n3 = mesh.appendNode(3.5, 1.0);
12 const axom::IndexType n4 = mesh.appendNode(2.5, 2.0);
13 const axom::IndexType n5 = mesh.appendNode(5.0, 0.0);
14

15 // Append mesh cells
16 const axom::IndexType c0[] = {n1, n3, n2};
17 const axom::IndexType c1[] = {n2, n0, n1};
18 const axom::IndexType c2[] = {n3, n4, n2};
19 const axom::IndexType c3[] = {n1, n5, n3};
20

21 mesh.appendCell(c0);
22 mesh.appendCell(c1);
23 mesh.appendCell(c2);
24 mesh.appendCell(c3);

132 Chapter 7. Axom Copyright and License Information

Axom Documentation

An Unstructured Mesh is represented by the mint::UnstructuredMesh template class. The template argument of
the class, mint::SINGLE_SHAPE indicates the mesh has Single Cell Type Topology. The two arguments to the class
constructor correspond to the problem dimension and cell type, which in this case, is 2 and mint::TRIANGLE respec-
tively. Once the mesh is constructed, the Nodes and Cells are appended to the mesh by calls to the appendNode() and
appendCell() methods respectively. The resulting mesh is shown in Fig. 7.25.

Tip: The storage for the mint::UstructuredMesh will grow dynamically as new Nodes and Cells are appended on
the mesh. However, reallocations tend to be costly operations. For best performance, it is advised the node capacity
and cell capacity for the mesh are specified in the constructor if known a priori. Consult the Mint Doxygen API
Documentation for more details.

Create a Mixed Unstructured Mesh

Compared to the Single Cell Type Topology Unstructured Mesh, a Mixed Cell Type Topology Unstructured Mesh has
also explicit Topology and Geometry. However, the cell type is not fixed. Notably, the mesh can store different Cell
Types, e.g. triangles and quads, as shown in the simple 2D mesh depicted in Fig. 7.26.

Fig. 7.26: Sample Mixed Cell Type Topology Unstructured Mesh

As with the Single Cell Type Topology Unstructured Mesh, a Mixed Cell Type Topology Unstructured Mesh is created
by specifying:

1. the coordinates of the constituent Nodes, and

2. the Cells comprising the mesh, defined by the cell-to-node Connectivity

The following code snippet illustrates how to create the simple Mixed Cell Type Topology Unstructured Mesh depicted
in Fig. 7.26, consisting of 2 triangles and 1 quadrilateral Cells.

1 constexpr int DIMENSION = 2;
2

3 // Construct the mesh object
4 mint::UnstructuredMesh<mint::MIXED_SHAPE> mesh(DIMENSION);
5

6 // Append the mesh nodes
7 const axom::IndexType n0 = mesh.appendNode(0.0, 0.0);
8 const axom::IndexType n1 = mesh.appendNode(2.0, 0.0);
9 const axom::IndexType n2 = mesh.appendNode(1.0, 1.0);

(continues on next page)

7.6. Mint User Guide 133

../../../../../doxygen/html/minttop.html
../../../../../doxygen/html/minttop.html

Axom Documentation

(continued from previous page)

10 const axom::IndexType n3 = mesh.appendNode(3.5, 1.0);
11 const axom::IndexType n4 = mesh.appendNode(2.5, 2.0);
12 const axom::IndexType n5 = mesh.appendNode(5.0, 0.0);
13

14 // Append mesh cells
15 const axom::IndexType c0[] = {n0, n1, n2};
16 const axom::IndexType c1[] = {n1, n5, n3, n2};
17 const axom::IndexType c2[] = {n3, n4, n2};
18

19 mesh.appendCell(c0, mint::TRIANGLE);
20 mesh.appendCell(c1, mint::QUAD);
21 mesh.appendCell(c2, mint::TRIANGLE);

Similarly, a Mixed Cell Type Topology Unstructured Mesh is represented by the mint::UnstructuredMesh tem-
plate class. However, the template argument to the class is mint::MIXED_SHAPE, which indicates that the mesh has
Mixed Cell Type Topology. In this case, the class constructor takes only a single argument that corresponds to the
problem dimension, i.e. 2. Once the mesh is constructed, the constituent Nodes of the mesh are specified by calling
the appendNode() method on the mesh. Similarly, the Cells are specified by calling the appendCell() method.
However, in this case, appendCell() takes one additional argument that specifies the cell type, since that can vary.

Tip: The storage for the mint::UstructuredMesh will grow dynamically as new Nodes and Cells are appended on
the mesh. However, reallocations tend to be costly operations. For best performance, it is advised the node capacity
and cell capacity for the mesh are specified in the constructor if known a priori. Consult the Mint Doxygen API
Documentation for more details.

Working with Fields

A mesh typically has associated Field Data that store various numerical quantities on the constituent Nodes, Cells and
Faces of the mesh.

Warning: Since a Particle Mesh is defined by a set of Nodes, it can only store Field Data at its constituent Nodes.
All other supported Mesh Types can have Field Data associated with their constituent Cells, Faces and Nodes.

Add Fields

Given a mint::Mesh instance, a field is created by specifying:

1. The name of the field,

2. The field association, i.e. centering, and

3. Optionally, the number of components of the field, required if the field is not a scalar quantity.

For example, the following code snippet creates the scalar density field, den, stored at the cell centers, and the vector
velocity field, vel, stored at the Nodes:

1 double* den = mesh->createField<double>("den", mint::CELL_CENTERED);
2 double* vel = mesh->createField<double>("vel", mint::NODE_CENTERED, 3);

134 Chapter 7. Axom Copyright and License Information

../../../../../doxygen/html/minttop.html
../../../../../doxygen/html/minttop.html

Axom Documentation

Note: If Sidre is used as the backend Mesh Storage Management substrate, createField() will populate the Sidre
tree hierarchy accordingly. See Using Sidre for more information.

• Note, the template argument to the createField() method indicates the underlying field type, e.g. double,
int , etc. In this case, both fields are of double field type.

• The name of the field is specified by the first required argument to the createField() call.

• The field association, is specified by the second argument to the createField() call.

• A third, optional, argument may be specified to indicate the number of components of the corresponding field.
In this case, since vel is a vector quantity the number of components must be explicitly specified.

• The createField() method returns a raw pointer to the data corresponding to the new field, which can be used
by the application.

Note: Absence of the third argument when calling createField() indicates that the number of components of the
field defaults to 1 and thereby the field is assumed to be a scalar quantity.

Request Fields by Name

Specific, existing fields can be requested by calling getFieldPtr() on the target mesh as follows:

1 double* den = mesh->getFieldPtr<double>("den", mint::CELL_CENTERED);
2

3 axom::IndexType nc = -1; // number of components
4 double* vel = mesh->getFieldPtr<double>("vel", mint::NODE_CENTERED, nc);

• As with the createField() method, the template argument indicates the underlying field type, e.g. double,
int , etc.

• The first argument specifies the name of the requested field

• The second argument specifies the corresponding association of the requested field.

• The third argument is optional and it can be used to get back the number of components of the field, i.e. if the
field is not a scalar quantity.

Note: Calls to getFieldPtr() assume that the caller knows a priori the:

• Field name,

• Field association, i.e. centering, and

• The underlying field type, e.g. double, int, etc.

7.6. Mint User Guide 135

../../../../sidre/docs/sphinx/index.html
../../../../sidre/docs/sphinx/index.html

Axom Documentation

Check Fields

An application can also check if a field exists by calling hasField() on the mesh, which takes as arguments the field
name and corresponding field association as follows:

1 const bool hasDen = mesh->hasField("den", mint::CELL_CENTERED);
2 const bool hasVel = mesh->hasField("vel", mint::NODE_CENTERED);

The hasField() method returns true or false indicating whether a given field is defined on the mesh.

Remove Fields

A field can be removed from a mesh by calling removeField() on the target mesh, which takes as arguments the field
name and corresponding field association as follows:

1 bool isRemoved = mesh->removeField("den", mint::CELL_CENTERED);

The removeField() method returns true or false indicating whether the corresponding field was removed success-
fully from the mesh.

Query Fields

In some cases, an application may not always know a priori the name or type of the field, or, we may want to write a
function to process all fields, regardless of their type.

The following code snippet illustrates how to do that:

1 const mint::FieldData* fieldData = mesh->getFieldData(FIELD_ASSOCIATION);
2

3 const int numFields = fieldData->getNumFields();
4 for(int ifield = 0; ifield < numFields; ++ifield)
5 {
6 const mint::Field* field = fieldData->getField(ifield);
7

8 const std::string& fieldName = field->getName();
9 axom::IndexType numTuples = field->getNumTuples();

10 axom::IndexType numComponents = field->getNumComponents();
11

12 std::cout << "field name: " << fieldName << std::endl;
13 std::cout << "numTuples: " << numTuples << std::endl;
14 std::cout << "numComponents: " << numComponents << std::endl;
15

16 if(field->getType() == mint::DOUBLE_FIELD_TYPE)
17 {
18 double* data = mesh->getFieldPtr<double>(fieldName, FIELD_ASSOCIATION);
19 data[0] = 42.0;
20 // process double precision floating point data
21 // ...
22 }
23 else if(field->getType() == mint::INT32_FIELD_TYPE)
24 {
25 int* data = mesh->getFieldPtr<int>(fieldName, FIELD_ASSOCIATION);

(continues on next page)

136 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

26 data[0] = 42;
27 // process integral data
28 // ...
29 }
30 // ...
31

32 } // END for all fields

• The mint::FieldData instance obtained by calling getFieldData() on the target mesh holds all the fields
with a field association given by FIELD_ASSOCIATION.

• The total number of fields can be obtained by calling getNumFields() on the mint::FieldData instance,
which allows looping over the fields with a simple for loop.

• Within the loop, a pointer to a mint::Field instance, corresponding to a particular field, can be requested by
calling getField() on the mint::FieldData instance, which takes the field index, ifield, as an argument.

• Given the pointer to a mint::Field instance, an application can query the following field metadata:

– The field name, by calling getName,

– The number of tuples of the field, by calling getNumTuples()

– The number of components of the field, by calling getNumComponents()

– The underlying field type by calling getType()

• Given the above metadata, the application can then obtain a pointer to the raw field data by calling
getFieldPtr() on the target mesh, as shown in the code snippet above.

Using External Storage

A Mint mesh may also be constructed from External Storage. In this case, the application holds buffers that describe
the constituent Geometry, Topology and Field Data of the mesh, which are wrapped in Mint for further processing.

The following code snippet illustrates how to use External Storage using the Single Cell Type Topology Unstructured
Mesh used to demonstrate how to Create an Unstructured Mesh with Native Storage:

1 constexpr axom::IndexType NUM_NODES = 6;
2 constexpr axom::IndexType NUM_CELLS = 4;
3

4 // application buffers
5 double x[] = {0.0, 2.0, 1.0, 3.5, 2.5, 5.0};
6 double y[] = {0.0, 0.0, 1.0, 1.0, 2.0, 0.0};
7

8 axom::IndexType cell_connectivity[] = {
9 1,

10 3,
11 2, // c0
12 2,
13 0,
14 1, // c1
15 3,
16 4,
17 2, // c2
18 1,

(continues on next page)

7.6. Mint User Guide 137

Axom Documentation

(continued from previous page)

19 5,
20 3 // c3
21 };
22

23 // cell-centered density field values
24 double den[] = {0.5, 1.2, 2.5, 0.9};
25

26 // construct mesh object with external buffers
27 using MeshType = mint::UnstructuredMesh<mint::SINGLE_SHAPE>;
28 MeshType* mesh =
29 new MeshType(mint::TRIANGLE, NUM_CELLS, cell_connectivity, NUM_NODES, x, y);
30

31 // register external field
32 mesh->createField<double>("den", mint::CELL_CENTERED, den);
33

34 // output external mesh to vtk
35 mint::write_vtk(mesh, "tutorial_external_mesh.vtk");
36

37 // delete the mesh, doesn't touch application buffers
38 delete mesh;
39 mesh = nullptr;

• The application has the following buffers:

– x and y buffers to hold the coordinates of the Nodes

– cell_connectivity, which stores the cell-to-node connectivity

– den which holds a scalar density field defined over the constituent Cells of the mesh.

• The mesh is created by calling the mint::UnstructuredMesh class constructor, with the following arguments:

– The cell type, i.e, mint::TRIANGLE,

– The total number of cells, NUM_CELLS,

– The cell_connectivity which specifies the Topology of the Unstructured Mesh,

– The total number of nodes, NUM_NODES, and

– The x, y coordinate buffers that specify the Geometry of the Unstructured Mesh.

• The scalar density field is registered with Mint by calling the createField() method on the target mesh in-
stance, as before, but also passing the raw pointer to the application buffer in a third argument.

Note: The other Mesh Types can be similarly constructed using External Storage by calling the appropriate constructor.
Consult the Mint Doxygen API Documentation for more details.

The resulting mesh instance points to the application’s buffers. Mint may be used to process the data e.g., Output to
VTK etc. The values of the data may also be modified, however the mesh cannot dynamically grow or shrink when
using External Storage.

Warning: A mesh using External Storage may modify the values of the application data. However, the data is
owned by the application that supplied the external buffers. Mint cannot reallocate external buffers to grow or shrink

138 Chapter 7. Axom Copyright and License Information

../../../../../doxygen/html/minttop.html

Axom Documentation

the the mesh. Once the mesh is deleted, the data remains persistent in the application buffers until it is deleted by
the application.

Using Sidre

Mint can also use Sidre as the underlying Mesh Storage Management substrate, thereby, facilitate the integration of
packages or codes within the overarching WSC software ecosystem. Sidre is another component of the Axom Toolkit
that provides a centralized data management system that enables efficient coordination of data across the constituent
packages of a multi-physics application.

There are two primary operations a package/code may want to perform:

1. Create a new Mesh in Sidre so that it can be shared with other packages.

2. Import a Mesh from Sidre, presumably created by different package or code upstream, to operate on, e.g. evaluate
a new field on the mesh, etc.

Code snippets illustrating these two operations are presented in the following sections using a simple Unstructured
Mesh example. However, the basic concepts extend to all supported Mesh Types.

Note: To use Sidre with Mint, the Axom Toolkit must be compiled with Conduit support and Sidre must be enabled
(default). Consult the Axom Quick Start Guide for the details on how to build the Axom Toolkit.

Create a new Mesh in Sidre

Creating a mesh using Sidre is very similar to creating a mesh that uses Native Storage. The key difference is that when
calling the mesh constructor, the target sidre::Group, that will consist of the mesh, must be specified.

Warning: The target sidre::Group supplied to the mesh constructor is expected to be empty.

The following code snippet illustrates this capability using the Single Cell Type Topology Unstructured Mesh used to
demonstrate how to Create an Unstructured Mesh with Native Storage. The key differences in the code are highlighted
below:

1 // create a Sidre Datastore to store the mesh
2 sidre::DataStore ds;
3 sidre::Group* group = ds.getRoot();
4

5 // Construct the mesh object and populate the supplied Sidre Group
6 mint::UnstructuredMesh<mint::SINGLE_SHAPE> mesh(2, mint::TRIANGLE, group);
7

8 // Append the mesh nodes
9 const axom::IndexType n0 = mesh.appendNode(0.0, 0.0);

10 const axom::IndexType n1 = mesh.appendNode(2.0, 0.0);
11 const axom::IndexType n2 = mesh.appendNode(1.0, 1.0);
12 const axom::IndexType n3 = mesh.appendNode(3.5, 1.0);
13 const axom::IndexType n4 = mesh.appendNode(2.5, 2.0);
14 const axom::IndexType n5 = mesh.appendNode(5.0, 0.0);
15

(continues on next page)

7.6. Mint User Guide 139

../../../../sidre/docs/sphinx/index.html
https://wci.llnl.gov/about-us/weapon-simulation-and-computing
../../../../sidre/docs/sphinx/index.html
../../../../../index.html
../../../../sidre/docs/sphinx/index.html
../../../../../index.html
https://llnl-conduit.readthedocs.io/en/latest/index.html
../../../../sidre/docs/sphinx/index.html
../../../../../docs/sphinx/quickstart_guide/index.html
../../../../../index.html
../../../../sidre/docs/sphinx/index.html

Axom Documentation

(continued from previous page)

16 // Append mesh cells
17 const axom::IndexType c0[] = {n1, n3, n2};
18 const axom::IndexType c1[] = {n2, n0, n1};
19 const axom::IndexType c2[] = {n3, n4, n2};
20 const axom::IndexType c3[] = {n1, n5, n3};
21

22 mesh.appendCell(c0);
23 mesh.appendCell(c1);
24 mesh.appendCell(c2);
25 mesh.appendCell(c3);
26

27 // create a cell-centered field
28 double* den = mesh.createField<double>("den", mint::CELL_CENTERED);
29

30 // set density values at each cell
31 den[0] = 0.5; // c0
32 den[1] = 1.2; // c1
33 den[2] = 2.5; // c2
34 den[3] = 0.9; // c3

Note: A similar construction follows for all supported Mesh Types. To Create a new Mesh in Sidre the target
sidre::Group that will consist of the mesh is specified in the constructor in addition to any other arguments. Consult
the Mint Doxygen API Documentation for more details.

When the constructor is called, the target sidre::Group is populated according to the Conduit Blueprint mesh de-
scription. Any subsequent changes to the mesh are reflected accordingly to the corresponding sidre::Group. The
Raw Sidre Data generated after the above code snippet executes are included for reference in the Appendix.

However, once the mesh object goes out-of-scope the mesh description and any data remains persisted in Sidre. The
mesh can be deleted from Sidre using the corresponding Sidre API calls.

Warning: A Mint mesh, bound to a Sidre Group, can only be deleted from Sidre when the Group consisting the
mesh is deleted from Sidre, or, when the Sidre Datastore instance that holds the Group is deleted. When a mesh,
bound to a Sidre Group is deleted, its mesh representation and any data remain persistent within the corresponding
Sidre Group hierarchy.

Import a Mesh from Sidre

Support for importing an existing mesh from Sidre, that conforms to the Conduit Blueprint mesh description, is provided
by the mint::getMesh() function. The mint::getMesh() function takes the sidre::Group instance consisting of
the mesh as an argument and returns a corresponding mint::Mesh instance. Notably, the returned mint:Mesh instance
can be any of the supported Mesh Types.

The following code snippet illustrates this capability:

1 mint::Mesh* imported_mesh = mint::getMesh(group);
2 std::cout << "Mesh Type: " << imported_mesh->getMeshType() << std::endl;
3 std::cout << "hasSidre: " << imported_mesh->hasSidreGroup() << std::endl;
4

(continues on next page)

140 Chapter 7. Axom Copyright and License Information

../../../../../doxygen/html/minttop.html
https://llnl-conduit.readthedocs.io/en/latest/index.html
https://llnl-conduit.readthedocs.io/en/latest/blueprint.html
../../../../sidre/docs/sphinx/index.html
../../../../sidre/docs/sphinx/index.html
../../../../sidre/docs/sphinx/index.html
../../../../sidre/docs/sphinx/index.html
../../../../sidre/docs/sphinx/index.html
../../../../sidre/docs/sphinx/index.html
../../../../sidre/docs/sphinx/index.html
../../../../sidre/docs/sphinx/index.html
../../../../sidre/docs/sphinx/index.html
../../../../sidre/docs/sphinx/index.html
https://llnl-conduit.readthedocs.io/en/latest/index.html
https://llnl-conduit.readthedocs.io/en/latest/blueprint.html

Axom Documentation

(continued from previous page)

5 mint::write_vtk(imported_mesh, "tutorial_imported_mesh.vtk");
6

7 delete imported_mesh;
8 imported_mesh = nullptr;

• The mesh is imported from Sidre by calling mint::getMesh(), passing the sidre::Group consisting of the
mesh as an argument.

• The mesh type of the imported mesh can be queried by calling the getMeshType() on the imported mesh object.

• Moreover, an application can check if the mesh is bound to a Sidre group by calling hasSidreGroup() on the
mesh.

• Once the mesh is imported, the application can operate on it, e.g. Output to VTK , etc., as illustrated in the above
code snippet.

• Any subsequent changes to the mesh are reflected accordingly to the corresponding sidre::Group

However, once the mesh object goes out-of-scope the mesh description and any data remains persisted in Sidre. The
mesh can be deleted from Sidre using the corresponding Sidre API calls.

Warning:

• When a Mint mesh bound to a Sidre Group is deleted, its mesh representation and any data remain persistent
within the corresponding Sidre Group hierarchy.

• A Mint mesh, bound to a Sidre Group, is deleted from Sidre by deleting the corresponding Sidre Group, or,
when the Sidre Datastore instance that holds the Group is deleted.

Node Traversal Functions

The Node Traversal Functions iterate over the constituent Nodes of the mesh and apply a user-supplied kernel
operation, often specified with a Lambda Expression. The Node Traversal Functions are implemented by the
mint::for_all_nodes() family of functions, which take an Execution Policy as the first template argument, and
optionally, a second template argument to indicate the Execution Signature of the supplied kernel.

Note: If a second template argument is not specified, the default Execution Signature is set to xargs::index, which
indicates that the supplied kernel takes a single argument corresponding to the index of the iteration space, in this case
the node index, nodeIdx.

Simple Loop Over Nodes

The following code snippet illustrates a simple loop over the Nodes of a 2D mesh that computes the velocity magnitude,
vmag, given the corresponding velocity components, vx and vy.

1 const double* vx = mesh.getFieldPtr<double>("vx", mint::NODE_CENTERED);
2 const double* vy = mesh.getFieldPtr<double>("vy", mint::NODE_CENTERED);
3

4 double* vmag = mesh.getFieldPtr<double>("vmag", mint::NODE_CENTERED);
5

6 mint::for_all_nodes<exec_policy>(
(continues on next page)

7.6. Mint User Guide 141

../../../../sidre/docs/sphinx/index.html
../../../../sidre/docs/sphinx/index.html
../../../../sidre/docs/sphinx/index.html
../../../../sidre/docs/sphinx/index.html
../../../../sidre/docs/sphinx/index.html
../../../../sidre/docs/sphinx/index.html
../../../../sidre/docs/sphinx/index.html
../../../../sidre/docs/sphinx/index.html
../../../../sidre/docs/sphinx/index.html
../../../../sidre/docs/sphinx/index.html
../../../../sidre/docs/sphinx/index.html
https://www.cprogramming.com/c++11/c++11-lambda-closures.html

Axom Documentation

(continued from previous page)

7 &mesh,
8 AXOM_LAMBDA(IndexType nodeIdx) {
9 const double vx2 = vx[nodeIdx] * vx[nodeIdx];

10 const double vy2 = vy[nodeIdx] * vy[nodeIdx];
11 vmag[nodeIdx] = sqrt(vx2 + vy2);
12 });

Loop with Coordinates

The coordinates of a node are sometimes also required in addition to its index. This additional information may be re-
quested by supplying xargs::x (in 1D), xargs::xy (in 2D) or xargs::xyz (in 3D), as the second template argument
to the for_all_nodes() method to specify the Execution Signature for the kernel.

This capability is demonstrated by the following code snippet, consisting of a kernel that updates the nodal velocity
components, based on old node positions, stored at the xold and yold node-centered fields, respectively.

1 double invdt = 0.5;
2

3 const double* xold = mesh.getFieldPtr<double>("xold", mint::NODE_CENTERED);
4 const double* yold = mesh.getFieldPtr<double>("yold", mint::NODE_CENTERED);
5

6 double* vx = mesh.getFieldPtr<double>("vx", mint::NODE_CENTERED);
7 double* vy = mesh.getFieldPtr<double>("vy", mint::NODE_CENTERED);
8

9 mint::for_all_nodes<exec_policy, mint::xargs::xy>(
10 &mesh,
11 AXOM_LAMBDA(IndexType nodeIdx, double x, double y) {
12 vx[nodeIdx] = (x - xold[nodeIdx]) * invdt;
13 vy[nodeIdx] = (y - yold[nodeIdx]) * invdt;
14 });

Note:

• The second template argument, mint::xargs::xy, indicates that the supplied kernel expects the x and y node
coordinates as arguments in addition to its nodeIdx.

Loop with IJK Indices

When working with a Structured Mesh, it is sometimes required to expose the regular Topology of the Structured Mesh
to obtain higher performance for a particular algorithm. This typically entails using the logical IJK ordering of the
Structured Mesh to implement certain operations. The template argument, xargs::ij or xargs::ijk, for 2D or 3D
respectively, may be used as the second template argument to the for_all_nodes() function to specify the Execution
Signature of the supplied kernel.

For example, the following code snippet illustrates how to obtain a node’s i and j indices within a sample kernel that
computes the linear index of each node and stores the result in a node-centered field, ID.

1 const IndexType jp = mesh.nodeJp();
2

(continues on next page)

142 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

3 IndexType* ID = mesh.getFieldPtr<IndexType>("ID", mint::NODE_CENTERED);
4 mint::for_all_nodes<exec_policy, mint::xargs::ij>(
5 &mesh,
6 AXOM_LAMBDA(IndexType nodeIdx, IndexType i, IndexType j) {
7 ID[nodeIdx] = i + j * jp;
8 });

Warning: In this case, the kernel makes use of the IJK indices and hence it is only applicable for a Structured
Mesh.

Cell Traversal Functions

The Cell Traversal Functions iterate over the constituent Cells of the mesh and apply a user-supplied kernel
operation, often specified with a Lambda Expression. The Cell Traversal Functions are implemented by the
mint::for_all_cells() family of functions, which take an Execution Policy as the first template argument, and
optionally, a second template argument to indicate the Execution Signature of the supplied kernel.

Note: If a second template argument is not specified, the default Execution Signature is set to xargs::index, which
indicates that the supplied kernel takes a single argument corresponding to the index of the iteration space, in this case
the cell index, cellIdx.

Simple Loop Over Cells

The following code snippet illustrates a simple loop over the constituent Cells of the mesh that computes the cell density
(den), given corresponding mass (mass) and volume (vol) quantities.

1 const double* mass = mesh.getFieldPtr<double>("mass", mint::CELL_CENTERED);
2 const double* vol = mesh.getFieldPtr<double>("vol", mint::CELL_CENTERED);
3

4 double* den = mesh.getFieldPtr<double>("den", mint::CELL_CENTERED);
5

6 mint::for_all_cells<exec_policy>(
7 &mesh,
8 AXOM_LAMBDA(IndexType cellIdx) {
9 den[cellIdx] = mass[cellIdx] / vol[cellIdx];

10 });

7.6. Mint User Guide 143

https://www.cprogramming.com/c++11/c++11-lambda-closures.html

Axom Documentation

Loop with Node IDs

Certain operations may require the IDs of the constituent cell Nodes for some calculation. The template argument,
xargs::nodeids, may be used as the second template argument to the for_all_cells() function to specify the
Execution Signature for the kernel. The xargs::nodeids indicates that the supplied kernel also takes the the IDs of
the constituent cell Nodes as an argument.

This feature is demonstrated with the following code snippet, which averages the node-centered velocity components
to corresponding cell-centered fields:

1 const double* vx = mesh.getFieldPtr<double>("vx", mint::NODE_CENTERED);
2 const double* vy = mesh.getFieldPtr<double>("vy", mint::NODE_CENTERED);
3

4 double* cell_vx = mesh.getFieldPtr<double>("cell_vx", mint::CELL_CENTERED);
5 double* cell_vy = mesh.getFieldPtr<double>("cell_vy", mint::CELL_CENTERED);
6

7 mint::for_all_cells<exec_policy, mint::xargs::nodeids>(
8 &mesh,
9 AXOM_LAMBDA(IndexType cellIdx, const IndexType* nodeIDs, IndexType N) {

10 // sum nodal contributions
11 cell_vx[cellIdx] = 0.0;
12 cell_vy[cellIdx] = 0.0;
13 for(IndexType inode = 0; inode < N; ++inode)
14 {
15 cell_vx[cellIdx] += vx[nodeIDs[inode]];
16 cell_vy[cellIdx] += vy[nodeIDs[inode]];
17 } // END for all cell nodes
18

19 // average at the cell center
20 const double invf = 1.0 / static_cast<double>(N);
21 cell_vx[cellIdx] *= invf;
22 cell_vy[cellIdx] *= invf;
23 });

Note:

• xargs::nodeids indicates that the specified kernel takes three arguments:

– cellIdx, the ID of the cell,

– nodeIDs, an array of the constituent node IDs, and

– N, the number of Nodes for the given cell.

144 Chapter 7. Axom Copyright and License Information

Axom Documentation

Loop with Coordinates

The coordinates of the constituent cell Nodes are often required in some calculations. A cell’s node coordinates may
be supplied to the specified kernel as an argument using xargs::coords as the second template argument to the
for_all_cells() function, to specify the Execution Signature of the supplied kernel.

This feature is demonstrated with the following code snippet, which computes the cell centroid by averaging the coor-
dinates of the constituent cell Nodes:

Note: Since this kernel does not use the node IDs, the argument to the kernel is annotated using the
AXOM_UNUSED_PARAM macro to silence compiler warnings.

1 double* xc = mesh.getFieldPtr<double>("xc", mint::CELL_CENTERED);
2 double* yc = mesh.getFieldPtr<double>("yc", mint::CELL_CENTERED);
3

4 mint::for_all_cells<exec_policy, mint::xargs::coords>(
5 &mesh,
6 AXOM_LAMBDA(IndexType cellIdx,
7 const numerics::Matrix<double>& coords,
8 const IndexType* AXOM_UNUSED_PARAM(nodeIdx)) {
9 // sum nodal coordinates

10 double xsum = 0.0;
11 double ysum = 0.0;
12 const int numNodes = coords.getNumColumns();
13 for(int inode = 0; inode < numNodes; ++inode)
14 {
15 const double* node = coords.getColumn(inode);
16 xsum += node[mint::X_COORDINATE];
17 ysum += node[mint::Y_COORDINATE];
18 } // end for all cell nodes
19

20 // compute centroid by averaging nodal coordinates
21 const double invf = 1.0 / static_cast<double>(numNodes);
22 xc[cellIdx] = xsum * invf;
23 yc[cellIdx] = ysum * invf;
24 });

Note:

• xargs::coords indicates that the specified kernel takes the following arguments:

– cellIdx, the ID of the cell,

– coords, a matrix that stores the cell coordinates, such that:

∗ The number of rows corresponds to the problem dimension, and,

∗ The number of columns corresponds to the number of nodes.

∗ The 𝑖𝑡ℎ column vector of the matrix stores the coordinates of the 𝑖𝑡ℎ node.

– nodeIdx array of corresponding node IDs.

7.6. Mint User Guide 145

Axom Documentation

Loop with Face IDs

The IDs of the constituent cell Faces are sometimes needed to access the corresponding face-centered quantities for
certain operations. The face IDs can be obtained using xargs::faceids as the second template argument to the
for_all_faces() function, to specify the Execution Signature of the supplied kernel.

This feature is demonstrated with the following code snippet, which computes the perimeter of each cell by summing
the pre-computed face areas:

1 const double* area = mesh.getFieldPtr<double>("area", mint::FACE_CENTERED);
2 double* perimeter =
3 mesh.getFieldPtr<double>("perimeter", mint::CELL_CENTERED);
4

5 mint::for_all_cells<exec_policy, mint::xargs::faceids>(
6 &mesh,
7 AXOM_LAMBDA(IndexType cellIdx, const IndexType* faceIDs, IndexType N) {
8 perimeter[cellIdx] = 0.0;
9 for(IndexType iface = 0; iface < N; ++iface)

10 {
11 perimeter[cellIdx] += area[faceIDs[iface]];
12 }
13 });

Note:

• xargs::faceids indicates that the specified kernel takes the following arguments:

– cellIdx, the ID of the cell,

– faceIDs, an array of the constituent face IDs, and,

– N, the number of Faces for the given cell.

Loop with IJK Indices

As with the Node Traversal Functions, when working with a Structured Mesh, it is sometimes required to expose
the regular Topology of the Structured Mesh to obtain higher performance for a particular algorithm. This typically
entails using the logical IJK ordering of the Structured Mesh to implement certain operations. The template argument,
xargs::ij (in 2D) or xargs::ijk (in 3D) may be used as the second template argument to the for_all_cells()
function, to specify the Execution Signature of the supplied kernel.

For example, the following code snippet illustrates to obtain a cell’s i and j indices within a kernel that computes the
linear index of each cell and stores the result in a cell-centered field, ID.

1 const IndexType jp = mesh.cellJp();
2

3 IndexType* ID = mesh.getFieldPtr<IndexType>("ID", mint::CELL_CENTERED);
4 mint::for_all_cells<exec_policy, mint::xargs::ij>(
5 &mesh,
6 AXOM_LAMBDA(IndexType cellIdx, IndexType i, IndexType j) {
7 ID[cellIdx] = i + j * jp;
8 });

146 Chapter 7. Axom Copyright and License Information

Axom Documentation

Warning: In this case, the kernel makes use of the IJK indices and hence it is only applicable for a Structured
Mesh.

Face Traversal Functions

The Face Traversal Functions functions iterate over the constituent Faces of the mesh and apply a user-supplied ker-
nel operation, often specified with a Lambda Expression. The Face Traversal Functions are implemented by the
mint::for_all_faces() family of functions. which take an Execution Policy as the first template argument, and
optionally, a second template argument to indicate the Execution Signature of the supplied kernel.

Note: If a second template argument is not specified, the default Execution Signature is set to xargs::index, which
indicates that the supplied kernel takes a single argument corresponding to the index of the iteration space, in this case
the face index, faceIdx.

Simple Loop Over Faces

The following code snippet illustrates a simple loop over the constituent Faces of a 2D mesh that computes an interpo-
lated face-centered quantity (temp) based on pre-computed interpolation coefficients t1 , t2 and w.

1 const double* t1 = mesh.getFieldPtr<double>("t1", mint::FACE_CENTERED);
2 const double* t2 = mesh.getFieldPtr<double>("t2", mint::FACE_CENTERED);
3 const double* w = mesh.getFieldPtr<double>("w", mint::FACE_CENTERED);
4

5 double* temp = mesh.getFieldPtr<double>("temp", mint::FACE_CENTERED);
6 mint::for_all_faces<exec_policy>(
7 &mesh,
8 AXOM_LAMBDA(IndexType faceIdx) {
9 const double wf = w[faceIdx];

10 const double a = t1[faceIdx];
11 const double b = t2[faceIdx];
12

13 temp[faceIdx] = wf * a + (1. - wf) * b;
14 });

Loop with Node IDs

The IDs of the constituent face Nodes are sometimes needed to access associated node-centered data for certain
calculations. The template argument, xargs::nodeids, may be used as the second template argument to the
for_all_faces() function to specify the Execution Signature of the supplied kernel. The xargs::nodeids template
argument indicates that the supplied kernel also takes the IDs of the constituent face Nodes as an argument.

This feature is demonstrated with the following code snippet which averages the node-centered velocity components
to corresponding face-centered quantities:

1 const double* vx = mesh.getFieldPtr<double>("vx", mint::NODE_CENTERED);
2 const double* vy = mesh.getFieldPtr<double>("vy", mint::NODE_CENTERED);
3

4 double* face_vx = mesh.getFieldPtr<double>("face_vx", mint::FACE_CENTERED);
(continues on next page)

7.6. Mint User Guide 147

https://www.cprogramming.com/c++11/c++11-lambda-closures.html

Axom Documentation

(continued from previous page)

5 double* face_vy = mesh.getFieldPtr<double>("face_vy", mint::FACE_CENTERED);
6

7 mint::for_all_faces<exec_policy, mint::xargs::nodeids>(
8 &mesh,
9 AXOM_LAMBDA(IndexType faceIdx, const IndexType* nodeIDs, IndexType N) {

10 // sum constituent face node contributions
11 face_vx[faceIdx] = 0.0;
12 face_vy[faceIdx] = 0.0;
13 for(int inode = 0; inode < N; ++inode)
14 {
15 face_vx[faceIdx] += vx[nodeIDs[inode]];
16 face_vy[faceIdx] += vy[nodeIDs[inode]];
17 } // END for all face nodes
18

19 // average
20 const double invf = 1.0 / static_cast<double>(N);
21 face_vx[faceIdx] *= invf;
22 face_vy[faceIdx] *= invf;
23 });

Note:

• xargs::nodeids indicates that the specified kernel takes three arguments:

– faceIdx, the ID of the cell,

– nodeIDs, an array of the constituent node IDs, and

– N, the number of Nodes for the corresponding face.

Loop with Coordinates

The coordinates of the constituent face Nodes are often required in some calculations. The constituent face node
coordinates may be supplied to the specified kernel as an argument using xargs::coords as the second template
argument to the for_all_faces() function, to specify the Execution Signature of the supplied kernel.

This feature is demonstrated with the following code snippet, which computes the face centroid by averaging the coor-
dinates of the constituent face Nodes:

Note: Since this kernel does not use the node IDs, the argument to the kernel is annotated using the
AXOM_UNUSED_PARAM macro to silence compiler warnings.

1 double* fx = mesh.getFieldPtr<double>("fx", mint::FACE_CENTERED);
2 double* fy = mesh.getFieldPtr<double>("fy", mint::FACE_CENTERED);
3

4 mint::for_all_faces<exec_policy, mint::xargs::coords>(
5 &mesh,
6 AXOM_LAMBDA(IndexType faceIdx,
7 const numerics::Matrix<double>& coords,
8 const IndexType* AXOM_UNUSED_PARAM(nodeIdx)) {

(continues on next page)

148 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

9 // sum nodal coordinates
10 double xsum = 0.0;
11 double ysum = 0.0;
12 const int numNodes = coords.getNumColumns();
13 for(int inode = 0; inode < numNodes; ++inode)
14 {
15 const double* node = coords.getColumn(inode);
16 xsum += node[mint::X_COORDINATE];
17 ysum += node[mint::Y_COORDINATE];
18 } // end for all face nodes
19

20 // compute centroid by averaging nodal coordinates
21 const double invf = 1.0 / static_cast<double>(numNodes);
22 fx[faceIdx] = xsum * invf;
23 fy[faceIdx] = ysum * invf;
24 });

Note:

• xargs::coords indicates that the specified kernel takes the following arguments:

• faceIdx, the ID of the cell,

• coords, a matrix that stores the cell coordinates, such that:

– The number of rows corresponds to the problem dimension, and,

– The number of columns corresponds to the number of nodes.

– The 𝑖𝑡ℎ column vector of the matrix stores the coordinates of the 𝑖𝑡ℎ node.

• nodeIdx array of corresponding node IDs.

Loop with Cell IDs

The constituent Faces of a mesh can be bound to either one or two Cells. The IDs of the Cells abutting a face are required
in order to obtain the corresponding cell-centered quantities, needed by some calculations. The template argument,
xargs::cellids, may be used as the second template argument to the for_all_faces() function to specify the
Execution Signature of the supplied kernel. Thereby, indicate that the supplied kernel also takes the IDs of the two
abutting cells as an argument.

Note: External boundary faces are only bound to one cell. By convention, the ID of the second cell for external
boundary faces is set to −1.

This functionality is demonstrated with the following example that loops over the constituent Faces of a mesh and
marks external boundary faces:

1 constexpr IndexType ON_BOUNDARY = 1;
2 constexpr IndexType INTERIOR = 0;
3

4 IndexType* boundary =
5 mesh.getFieldPtr<IndexType>("boundary", mint::FACE_CENTERED);

(continues on next page)

7.6. Mint User Guide 149

Axom Documentation

(continued from previous page)

6

7 mint::for_all_faces<exec_policy, mint::xargs::cellids>(
8 &mesh,
9 AXOM_LAMBDA(IndexType faceIdx, IndexType AXOM_UNUSED_PARAM(c1), IndexType c2) {

10 boundary[faceIdx] = (c2 == -1) ? ON_BOUNDARY : INTERIOR;
11 });

Note:

• xargs::coords indicates that the specified kernel takes the following arguments:

• faceIdx, the ID of the cell,

• c1, the ID of the first cell,

• c2, the ID of the second cell, set to a −1 if the face is an external boundary face.

Finite Elements

Mint provides basic support for Finite Elements consisting of Lagrange Basis shape functions for commonly employed
Cell Types and associated operations, such as functions to evaluate the Jacobian and compute the forward and inverse
Isoparametric Mapping.

Warning: Porting and refactoring of Mint’s Finite Elements for GPUs is under development. This feature will be
available in future versions of Mint.

Create a Finite Element Object

All associated functionality with Finite Elements is exposed to the application through the mint::FiniteElement
class. The following code snippet illustrates how to Create a Finite Element Object using a Linear Lagrangian Quadri-
lateral Finite Element as an example:

1 constexpr bool ZERO_COPY = true;
2

3 double coords[] = {
4 0.0,
5 0.0, // x1, y1
6 5.0,
7 0.0, // x2, y2
8 5.0,
9 5.0, // x3, y3,

10 0.0,
11 5.0 // x4, y4
12 };
13

14 numerics::Matrix<double> nodes_matrix(2, 4, coords, ZERO_COPY);
15 mint::FiniteElement fe(nodes_matrix, mint::QUAD);
16

(continues on next page)

150 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

17 // bind to FE basis, wires the shape function pointers
18 mint::bind_basis<MINT_LAGRANGE_BASIS, mint::QUAD>(fe);

• The mint::FiniteElement constructor takes two arguments:

– An 𝑁 ×𝑀 Matrix consisting of the cell coordinates, where, 𝑁 corresponds to physical dimension of the
cell and 𝑀 corresponds to the number of constituent cell nodes. The cell coordinates are organized in the
matrix such that, each column vector stores the coordinates of a corresponding node.

– The cell type, e.g. mint::QUAD

• Then, mint::bind_basis() is called to bind the Finite Element object to the Lagrange Basis. Effectively, this
step wires the pointers to the Lagrange Basis shape functions for the particular cell type.

A similar construction follows for different Cell Types and associated supported shape functions.

The Finite Element object, once constructed and bound to a basis, it may be used to perform the following operations:

1. Given a point in reference space, 𝜉 ∈ Ω̄:

• Evaluate Shape Functions, 𝑁𝑖(𝜉), associated with each of the constituent cell nodes, which are often used
as interpolation weights,

• Evaluate the Jacobian, 𝐽(𝜉), and

• Compute the Forward Isoparametric Map �⃗� : Ω̄ → Ω𝑒

2. Given a point in physical space, �̂� ∈ Ω:

• Compute the Inverse Isoparametric Map, which attempts to evaluate the corresponding reference coordi-
nates of the point, 𝜉 ∈ Ω̄, with respect to the finite element, Ω𝑒. This operation is only defined for points
that are inside the element (within some 𝜖).

Evaluate Shape Functions

The shape functions can be readily computed from any mint::FiniteElement instance by calling the
evaluateShapeFunctions() method on the finite element object. The following code snippet illustrates how to
Evaluate Shape Functions at the isoparametric center of a quadrilateral element, given by 𝜉 = (0.5, 0.5)𝑇 :

1 // isoparametric center
2 double xi[] = {0.5, 0.5};
3 double N[4];
4 fe.evaluateShapeFunctions(xi, N);

• The evaluateShapeFunctions() method takes two arguments:

– xi, an input argument corresponding to the reference coordinates of the point, 𝜉, where the shape functions
will be evaluated, and

– N, an output argument which is an array of length equal to the number of constituent cell Nodes, storing the
corresponding shape functions.

7.6. Mint User Guide 151

Axom Documentation

Evaluate the Jacobian

Similarly, for a reference point, 𝜉 ∈ Ω̄, the Jacobian matrix, consisting the sums of derivatives of shape functions and
the corresponding determinant of the Jacobian, can be readily computed from the finite element object as follows:

1 numerics::Matrix<double> J(2, 2);
2 fe.jacobian(xi, J);
3

4 const double jdet = numerics::determinant(J);
5 std::cout << "jacobian determinant: " << jdet << std::endl;

• The Jacobian matrix is computed by calling the jacobian() method on the finite element object, which takes
two arguments:

– xi, an input argument corresponding to the reference coordinates of the point, 𝜉, where the Jacobian will
be evaluated, and

– A matrix, represented by the axom::numerics::Matrix class, to store the resulting Jacobian.

Note: The Jacobian matrix is not necessarily a square matrix. It can have 𝑁 ×𝑀 dimensions, where, 𝑁 corresponds
to the dimension in the reference 𝑥𝑖-space and 𝑀 is the physical dimension. For example, a quadrilateral element is
defined in a 2D reference space, but it may be instantiated within a 3D ambient space. Consequently, the dimensions
of the corresponding Jacobian would be 2× 3 in this case.

• The determinant of the Jacobian can then be computed by calling axom::numerics::determinant(), with
the Jacobian as the input argument.

Forward Isoparametric Map

Given a point in reference space, 𝜉 ∈ Ω̄, the corresponding physical point, �̂� ∈ Ω𝑒 is computed by calling the
computePhysicalCoords() method on the finite element object as illustrated below:

1 double xc[2];
2 fe.computePhysicalCoords(xi, xc);
3 std::cout << "xc: (";
4 std::cout << xc[0] << ", " << xc[1];
5 std::cout << ")\n";

The computePhysicalCoords() method takes two arguments:

• xi, an input argument corresponding to the reference coordinates of the point, 𝜉, whose physical coordinates are
computed, and

• xc, an output array argument that stores the computed physical coordinates, �̂� ∈ Ω𝑒

152 Chapter 7. Axom Copyright and License Information

Axom Documentation

Inverse Isoparametric Map

Similarly, given a point in physical space, �̂� ∈ Ω, a corresponding point in the reference space of the element, 𝜉 ∈ Ω̄,
can be obtained by calling the computeReferenceCoords() method on the finite element object as illustrated by the
following:

1 double xr[2];
2 int status = fe.computeReferenceCoords(xc, xr);
3

4 switch(status)
5 {
6 case mint::INVERSE_MAP_FAILED:
7 std::cout << "Newton-Raphson failed!";
8 break;
9 case mint::OUTSIDE_ELEMENT:

10 std::cout << "point is outside!\n";
11 break;
12 default:
13 // found the reference coordinates!
14 std::cout << "xr: (";
15 std::cout << xr[0] << ", " << xr[1];
16 std::cout << ")\n";
17 }

The computeReferenceCoords() method takes two arguments:

• xc an input argument consisting of the physical point coordinates, whose reference coordinates are computed,
and

• xi an output array to store the computed reference coordinates, if successful.

The Inverse Isoparametric Map typically requires an iterative, non-linear solve, which is typically implemented with a
Newton-Raphson. Moreover, the Inverse Isoparametric Map is only defined for points within the element, Ω𝑒. Conse-
quently, the computeReferenceCoords()method returns a status that indicates whether the operation was successful.
Specifically, computeReferenceCoords() can return the following statuses:

• INVERSE_MAP_FAILED
This typically indicates that the Newton-Raphson iteration did not converge, e.g., negative Jacobian, etc.

• OUTSIDE_ELEMENT
This indicates that the Newton-Raphson converged, but the point is outside the element. Consequently,
valid reference coordinates do not exist for the given point with respect to the element.

• INSIDE_ELEMENT
This indicates the the Newton-Raphson converged and the point is inside the element

Output to VTK

Mint provides native support for writing meshes in the ASCII Legacy VTK File Format. Legacy VTK files are popular
due to their simplicity and can be read by a variety of visualization tools, such as VisIt and ParaView. Thereby, enable
quick visualization of the various Mesh Types and constituent Field Data, which can significantly aid in debugging.

Warning: The Legacy VTK File Format does not provide support for face-centered fields. Consequently, the
output consists of only the node-centered and cell-centered fields of the mesh.

7.6. Mint User Guide 153

https://vtk.org/Wiki/images/5/51/VTK-File-Formats.pdf
https://wci.llnl.gov/simulation/computer-codes/visit
https://www.paraview.org/
https://vtk.org/Wiki/images/5/51/VTK-File-Formats.pdf

Axom Documentation

The functionality for outputting a mesh to VTK is provided by the mint::write_vtk() function. This is a free
function in the axom::mint namespace, which takes two arguments: (1) a pointer to a mint::Mesh object, and, (2)
the filename of the target VTK file, as illustrated in the code snippet below:

1 mint::write_vtk(mesh, fileName);

This function can be invoked on a mint::Mesh object, which can correspond to any of the supported Mesh Types. The
concrete mesh type will be reflected in the resulting VTK output file according to the VTK File Format specification.

Note: Support for VTK output is primarily intended for debugging and quick visualization of meshes. This function-
ality is not intended for routine output or restart dumps from a simulation. Production I/O capabilities in the Axom
Toolkit are supported through Sidre. Consult the Sidre documentation for the details.

Examples

Warning: This section is under development

FAQ

Warning: This section is under development.

Appendix

Mint Application Code Example

Below is the complete Mint Application Code Example presented in the Getting Started with Mint section. The code can
be found in the Axom source code under src/axom/mint/examples/user_guide/mint_getting_started.cpp.

1 // sphinx_tutorial_walkthrough_includes_start
2

3 #include "axom/config.hpp" // compile time definitions
4 #include "axom/core/execution/execution_space.hpp" // for execution_space traits
5

6 #include "axom/mint.hpp" // for mint classes and functions
7 #include "axom/core/numerics/Matrix.hpp" // for numerics::Matrix
8

9 // sphinx_tutorial_walkthrough_includes_end
10

11 // namespace aliases
12 namespace mint = axom::mint;
13 namespace numerics = axom::numerics;
14 namespace xargs = mint::xargs;
15

16 using IndexType = axom::IndexType;
17

18 // compile-time switch for execution policy
19 #if defined(AXOM_USE_RAJA) && defined(AXOM_USE_CUDA) && defined(AXOM_USE_UMPIRE)

(continues on next page)

154 Chapter 7. Axom Copyright and License Information

https://vtk.org/Wiki/images/5/51/VTK-File-Formats.pdf
../../../../../index.html
../../../../../index.html
../../../../sidre/docs/sphinx/index.html
../../../../sidre/docs/sphinx/index.html

Axom Documentation

(continued from previous page)

20 constexpr int NUM_BLOCKS = 512;
21 using ExecPolicy = axom::CUDA_EXEC<NUM_BLOCKS>;
22 #elif defined(AXOM_USE_RAJA) && defined(AXOM_USE_HIP) && \
23 defined(AXOM_USE_UMPIRE)
24 constexpr int NUM_BLOCKS = 512;
25 using ExecPolicy = axom::HIP_EXEC<NUM_BLOCKS>;
26 #elif defined(AXOM_USE_RAJA) && defined(AXOM_USE_OPENMP)
27 using ExecPolicy = axom::OMP_EXEC;
28 #else
29 using ExecPolicy = axom::SEQ_EXEC;
30 #endif
31

32 constexpr IndexType NUM_NODES_PER_CELL = 4;
33 constexpr double ONE_OVER_4 = 1. / static_cast<double>(NUM_NODES_PER_CELL);
34

35 /*!
36 * \brief Holds command-line arguments
37 */
38 static struct
39 {
40 int res;
41 bool useUnstructured;
42 } Arguments;
43

44 //--
45 // FUNCTION PROTOTYPES
46 //--
47 void parse_args(int argc, char** argv);
48 mint::Mesh* getUniformMesh();
49 mint::Mesh* getUnstructuredMesh();
50

51 //--
52 // PROGRAM MAIN
53 //--
54 int main(int argc, char** argv)
55 {
56 parse_args(argc, argv);
57

58 // sphinx_tutorial_walkthrough_set_memory_start
59 // NOTE: use unified memory if we are using CUDA or HIP
60 const int allocID = axom::execution_space<ExecPolicy>::allocatorID();
61 axom::setDefaultAllocator(allocID);
62 // sphinx_tutorial_walkthrough_set_memory_end
63

64 // sphinx_tutorial_walkthrough_construct_mesh_start
65

66 mint::Mesh* mesh =
67 (Arguments.useUnstructured) ? getUnstructuredMesh() : getUniformMesh();
68

69 // sphinx_tutorial_walkthrough_construct_mesh_end
70

71 // sphinx_tutorial_walkthrough_add_fields_start

(continues on next page)

7.6. Mint User Guide 155

Axom Documentation

(continued from previous page)

72

73 // add a cell-centered and a node-centered field
74 double* phi = mesh->createField<double>("phi", mint::NODE_CENTERED);
75 double* hc = mesh->createField<double>("hc", mint::CELL_CENTERED);
76

77 constexpr int NUM_COMPONENTS = 2;
78 double* xc =
79 mesh->createField<double>("xc", mint::CELL_CENTERED, NUM_COMPONENTS);
80

81 // sphinx_tutorial_walkthrough_add_fields_end
82

83 // sphinx_tutorial_walkthrough_compute_hf_start
84

85 // loop over the nodes and evaluate Himmelblaus Function
86 mint::for_all_nodes<ExecPolicy, xargs::xy>(
87 mesh,
88 AXOM_LAMBDA(IndexType nodeIdx, double x, double y) {
89 const double x_2 = x * x;
90 const double y_2 = y * y;
91 const double A = x_2 + y - 11.0;
92 const double B = x + y_2 - 7.0;
93

94 phi[nodeIdx] = A * A + B * B;
95 });
96

97 // sphinx_tutorial_walkthrough_compute_hf_end
98

99 // sphinx_tutorial_walkthrough_cell_centers_start
100

101 // loop over cells and compute cell centers
102 mint::for_all_cells<ExecPolicy, xargs::coords>(
103 mesh,
104 AXOM_LAMBDA(IndexType cellIdx,
105 const numerics::Matrix<double>& coords,
106 const IndexType* nodeIds) {
107 // NOTE: A column vector of the coords matrix corresponds to a nodes coords
108

109 // Sum the cell's nodal coordinates
110 double xsum = 0.0;
111 double ysum = 0.0;
112 double hsum = 0.0;
113

114 const IndexType numNodes = coords.getNumColumns();
115 for(IndexType inode = 0; inode < numNodes; ++inode)
116 {
117 const double* node = coords.getColumn(inode);
118 xsum += node[mint::X_COORDINATE];
119 ysum += node[mint::Y_COORDINATE];
120

121 hsum += phi[nodeIds[inode]];
122 } // END for all cell nodes
123

(continues on next page)

156 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

124 // compute cell centroid by averaging the nodal coordinate sums
125 const IndexType offset = cellIdx * NUM_COMPONENTS;
126 const double invnnodes = 1.f / static_cast<double>(numNodes);
127 xc[offset] = xsum * invnnodes;
128 xc[offset + 1] = ysum * invnnodes;
129

130 hc[cellIdx] = hsum * invnnodes;
131 });
132

133 // sphinx_tutorial_walkthrough_cell_centers_end
134

135 // sphinx_tutorial_walkthrough_vtk_start
136

137 // write the mesh in a VTK file for visualization
138 std::string vtkfile =
139 (Arguments.useUnstructured) ? "unstructured_mesh.vtk" : "uniform_mesh.vtk";
140 mint::write_vtk(mesh, vtkfile);
141

142 // sphinx_tutorial_walkthrough_vtk_end
143

144 delete mesh;
145 mesh = nullptr;
146

147 return 0;
148 }
149

150 //--
151 // FUNCTION PROTOTYPE IMPLEMENTATION
152 //--
153 void parse_args(int argc, char** argv)
154 {
155 Arguments.res = 25;
156 Arguments.useUnstructured = false;
157

158 for(int i = 1; i < argc; ++i)
159 {
160 if(strcmp(argv[i], "--unstructured") == 0)
161 {
162 Arguments.useUnstructured = true;
163 }
164

165 else if(strcmp(argv[i], "--resolution") == 0)
166 {
167 Arguments.res = std::atoi(argv[++i]);
168 }
169

170 } // END for all arguments
171

172 SLIC_ERROR_IF(
173 Arguments.res < 2,
174 "invalid mesh resolution! Please, pick a value greater than 2.");
175 }

(continues on next page)

7.6. Mint User Guide 157

Axom Documentation

(continued from previous page)

176

177 //--
178 // sphinx_tutorial_walkthrough_construct_umesh_start
179 mint::Mesh* getUniformMesh()
180 {
181 // construct a N x N grid within a domain defined in [-5.0, 5.0]
182 const double lo[] = {-5.0, -5.0};
183 const double hi[] = {5.0, 5.0};
184 mint::Mesh* m = new mint::UniformMesh(lo, hi, Arguments.res, Arguments.res);
185 return m;
186 }
187 // sphinx_tutorial_walkthrough_construct_umesh_end
188

189 //--
190 mint::Mesh* getUnstructuredMesh()
191 {
192 mint::Mesh* umesh = getUniformMesh();
193 const IndexType umesh_ncells = umesh->getNumberOfCells();
194 const IndexType umesh_nnodes = umesh->getNumberOfNodes();
195

196 const IndexType ncells = umesh_ncells * 4; // split each quad into 4 triangles
197 const IndexType nnodes = umesh_nnodes + umesh_ncells;
198

199 constexpr int DIMENSION = 2;
200 using MeshType = mint::UnstructuredMesh<mint::SINGLE_SHAPE>;
201 MeshType* m = new MeshType(DIMENSION, mint::TRIANGLE, nnodes, ncells);
202 m->resize(nnodes, ncells);
203

204 double* x = m->getCoordinateArray(mint::X_COORDINATE);
205 double* y = m->getCoordinateArray(mint::Y_COORDINATE);
206 IndexType* cells = m->getCellNodesArray();
207

208 // fill coordinates from uniform mesh
209 mint::for_all_nodes<ExecPolicy, xargs::xy>(
210 umesh,
211 AXOM_LAMBDA(IndexType nodeIdx, double nx, double ny) {
212 x[nodeIdx] = nx;
213 y[nodeIdx] = ny;
214 });
215

216 // loop over cells, compute cell centers and fill connectivity
217 mint::for_all_cells<ExecPolicy, xargs::coords>(
218 umesh,
219 AXOM_LAMBDA(IndexType cellIdx,
220 const numerics::Matrix<double>& coords,
221 const IndexType* nodeIds) {
222 // NOTE: A column vector of the coords matrix corresponds to a nodes coords
223

224 // Sum the cell's nodal coordinates
225 double xsum = 0.0;
226 double ysum = 0.0;
227 for(IndexType inode = 0; inode < NUM_NODES_PER_CELL; ++inode)

(continues on next page)

158 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

228 {
229 const double* node = coords.getColumn(inode);
230 xsum += node[mint::X_COORDINATE];
231 ysum += node[mint::Y_COORDINATE];
232 } // END for all cell nodes
233

234 // compute cell centroid by averaging the nodal coordinate sums
235 const IndexType nc = umesh_nnodes + cellIdx; /* centroid index */
236 x[nc] = xsum * ONE_OVER_4;
237 y[nc] = ysum * ONE_OVER_4;
238

239 // triangulate
240 const IndexType& n0 = nodeIds[0];
241 const IndexType& n1 = nodeIds[1];
242 const IndexType& n2 = nodeIds[2];
243 const IndexType& n3 = nodeIds[3];
244

245 const IndexType offset = cellIdx * 12;
246

247 cells[offset] = n0;
248 cells[offset + 1] = nc;
249 cells[offset + 2] = n3;
250

251 cells[offset + 3] = n0;
252 cells[offset + 4] = n1;
253 cells[offset + 5] = nc;
254

255 cells[offset + 6] = n1;
256 cells[offset + 7] = n2;
257 cells[offset + 8] = nc;
258

259 cells[offset + 9] = n2;
260 cells[offset + 10] = n3;
261 cells[offset + 11] = nc;
262 });
263

264 // delete uniform mesh
265 delete umesh;
266 umesh = nullptr;
267

268 return m;
269 }

7.6. Mint User Guide 159

Axom Documentation

AXOM_LAMBDA Macro

The AXOM_LAMBDA convenience macro expands to:

• [=] capture by value when the Axom Toolkit is compiled without CUDA.

• [=] __host__ __device__ when the Axom Toolkit is compiled with CUDA

Raw Sidre Data

1 {
2 "name": "",
3 "groups":
4 {
5 "state":
6 {
7 "name": "state",
8 "groups":
9 {

10 "t1":
11 {
12 "name": "t1",
13 "views":
14 {
15 "block_id":
16 {
17 "name": "block_id",
18 "schema": "{\"dtype\":\"int32\", \"number_of_elements\": 1, \"offset\": 0,␣

→˓\"stride\": 4, \"element_bytes\": 4, \"endianness\": \"little\"}",
19 "value": "-1",
20 "state": "SCALAR",
21 "is_applied": 1
22 },
23 "partition_id":
24 {
25 "name": "partition_id",
26 "schema": "{\"dtype\":\"int32\", \"number_of_elements\": 1, \"offset\": 0,␣

→˓\"stride\": 4, \"element_bytes\": 4, \"endianness\": \"little\"}",
27 "value": "-1",
28 "state": "SCALAR",
29 "is_applied": 1
30 }
31 }
32 }
33 }
34 },
35 "coordsets":
36 {
37 "name": "coordsets",
38 "groups":
39 {
40 "c1":
41 {

(continues on next page)

160 Chapter 7. Axom Copyright and License Information

../../../../../index.html
../../../../../index.html

Axom Documentation

(continued from previous page)

42 "name": "c1",
43 "views":
44 {
45 "type":
46 {
47 "name": "type",
48 "schema": "{\"dtype\":\"char8_str\", \"number_of_elements\": 9, \"offset\

→˓": 0, \"stride\": 1, \"element_bytes\": 1, \"endianness\": \"little\"}",
49 "value": "\"explicit\"",
50 "state": "STRING",
51 "is_applied": 1
52 }
53 },
54 "groups":
55 {
56 "values":
57 {
58 "name": "values",
59 "views":
60 {
61 "x":
62 {
63 "name": "x",
64 "schema": "{\"dtype\":\"float64\", \"number_of_elements\": 6, \"offset\

→˓": 0, \"stride\": 8, \"element_bytes\": 8, \"endianness\": \"little\"}",
65 "value": "[0.0, 2.0, 1.0, 3.5, 2.5, 5.0]",
66 "state": "BUFFER",
67 "is_applied": 1
68 },
69 "y":
70 {
71 "name": "y",
72 "schema": "{\"dtype\":\"float64\", \"number_of_elements\": 6, \"offset\

→˓": 0, \"stride\": 8, \"element_bytes\": 8, \"endianness\": \"little\"}",
73 "value": "[0.0, 0.0, 1.0, 1.0, 2.0, 0.0]",
74 "state": "BUFFER",
75 "is_applied": 1
76 }
77 }
78 }
79 }
80 }
81 }
82 },
83 "topologies":
84 {
85 "name": "topologies",
86 "groups":
87 {
88 "t1":
89 {
90 "name": "t1",

(continues on next page)

7.6. Mint User Guide 161

Axom Documentation

(continued from previous page)

91 "views":
92 {
93 "coordset":
94 {
95 "name": "coordset",
96 "schema": "{\"dtype\":\"char8_str\", \"number_of_elements\": 3, \"offset\

→˓": 0, \"stride\": 1, \"element_bytes\": 1, \"endianness\": \"little\"}",
97 "value": "\"c1\"",
98 "state": "STRING",
99 "is_applied": 1

100 },
101 "type":
102 {
103 "name": "type",
104 "schema": "{\"dtype\":\"char8_str\", \"number_of_elements\": 13, \"offset\

→˓": 0, \"stride\": 1, \"element_bytes\": 1, \"endianness\": \"little\"}",
105 "value": "\"unstructured\"",
106 "state": "STRING",
107 "is_applied": 1
108 }
109 },
110 "groups":
111 {
112 "elements":
113 {
114 "name": "elements",
115 "views":
116 {
117 "shape":
118 {
119 "name": "shape",
120 "schema": "{\"dtype\":\"char8_str\", \"number_of_elements\": 4, \

→˓"offset\": 0, \"stride\": 1, \"element_bytes\": 1, \"endianness\": \"little\"}",
121 "value": "\"tri\"",
122 "state": "STRING",
123 "is_applied": 1
124 },
125 "connectivity":
126 {
127 "name": "connectivity",
128 "schema": "{\"dtype\":\"int32\", \"number_of_elements\": 12, \"offset\

→˓": 0, \"stride\": 4, \"element_bytes\": 4, \"endianness\": \"little\"}",
129 "value": "[1, 3, 2, 2, 0, 1, 3, 4, 2, 1, 5, 3]",
130 "state": "BUFFER",
131 "is_applied": 1
132 },
133 "stride":
134 {
135 "name": "stride",
136 "schema": "{\"dtype\":\"int32\", \"number_of_elements\": 1, \"offset\

→˓": 0, \"stride\": 4, \"element_bytes\": 4, \"endianness\": \"little\"}",
137 "value": "3",

(continues on next page)

162 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

138 "state": "SCALAR",
139 "is_applied": 1
140 }
141 }
142 }
143 }
144 }
145 }
146 },
147 "fields":
148 {
149 "name": "fields",
150 "groups":
151 {
152 "den":
153 {
154 "name": "den",
155 "views":
156 {
157 "association":
158 {
159 "name": "association",
160 "schema": "{\"dtype\":\"char8_str\", \"number_of_elements\": 8, \"offset\

→˓": 0, \"stride\": 1, \"element_bytes\": 1, \"endianness\": \"little\"}",
161 "value": "\"element\"",
162 "state": "STRING",
163 "is_applied": 1
164 },
165 "volume_dependent":
166 {
167 "name": "volume_dependent",
168 "schema": "{\"dtype\":\"char8_str\", \"number_of_elements\": 5, \"offset\

→˓": 0, \"stride\": 1, \"element_bytes\": 1, \"endianness\": \"little\"}",
169 "value": "\"true\"",
170 "state": "STRING",
171 "is_applied": 1
172 },
173 "topology":
174 {
175 "name": "topology",
176 "schema": "{\"dtype\":\"char8_str\", \"number_of_elements\": 3, \"offset\

→˓": 0, \"stride\": 1, \"element_bytes\": 1, \"endianness\": \"little\"}",
177 "value": "\"t1\"",
178 "state": "STRING",
179 "is_applied": 1
180 },
181 "values":
182 {
183 "name": "values",
184 "schema": "{\"dtype\":\"float64\", \"number_of_elements\": 4, \"offset\":␣

→˓0, \"stride\": 8, \"element_bytes\": 8, \"endianness\": \"little\"}",
185 "value": "[0.5, 1.2, 2.5, 0.9]",

(continues on next page)

7.6. Mint User Guide 163

Axom Documentation

(continued from previous page)

186 "state": "BUFFER",
187 "is_applied": 1
188 }
189 }
190 }
191 }
192 }
193 }
194 }

7.7 Multimat User Guide

Axom’s MultiMat component is a data management library for multimaterial field data within multiphysics simulation
codes.

We are working on documentation for this component.

7.8 Primal User Guide

Primal is a component of Axom that provides efficient and general purpose algorithms and data structures for compu-
tational geometry. Primal provides:

• Classes to represent geometric primitives such as Point and Ray

• Functions operating on Primal’s classes to implement geometric operators, including distance and intersection

This tutorial contains a collection of brief examples demonstrating Primal primitives and operators. The examples
instantiate geometric primitives as needed and demonstrate geometric operators. These examples also show represen-
tative overloads of each of the Primal operators (see the API documentation for more details).

7.8.1 API Documentation

Doxygen generated API documentation can be found here: API documentation

Primitives

Primal includes the following primitives:

• Point

• Segment, Ray, Vector

• Plane, Triangle, Polygon

• Quadrilateral

• Sphere

• Tetrahedron

• Hexahedron

• BoundingBox, OrientedBoundingBox

164 Chapter 7. Axom Copyright and License Information

../../../../doxygen/html/primaltop.html
../../../../doxygen/html/primaltop.html

Axom Documentation

• Polyhedron

Note: Primitives in Axom use a right-handed coordinate system.

Primal also provides the NumericArray class, which implements arithmetic operations on numerical tuples and sup-
ports Primal’s Point and Vector classes. Classes in Primal are templated on coordinate type (double, float, etc.) and
dimension. The primitives do not inherit from a common base class. This was a design choice in favor of simplicity
and performance. Geometric primitives can be tested for equality and can be printed to strings.

Primal also includes functions to merge a pair of BoundingBox or a pair of OrientedBoundingBox objects and to create
new OrientedBoundingBox objects from a list of points.

The following includes header files for primal’s primitives as well as some using directives and typedef statements
that will be used in the examples. Header files for operations will be shown next to code examples. Although the
examples #include separate class header files, it is easier and less error-prone to write #include axom/primal.
hpp.

// Axom primitives
#include "axom/primal/geometry/BoundingBox.hpp"
#include "axom/primal/geometry/OrientedBoundingBox.hpp"
#include "axom/primal/geometry/Point.hpp"
#include "axom/primal/geometry/Polygon.hpp"
#include "axom/primal/geometry/Ray.hpp"
#include "axom/primal/geometry/Segment.hpp"
#include "axom/primal/geometry/Triangle.hpp"
#include "axom/primal/geometry/Vector.hpp"

// "using" directives to simplify code
namespace primal = axom::primal;

// almost all our examples are in 3D
constexpr int in3D = 3;

// primitives represented by doubles in 3D
using PointType = primal::Point<double, in3D>;
using TriangleType = primal::Triangle<double, in3D>;
using BoundingBoxType = primal::BoundingBox<double, in3D>;
using OrientedBoundingBoxType = primal::OrientedBoundingBox<double, in3D>;
using PolygonType = primal::Polygon<double, in3D>;
using RayType = primal::Ray<double, in3D>;
using SegmentType = primal::Segment<double, in3D>;
using VectorType = primal::Vector<double, in3D>;

7.8. Primal User Guide 165

Axom Documentation

Operators

Primal implements geometric operators with unbound functions. Currently, these include the following:

• clip finds the polygon resulting from a bounding box clipping a triangle.

• closest_point takes a primitive P and a query point Q and returns the point on P closest to Q.

• compute_bounding_box finds the bounding box for a given primitive.

• squared_distance computes the squared distance from a point to another primitive.

• orientation finds the side of a line segment or triangle where a query point lies.

• intersect predicate tests if two primitives intersect. Some of the combinations also indicate the point of
intersection of a 1D primitive with another primitive.

Note: Most use cases have low dimension, usually 2 or 3. Dimensionality has been generalized to support other values
where it does not interfere with the common case, but some operators such as triangle intersection do not support other
dimensionality than 2 or 3.

Note: Many of the operations includes a tolerance parameter eps for improved geometric robustness. For example,
orientation() considers a point to be on the boundary (OrientationResult::ON_BOUNDARY) when the point is
within eps of the plane. This parameter is explicitly exposed in the primal API for some operations (e.g. some versions
of intersect()), but not others (e.g. orientation()).

Clip triangle against bounding box

The clip operator clips a triangle against a bounding box, returning the resulting polygon. The figure shows the triangle
in blue and the polygon resulting from clip() in grey.

#include "axom/primal/operators/clip.hpp"

TriangleType tri(PointType {1.2, 0, 0},
PointType {0, 1.8, 0},
PointType {0, 0, 1.4});

BoundingBoxType bbox(PointType {0, -0.5, 0}, PointType {1, 1, 1});

PolygonType poly = clip(tri, bbox);

166 Chapter 7. Axom Copyright and License Information

Axom Documentation

Closest point query

The closest point operator finds the point on a triangle that is closest to a query point. Query point 𝑜 (shown in dark
blue), at the origin, is closest to point 𝑜′ (light blue), which lies in the triangle’s interior. Query point 𝑎 (olive) is closest
to point 𝑎′ (yellow), which lies on the triangle’s edge at a vertex.

#include "axom/primal/operators/closest_point.hpp"

TriangleType tri(PointType {1, 0, 0}, PointType {0, 1, 0}, PointType {0, 0, 1});

PointType pto = PointType {0, 0, 0};
PointType pta = PointType {-1, 2, 1};

// Query point o lies at the origin. Its closest point lies in the
// interior of tri.
PointType cpto = closest_point(pto, tri);

// Query point a lies farther from the triangle. Its closest point
// is on tri's edge.
int lcpta = 0;
PointType cpta = closest_point(pta, tri, &lcpta);

As the code example shows, closest_point() can take a pointer to an int as an optional third parameter. If supplied,
the function writes a value into the int that indicates which of the triangle’s vertices or sides contains the closest point
(or the interior).

Compute bounding box

Primal’s bounding boxes are rectangular right prisms. That is, they are boxes where neighboring walls are at right
angles.

The BoundingBox class represents an axis-aligned bounding box, which has two walls perpendicular to the X-axis, two
perpendicular to the Y-axis, and two perpendicular to the Z-axis. This is sufficient for many computations; range and
intersection operations tend to be fast.

The OrientedBoundingBox class can be oriented in any way with respect to the coordinate axes. This can provide a
tighter fit to the bounded data, but construction, intersection, and range calculation are more costly.

Here a group of points is used to create both an (axis-aligned) BoundingBox and an OrientedBoundingBox. The points
are drawn in blue, the BoundingBox in black, and the OrientedBoundingBox in orange.

#include "axom/primal/operators/compute_bounding_box.hpp"

7.8. Primal User Guide 167

Axom Documentation

// An array of Points to include in the bounding boxes
const int nbr_points = 6;
PointType data[nbr_points] = {PointType {0.6, 1.2, 1.0},

PointType {1.3, 1.6, 1.8},
PointType {2.9, 2.4, 2.3},
PointType {3.2, 3.5, 3.0},
PointType {3.6, 3.2, 4.0},
PointType {4.3, 4.3, 4.5}};

// A BoundingBox constructor takes an array of Point objects
BoundingBoxType bbox(data, nbr_points);
// Make an OrientedBoundingBox
OrientedBoundingBoxType obbox = compute_oriented_bounding_box(data, nbr_points);

Primal also provides a merge_boxes() function to produce a bounding box that contains two input bounding boxes.
This is available for client codes to use and also supports the operation of the BVHTree class.

Intersection

The intersection test is provided by intersect(). It takes two primitives and returns a boolean indicating if the primi-
tives intersect. Some overloads return the point of intersection in an output argument. The overloads for intersect()
are summarized in the table below.

168 Chapter 7. Axom Copyright and License Information

Axom Documentation

Arg 1 Arg 2 Additional arguments and notes
Triangle Triangle include boundaries1 (default false)
Ray Segment return intersection point. 2D only.
Segment BoundingBox return intersection point
Ray BoundingBox return intersection point
BoundingBox BoundingBox
Sphere Sphere specify tolerance
Triangle BoundingBox
Triangle Ray return parameterized intersection point (on Ray), return barycentric intersec-

tion point (on Triangle)
Triangle Segment return parameterized intersection point (on Segment), return barycentric in-

tersection point (on Triangle)
OrientedBound-
ingBox

OrientedBound-
ingBox

specify tolerance

The example below tests for intersection between two triangles, a ray, and a BoundingBox.

#include "axom/primal/operators/intersect.hpp"

// Two triangles
TriangleType tri1(PointType {1.2, 0, 0},

PointType {0, 1.8, 0},
PointType {0, 0, 1.4});

TriangleType tri2(PointType {0, 0, 0.5},
PointType {0.8, 0.1, 1.2},
PointType {0.8, 1.4, 1.2});

// tri1 and tri2 should intersect
if(intersect(tri1, tri2))
{
std::cout << "Triangles intersect as expected." << std::endl;

}
else
{
std::cout << "There's an error somewhere..." << std::endl;

}

(continues on next page)

1 By default, the triangle intersection algorithm considers only the triangles’ interiors, so that non-coplanar triangles that share two vertices are
not reported as intersecting. The caller to intersect() can specify an optional argument to include triangle boundaries in the intersection test.

7.8. Primal User Guide 169

Axom Documentation

(continued from previous page)

// A vertical ray constructed from origin and point
RayType ray(SegmentType(PointType {0.4, 0.4, 0}, PointType {0.4, 0.4, 1}));

// t will hold the intersection point between ray and tri1,
// as parameterized along ray.
double rt1t = 0;
// rt1b will hold the intersection point barycentric coordinates,
// and rt1p will hold the physical coordinates.
PointType rt1b, rt1p;

// The ray should intersect tri1 and tri2.
if(intersect(tri1, ray, rt1t, rt1b) && intersect(tri2, ray))
{
// Retrieve the physical coordinates from barycentric coordinates
rt1p = tri1.baryToPhysical(rt1b);
// Retrieve the physical coordinates from ray parameter
PointType rt1p2 = ray.at(rt1t);
std::cout << "Ray intersects tri1 as expected. Parameter t: " << rt1t

<< std::endl
<< " Intersection point along ray: " << rt1p2 << std::endl
<< " Intersect barycentric coordinates: " << rt1b << std::endl
<< " Intersect physical coordinates: " << rt1p << std::endl
<< "Ray also intersects tri2 as expected." << std::endl;

}
else
{
std::cout << "There's an error somewhere..." << std::endl;

}

// A bounding box
BoundingBoxType bbox(PointType {0.1, -0.23, 0.1}, PointType {0.8, 0.5, 0.4});

// The bounding box should intersect tri1 and ray but not tr2.
PointType bbtr1;
if(intersect(ray, bbox, bbtr1) && intersect(tri1, bbox) &&

!intersect(tri2, bbox))
{
std::cout << "As hoped, bounding box intersects tri1 at " << bbtr1

<< " and ray, but not tri2." << std::endl;
}
else
{
std::cout << "There is at least one error somewhere..." << std::endl;

}

In the diagram, the point where the ray enters the bounding box is shown as the intersection point (not the exit point
or some point inside the box). This is because if a ray intersects a bounding box at more than one point, the first
intersection point along the ray (the intersection closest to the ray’s origin) is reported as the intersection. If a ray
originates inside a bounding box, the ray’s origin will be reported as the point of intersection.

170 Chapter 7. Axom Copyright and License Information

Axom Documentation

Orientation

Axom contains two overloads of orientation(). The 3D case tests a point against a triangle and reports which side
it lies on; the 2D case tests a point against a line segment. Here is an example of the 3D point-triangle orientation test.

#include "axom/primal/operators/orientation.hpp"

// A triangle
TriangleType tri(PointType {1.2, 0, 0},

PointType {0, 1.8, 0},
PointType {0, 0, 1.4});

// Three points:
// one on the triangle's positive side,
PointType pos = PointType {0.45, 1.5, 1};
// one coplanar to the triangle, the centroid,
PointType cpl =
PointType::lerp(PointType::lerp(tri[0], tri[1], 0.5), tri[2], 1. / 3.);

// and one on the negative side
PointType neg = PointType {0, 0, 0.7};

// Test orientation
if(orientation(pos, tri) == primal::ON_POSITIVE_SIDE &&

orientation(cpl, tri) == primal::ON_BOUNDARY &&
orientation(neg, tri) == primal::ON_NEGATIVE_SIDE)

{
std::cout << "As expected, point pos is on the positive side," << std::endl

<< " point cpl is on the boundary (on the triangle),"
<< std::endl
<< " and point neg is on the negative side." << std::endl;

}
else
{
std::cout << "Someone wrote this wrong." << std::endl;

}

The triangle is shown with its normal vector pointing out of its centroid. The triangle’s plane divides space into a
positive half-space, pointed into by the triangle’s normal vector, and the opposing negative half-space. The test point
on the 𝑧 axis, labelled 𝑁 , is on the negative side of the triangle. The centroid lies in the triangle, on the boundary
between the two half-spaces. The remaining test point, labelled 𝑃 , is on the triangle’s positive side.

7.8. Primal User Guide 171

Axom Documentation

Distance

The various overloads of squared_distance() calculate the squared distance between a query point and several
different primitives:

• another point,

• a BoundingBox,

• a Segment,

• a Triangle.

#include "axom/primal/operators/squared_distance.hpp"

// The point from which we'll query
PointType q = PointType::make_point(0.75, 1.2, 0.4);

// Find distance to:
PointType p {0.2, 1.4, 1.1};
SegmentType seg(PointType {1.1, 0.0, 0.2}, PointType {1.1, 0.5, 0.2});
TriangleType tri(PointType {0.2, -0.3, 0.4},

PointType {0.25, -0.1, 0.3},
PointType {0.3, -0.3, 0.35});

BoundingBoxType bbox(PointType {-0.3, -0.2, 0.7}, PointType {0.4, 0.3, 0.9});

double dp = squared_distance(q, p);
double dseg = squared_distance(q, seg);
double dtri = squared_distance(q, tri);
double dbox = squared_distance(q, bbox);

The example shows the squared distance between the query point, shown in black in the figure, and four geometric
primitives. For clarity, the diagram also shows the projection of the query point and its closest points to the XY plane.

172 Chapter 7. Axom Copyright and License Information

Axom Documentation

7.9 Quest User Guide

The Quest component of Axom provides several spatial operations and queries on a mint::Mesh.

• Operations

– Read a surface mesh from an STL file

– Check for some common mesh errors; deduplicate vertices

∗ vertex welding: merge vertices closer than a specified distance “epsilon”

∗ find self-intersections and degenerate triangles in a surface mesh

∗ watertightness test: is a surface mesh a watertight manifold?

• Point queries

– Surface mesh point queries in C or in C++

∗ in/out query: is a point inside or outside a surface mesh?

∗ signed distance query: find the minimum distance from a query point to a surface mesh

– Point in cell query: for a query point, find the cell of the mesh that holds the point and the point’s isopara-
metric coordinates within that cell

– All nearest neighbors: given a list of point locations and regions, find all neighbors of each point in a
different region

– Isosurface detection: generate an isosurface mesh from a nodal scalar field and an isovalue.

7.9.1 API Documentation

Doxygen generated API documentation can be found here: API documentation

Reading in a mesh

Applications commonly need to read a mesh file from disk. Quest provides the STLReader class, which can read binary
or ASCII STL files, as well as the PSTLReader class for use in parallel codes. STL (stereolithography) is a common
file format for triangle surface meshes. The STL reader classes will read the file from disk and build a mint::Mesh
object. Quest also provides the ProEReader class, for ASCII Pro/E files containing tetrahedra, and the PProEReader
class for use in parallel codes. PTC Creo is a modeling application formerly known as Pro/ENGINEER, and its file
format is in use among Axom’s users.

Reading an STL file

The code examples are excerpts from the file <axom>/src/tools/mesh_tester.cpp.

We include the STL reader header

#include "axom/quest/readers/STLReader.hpp"

and also the mint Mesh and UnstructuredMesh headers.

#include "axom/mint/mesh/Mesh.hpp"
#include "axom/mint/mesh/UnstructuredMesh.hpp"

7.9. Quest User Guide 173

../../../../doxygen/html/questtop.html
https://en.wikipedia.org/wiki/STL_(file_format)

Axom Documentation

For convenience, we use typedefs in the axom namespace.

using namespace axom;

using UMesh = mint::UnstructuredMesh<mint::SINGLE_SHAPE>;

The following example shows usage of the STLReader class:

// Read file
SLIC_INFO("Reading file: '" << params.stlInput << "'...\n");
quest::STLReader* reader = new quest::STLReader();
reader->setFileName(params.stlInput);
reader->read();

// Get surface mesh
UMesh* surface_mesh = new UMesh(3, mint::TRIANGLE);
reader->getMesh(surface_mesh);

// Delete the reader
delete reader;
reader = nullptr;

SLIC_INFO("Mesh has " << surface_mesh->getNumberOfNodes() << " vertices and "
<< surface_mesh->getNumberOfCells() << " triangles.");

After reading the STL file, the STLReader::getMesh method gives access to the underlying mesh data. The reader
may then be deleted.

Reading a Pro/E file

As read by Axom, an ASCII Pro/E tet file contains:

• Zero or more comment lines starting with a # character

• One line with two integers: the number of nodes n and the number of tetrahedra t

• n lines, one for each node; each line contains a contiguous integer ID starting at 1 and three floating-point numbers
specifying the node location

• t lines, one for each tetrahedron; each line contains a contiguous integer ID starting at 1 and four integers spec-
ifying the tet’s nodes

Reading an ASCII Pro/E tet file is similar to reading an STL file. The code examples are excerpts from the file <axom>/
src/axom/quest/examples/quest_proe_bbox.cpp. The Pro/E reader has the ability to read a subset of the mesh
in the file, defined by a user-supplied predicate function. The example code shows how to use a convenience function
to specify a predicate that keeps only tets fully included in a user-supplied bounding box.

We include the ProEReader header

#include "axom/quest/readers/ProEReader.hpp"

and also the mint Mesh and UnstructuredMesh headers.

#include "axom/mint/mesh/Mesh.hpp"
#include "axom/mint/mesh/UnstructuredMesh.hpp"
#include "axom/mint/utils/vtk_utils.hpp" // for write_vtk

174 Chapter 7. Axom Copyright and License Information

Axom Documentation

For convenience, we specify some type aliases.

namespace mint = axom::mint;
namespace primal = axom::primal;
namespace slic = axom::slic;

using IndexType = axom::IndexType;
using UMesh = mint::UnstructuredMesh<mint::SINGLE_SHAPE>;

The following example shows how to use the ProEReader class. Calling reader.
setTetPredFromBoundingBox(bbox, false), as shown in the code, makes a tetrahedron predicate that
accepts tets with all four nodes falling in bbox and rejects others. Alternately, the user can specify an arbitrary
predicate function with setTetPred(). If the user specifies no tetrahedron predicate, the reader reads all tets in the
file.

// Read file
axom::quest::ProEReader reader;
reader.setFileName(args.file_name);

// Set up a bounding box to keep only certain tets.
// bbox_min and bbox_max are pointers to double.
axom::quest::ProEReader::BBox3D bbox;
bbox.addPoint(axom::quest::ProEReader::Point3D {bbox_min, 3});
bbox.addPoint(axom::quest::ProEReader::Point3D {bbox_max, 3});
// Keep only tets with all four nodes inside the bounding box.
reader.setTetPredFromBoundingBox(bbox, false);
// Pass true as the second argument of setTetPredFromBoundingBox() to
// keep tets with at least one node inside the bounding box.
// To keep all tets, do not set a TetPred.

// Read in the file.
reader.read();

// Get surface mesh
UMesh mesh(3, axom::mint::TET);
reader.getMesh(&mesh);

After reading the Pro/E file, the ProEReader::getMesh method gives access to the underlying mesh data. The reader
may then be deleted.

Check and repair a mesh

The STL file format specifies triangles without de-duplicating their vertices. Vertex welding is needed for several mesh
algorithms that require a watertight manifold. Additionally, mesh files often contain errors and require some kind of
cleanup. The following code examples are excerpts from the file <axom>/src/tools/mesh_tester.cpp.

Quest provides a function to weld vertices within a distance of some specified epsilon. This function takes argu-
ments mint::UnstructuredMesh< mint::SINGLE_SHAPE > **surface_mesh and double epsilon, and mod-
ifies surface_mesh. In addition to the mint Mesh and UnstructuredMesh headers (see previous page), we include the
headers declaring the functions for checking and repairing surface meshes.

#include "axom/quest/MeshTester.hpp"

The function call itself:

7.9. Quest User Guide 175

Axom Documentation

quest::weldTriMeshVertices(&surface_mesh, params.weldThreshold);

One problem that can occur in a surface mesh is self-intersection. A well-formed mesh will have each triangle touching
the edge of each of its neighbors. Intersecting or degenerate triangles can cause problems for some spatial algorithms.
To detect such problems using Quest, we first make containers to record defects that might be found.

std::vector<std::pair<int, int>> collisions;
std::vector<int> degenerate;

Then, we call the function to detect self-intersections and degenerate triangles.

// Use a uniform grid spatial index
quest::findTriMeshIntersections(surface_mesh,

collisions,
degenerate,
params.resolution,
params.intersectionThreshold);

After calling findTriMeshIntersections, collisions will hold the indexes of each pair of intersecting triangles
and degenerate will contain the index of each degenerate triangle. The user code can then address or report any
triangles found. Mesh repair beyond welding close vertices is beyond the scope of the Quest component.

Check for watertightness

Before using Quest’s surface point queries, a mesh must be watertight, with no cracks or holes. Quest provides a
function to test for watertightness, declared in the same header file as the tests self-intersection and an enum indicating
watertightness of a mesh. If the code is working with a mesh read in from an STL file, weld the vertices (see above)
before checking for watertightness!

quest::WatertightStatus wtstat = quest::isSurfaceMeshWatertight(surface_mesh);

This routine builds the face relation of the supplied triangle surface mesh. The face of a triangle is a one-dimensional
edge. If the mesh is big, building the face relation may take some time. Once built, the routine queries face relation:
each edge of every triangle must be incident in two triangles. If the mesh has a defect where more than two triangles
share an edge, the routine returns CHECK_FAILED. If the mesh has a hole, at least one triangle edge is incident in only
one triangle and the routine returns NOT_WATERTIGHT. Otherwise, each edge is incident in two triangles, and the routine
returns WATERTIGHT.

After testing for watertightness, report the result.

switch(wtstat)
{
case quest::WatertightStatus::WATERTIGHT:
std::cout << "The mesh is watertight." << std::endl;
break;

case quest::WatertightStatus::NOT_WATERTIGHT:
std::cout << "The mesh is not watertight: at least one "

<< "boundary edge was detected." << std::endl;
break;

default:
std::cout << "An error was encountered while checking." << std::endl

<< "This may be due to a non-manifold mesh." << std::endl;
(continues on next page)

176 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

break;
}

After an STL mesh has

• been read in with STLReader,

• had vertices welded using weldTriMeshVertices(),

• contains no self-intersections as reported by findTriMeshIntersections(),

• and is watertight as reported by isSurfaceMeshWatertight(),

the in-out and distance field queries will work as designed.

Surface mesh point queries: C API

Quest provides the in/out and distance field queries to test a point against a surface mesh. These queries take a mesh
composed of triangles in 3D and a query point. The in/out query tests whether the point is contained within the surface
mesh. The distance query calculates the signed distance from the query point to the mesh.

Fig. 7.27: Types of point-vs-surface-mesh queries provided by Quest. Left: In/out query, characterizing points as
inside or outside the mesh. Points that lie on the boundary might or might not be categorized as inside the mesh.
Right: Distance query, calculating the signed distance from each query point to its closest point on the mesh. A
negative result indicates an interior query point.

The following examples show Quest’s C interface to these queries. The general pattern is to set some query parameters,
then pass a mint::Mesh * or file name string to an initialization function, call an evaluate function for each query
point, then clean up with a finalize function.

In/out C API

The in/out query operates on a 3D surface mesh, that is, triangles forming a watertight surface enclosing a 3D
volume. The in/out API utilizes integer-valued return codes with values quest::QUEST_INOUT_SUCCESS and
quest::QUEST_INOUT_FAILED to indicate the success of each operation. These examples are excerpted from
<axom>/src/axom/quest/examples/quest_inout_interface.cpp.

To get started, we first include some header files.

#include "axom/quest/interface/inout.hpp"

#ifdef AXOM_USE_MPI
(continues on next page)

7.9. Quest User Guide 177

Axom Documentation

(continued from previous page)

#include <mpi.h>
#endif

Before initializing the query, we can set some parameters, for example, to control the logging verbosity and to set a
threshold for welding vertices of the triangle mesh while generating the spatial index.

// -- Set quest_inout parameters
rc = quest::inout_set_verbose(isVerbose);
if(rc != quest::QUEST_INOUT_SUCCESS)
{
cleanAbort();

}

// Note: contour files are only supported when Axom is configured with C2C
using axom::utilities::string::endsWith;
const int dim = endsWith(fileName, ".contour") ? 2 : 3;
rc = quest::inout_set_dimension(dim);
if(rc != quest::QUEST_INOUT_SUCCESS)
{
cleanAbort();

}

rc = quest::inout_set_vertex_weld_threshold(weldThresh);
if(rc != quest::QUEST_INOUT_SUCCESS)
{
cleanAbort();

}

rc = quest::inout_set_segments_per_knot_span(segmentsPerKnotSpan);
if(rc != quest::QUEST_INOUT_SUCCESS)
{
cleanAbort();

}

By default, the verbosity is set to false and the welding threshold is set to 1E-9.

We are now ready to initialize the query.

#ifdef AXOM_USE_MPI
rc = quest::inout_init(fileName, MPI_COMM_WORLD);

#else
rc = quest::inout_init(fileName);

#endif

The variable fileName is a std::string that indicates a triangle mesh file. Another overload of
quest::inout_init() lets a user code pass a reference to a mint::Mesh* to query meshes that were previously
read in or built up. If initialization succeeded (returned quest::QUEST_INOUT_SUCCESS), the code can

• Query the mesh bounds with quest::inout_mesh_min_bounds(double[3]) and
quest::inout_mesh_max_bounds(double[3]).

• Find mesh center of mass with quest::inout_mesh_center_of_mass(double[3]).

• Test if a query point is inside the mesh surface. In this example pt is a double[3] and numInside is a running
total.

178 Chapter 7. Axom Copyright and License Information

Axom Documentation

const bool ins = quest::inout_evaluate(pt[0], pt[1], pt[2]);
numInside += ins ? 1 : 0;

Once we are done, we clean up with the following command:

quest::inout_finalize();

Signed Distance query C API

Excerpted from <axom>/src/axom/quest/examples/quest_signed_distance_interface.cpp.

Quest header:

#include "axom/quest.hpp"

Before initialization, a code can set some parameters for the distance query.

• Passing true to quest::signed_distance_set_closed_surface(bool) lets the user read in a non-closed
“terrain mesh” that divides its bounding box into “above” (positive distance to the surface mesh) and “below”
(negative distance).

• quest::signed_distance_set_execution_space() allows setting the execution space to run the signed
distance query in. The following values are accepted:

– quest::SignedDistExec::CPU runs the signed distance query on the CPU.

– quest::SignedDistExec::OpenMP runs the signed distance query with multiple threads on the CPU
using OpenMP. Requires building Axom with OpenMP support.

– quest::SignedDistExec::GPU runs the signed distance query on the GPU, if supported. This currently
requires CUDA support.

• quest::signed_distance_set_allocator() allows setting a custom Umpire allocator to allocate the
underlying BVH in. The allocator should be compatible with the execution space set in the call to
quest::signed_distance_set_execution_space().

• If the SLIC logging environment is in use, passing true to quest::signed_distance_set_verbose() will
turn on verbose logging.

• Use of MPI-3 shared memory can be enabled by passing true to
quest::signed_distance_use_shared_memory().

The distance query must be initialized before use. In this example, Arguments is a POD struct containing parameters
to the executable. As with the in/out query, a user code may pass either a file name or a reference to a mint::Mesh *
to quest::signed_distance_init().

int rc = quest::signed_distance_init(args.fileName, global_comm);

Once the query is initialized, the user code may retrieve mesh bounds with
quest::signed_distance_get_mesh_bounds(double* lo, double* hi). Test query points against the
mesh with quest::signed_distance_evaluate(). Here, pt is a double[3], phi is a double array, and inode
is an integer.

phi[inode] = quest::signed_distance_evaluate(pt[0], pt[1], pt[2]);

Finally, clean up.

7.9. Quest User Guide 179

Axom Documentation

quest::signed_distance_finalize();

Surface mesh point queries: C++ API

Codes written in C++ may use the object-oriented C++ APIs to perform in/out and signed distance queries. In addition
to language choice, the C++ API lets a code work with more than one mesh at the same time. Unlike the C API, the
C++ API for in/out and signed distance queries has no initializer taking a file name: readying the mesh is a separate,
prior step.

In/out Octree

The C++ in/out query is provided by the quest::InOutOctree class, from the following header. See <axom>/src/
axom/quest/tests/quest_inout_octree.cpp.

#include "axom/quest/InOutOctree.hpp"

Some type aliases are useful for the sake of brevity. The class is templated on the dimensionality of the mesh. Currently,
only meshes in 3D are supported; here DIM equals 3.

using Octree3D = axom::quest::InOutOctree<DIM>;

using GeometricBoundingBox = Octree3D::GeometricBoundingBox;
using SpacePt = Octree3D::SpacePt;

Instantiate the object using GeometricBoundingBox bbox and a mesh, and generate the index.

Octree3D octree(bbox, mesh);
octree.generateIndex();

Test a query point.

SpacePt pt = SpacePt::make_point(2., 3., 1.);
bool inside = octree.within(pt);

All cleanup happens when the index object’s destructor is called (in this case, when the variable octree goes out of
scope).

Signed Distance

The C++ signed distance query is provided by the quest::SignedDistance class, which wraps an instance of
primal::BVHTree. Examples from <axom>/src/axom/quest/tests/quest_signed_distance.cpp.

Class header:

#include "axom/quest/SignedDistance.hpp"

The constructor takes several arguments:

• const mint::Mesh* surfaceMesh: A pointer to a surface mesh with triangles and/or quadrilaterals.

• bool isWatertight: Indicates the mesh is a watertight mesh, a manifold. The signed distance from a point to
a manifold is mathematically well-defined. When the input is not a closed surface mesh, the mesh must span the
entire computational mesh domain, dividing it into two regions.

180 Chapter 7. Axom Copyright and License Information

Axom Documentation

• bool computeSign (default true): Optional. Enables or disables the computation of signs in distance queries.

• int allocatorID: Optional. Sets a custom Umpire allocator to use in constructing the underlying BVH; by
default, this is set to a default allocator for the execution space the SignedDistance class is instantiated in
(host-side memory for CPU and OpenMP, unified memory for GPUs).

Note that the second and subsequent arguments to the constructor correspond to quest::signed_distance_set
functions in the C API.

As with the InOutOctree, the class is templated on the dimensionality of the mesh, with only 3D meshes being
supported. The class also accepts a template parameter for execution space, for running signed distance queries with
OpenMP or on a GPU.

// Set execution space
constexpr int BlockSize = 256;
#if defined(__CUDACC__)
using ExecSpace = axom::CUDA_EXEC<BlockSize>;
#elif defined(__HIPCC__)
using ExecSpace = axom::HIP_EXEC<BlockSize>;
#else
using ExecSpace = axom::SEQ_EXEC;
#endif

// Create a custom allocator
constexpr size_t PoolSize = 1024 * 1024 * 1024;
umpire::ResourceManager& rm = umpire::ResourceManager::getInstance();
umpire::Allocator device_allocator =
rm.makeAllocator<umpire::strategy::QuickPool>(
"DEVICE_POOL",
rm.getAllocator(umpire::resource::Device),
PoolSize);

int device_pool_id = device_allocator.getId();

// Set SignedDistance options
constexpr bool is_watertight = true;
constexpr bool compute_signs = true;
quest::SignedDistance<3, ExecSpace> signed_distance(surface_mesh,

is_watertight,
compute_signs,
device_pool_id);

Test a query point.

axom::primal::Point< double,3 > pt =
axom::primal::Point< double,3 >::make_point(2., 3., 1.);

double signedDistance = signed_distance.computeDistance(pt);

Test a batch of query points.

const int numPoints = 20;
axom::primal::Point<double, 3>* pts =
axom::allocate<axom::primal::Point<double, 3>>(numPoints);

for (int ipt = 0; ipt < numPoints; ipt++)
{
// fill pts array

(continues on next page)

7.9. Quest User Guide 181

Axom Documentation

(continued from previous page)

pts[ipt] = ...;
}
double signedDists = axom::allocate<double>(20);
signed_distance.computeDistances(numPts, pts, signedDists);

The object destructor takes care of all cleanup.

Point-in-cell query

The point-in-cell query is particularly useful with high-order meshes. It takes a 2D quad or 3D hex mesh and locates
a query point in that mesh, reporting both the cell containing the point and the isoparametric coordinates of the query
point within the cell.

Note: If a query point lies on the boundary in more than one cell, the point-in-cell query will return the cell with the
lowest index.

If the point lies outside of any cell, the query returns the special value
quest::PointInCellTraits<mesh_tag>::NO_CELL or using the MeshTraits typedef, MeshTraits::NO_CELL.

Fig. 7.28: Point-in-cell query, identifying the cell that contains a physical point and finding the point’s isoparametric
coordinates within the cell.

The point-in-cell query is currently implemented using MFEM, so to use this query Axom must be compiled with
MFEM as a dependency. The following example (from <axom>/src/tests/quest_point_in_cell_mfem.cpp)
shows the use of the query, beginning with inclusion of required header files.

#include "axom/quest/PointInCell.hpp"

#ifdef AXOM_USE_MFEM
#include "axom/quest/detail/PointInCellMeshWrapper_mfem.hpp"

#else
#error "Quest's PointInCell tests on mfem meshes requires mfem library."

#endif

We use typedefs for the sake of brevity. The class is templated on a struct (provided by Quest, referred to as
mesh_tag) that is used to select MFEM as the backend implementation for point location. To implement a new back-
end, a developer must declare a new (empty) struct and provide a specialization of the PointInCellTraits and
PointInCellMeshWrapper templated on the new struct that fulfill the interface documented for those classes.

182 Chapter 7. Axom Copyright and License Information

Axom Documentation

using mesh_tag = axom::quest::quest_point_in_cell_mfem_tag;
using PointInCellType = axom::quest::PointInCell<mesh_tag, ExecSpace>;
using MeshTraits = typename PointInCellType::MeshTraits;
using IndexType = typename PointInCellType::IndexType;

Instantiate the object using an MFEM mesh and a spatial index 25 bins on a side.

PointInCellType spatialIndex(m_mesh, GridCell(25).data(), m_EPS, m_allocatorID);

Test a query point. Here idx receives the ID of the cell that contains queryPoint and isoPar is a primal::Point
that receives the isoparametric coordinates of queryPoint within cell idx.

spatialIndex.locatePoints(pts, outCellIds.data(), outIsopar.data());

From cell ID and isoparametric coordinates, reconstruct the input physical coordinates.

SpacePt untransformPt;
spatialIndex.reconstructPoint(idx, isoPar.data(), untransformPt.data());

The destructor of the index object cleans up resources used (in this case, when the variable spatialIndex goes out
of scope).

All nearest neighbors query

Some applications need to work with the interaction of points that are close to each other. For example, in one technique
used for additive manufacturing, the particles in a powder bed are melted using a laser. Particle behavior against nearby
particles determines droplet formation. The all-nearest-neighbors query takes as input a list of point positions and
regions and a maximum radius. For each point, using the L2 norm as the distance measure, the query calculates the
nearest neighbor point not in the same region, as shown in the figure.

Fig. 7.29: All nearest neighbors query. Here, points belong to one of four regions. Given a maximum search radius,
the query finds the closest neighbor to each point in another region.

7.9. Quest User Guide 183

Axom Documentation

Here is an example of query usage, from <axom>/src/axom/quest/tests/quest_all_nearest_neighbors.
cpp.

First, include the header.

#include "axom/quest/AllNearestNeighbors.hpp"

Query input consists of the points’ x, y, and z positions and region IDs, the point count, and the search radius.

double x[] = {-1.2, -1.0, -0.8, -1.0, 0.8, 1.0, 1.2, 1.0};
double y[] = {0.0, -0.2, 0.0, 0.2, 0.0, -0.2, 0.0, 0.2};
double z[] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
int region[] = {0, 0, 0, 0, 1, 1, 1, 1};
int n = 8;
double limit = 1.9;

For each input point, the output arrays give the point’s neighbor index and squared distance from the point to that
neighbor.

axom::quest::all_nearest_neighbors(x, y, z, region, n, limit, neighbor, dsq);

Isosurface Detection

Quest can generate isosurface meshes for node-centered scalar fields. This feature takes a structured mesh with some
scalar nodal field and generates an UnstructuredMesh at a user-specified isovalue. The isosurface mesh contains
information on which elements of the field mesh it crosses. The output may be useful for material surface reconstruction
and visualization, among other things.

We support 2D and 3D configurations. The isosurface mesh is a composed of line segments in 2D and triangles in 3D.

Note: The current implementation is for the original algorithm:

Lorensen, William E.; Cline, Harvey E. (1 August 1987). “Marching cubes: A high resolution 3D surface construction
algorithm”. ACM SIGGRAPH Computer Graphics. 21 (4): 163-169

Other similar or improved algorithms could be added in the future.

Note: If an input mesh cell contains an isosurface saddle point, the isocontour topology is ambiguous. The algorithm
will choose the topology arbitrarily but consistently.

The algorithm is implemented in the class quest::MarchingCubes.

The inputs are:

1. The mesh containing the scalar field. This mesh should be in Conduit’s blueprint format. See https://llnl-conduit.
readthedocs.io/en/latest/blueprint_mesh.html

2. The name of the blueprint coordinates data for the input mesh.

3. The name of the scalar field data within the input mesh.

4. The contour value.

The following example shows usage of the MarchingCubes class. (A complete example is provided in src/axom/
quest/examples/quest_marching_cubes_example.cpp.)

184 Chapter 7. Axom Copyright and License Information

https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html
https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html

Axom Documentation

Fig. 7.30: Planar isocontour generated using the field 𝑓(r) = 𝑓0+ r ·n and spherical contour generated using the field
field 𝑔(r) = |r − r0|. Colors denote the domain index in the multi-domain cubic mesh.

7.9. Quest User Guide 185

Axom Documentation

Relevant header files:

#include "conduit_relay_io_blueprint.hpp"
#include "axom/quest/MarchingCubes.hpp"
#include "axom/mint/mesh/UnstructuredMesh.hpp"

Set up the user’s blueprint mesh and the MarchingCubes object:

The blueprint mesh must be a structured mesh in multi-domain format. A domain is a part of a global mesh that has
been subdivided for reasons including parallel partitioning, geometric constraints and size constraints. Any number of
domains is allowed, including zero. (For single-domain format, see the similar MarchingCubesSingleDomain class
in the axom::quest namespace.)

Blueprint convention allows for named coordinate sets and scalar fields. Here, we tell the MarchingCubes constructor
that the topology is “mesh”, and the name of the nodal scalar field is “scalarFieldName”.

The constructor’s quest::MarchingCubesRuntimePolicy::seq argument tells mc to run sequentially on the host.
MarchingCubes currently also supports OpenMP and GPU device executions using CUDA and HIP.

conduit::Node blueprintMesh = blueprint_mesh_from_user();
quest::MarchingCubes mc(quest::MarchingCubesRuntimePolicy::seq,

blueprintMesh,
"mesh",
"scalarFieldName");

Run the algorithm:

double contourValue = 0.5;
mc.computeIsocontour(contourValue);

Place the isocontour in an output mint::UnstructuredMesh object:

MarchingCubes generates the isocontour mesh in an internal format. Use populateContourMesh to put it in a
mint::UnstructuredMesh object. In the future, we will support outputs in blueprint format.

populateContourMesh provides two scalar fields for the generated mesh:

1. the ID of the cell from the input mesh that generated the isocontour cell.

2. the ID of the domain from the input mesh that generated the isocontour cell.

The names of these fields are user-specified. Use empty strings if you don’t need these fields. This example puts cell
IDs in “cellIds” and domain IDs in “domainIds”.

mint::UnstructuredMesh<axom::mint::SINGLE_SHAPE> contourMesh;
mc.populateContourMesh(contourMesh, "cellIds", "domainIds");

After putting the isosurface in the UnstructuredMesh object, the MarchingCubes object is no longer needed.

MPI-parallel runs:

For MPI-parallel runs, the input mesh may have local and remote domains. The algorithm is local in that no data
communication is required to run. The output isosurface mesh uses node and cell numbers that are locally unique.
Users requiring these numbers to be globally unique should renumber them.

186 Chapter 7. Axom Copyright and License Information

Axom Documentation

7.10 Sidre User Guide

The Sidre (Simulation data repository) component of Axom provides tools to centralize data management in HPC
applications: data description, allocation, access, and so forth. The goal of Sidre is efficient coordination and sharing
of data across physics packages in integrated applications, and between applications and tools that provide capabilities
such as file I/O, in situ visualization, and analysis.

The design of Sidre is based on substantial production application experience and requirements for codes to run on
advanced architectures. Such codes must carefully manage data allocation and placement to run efficiently. Sidre is
intended to be used in a variety of diverse applications.

7.10.1 API Documentation

Doxygen generated API documentation can be found here: API documentation

7.10.2 Introduction

Sidre provides simple application-level semantics to describe, allocate, deallocate, and provide access to data. Currently
supported capabilities include:

• Separate data description and allocation operations. This allows applications to describe their data and then
decide how best to place the data in memory.

• Multiple different “views” into a chunk of (shared) data. A Sidre view includes description semantics to
define data type, number of elements, offset, stride, etc. Thus, a chunk of data in memory can be interpreted
conceptually in different ways using different views into it.

• Externally-owned “opaque” or described data. Sidre can accept a pointer to externally-allocated data and
provide access to it by name. When external data is described to Sidre, it can be processed in the same ways as
data that Sidre owns. When data is not described (i.e., it is “opaque”), Sidre can provide access to the data via a
pointer, but the consumer of the data must know type information to do anything substantial with the data.

• Support for different memory spaces and allocation schemes. Default memory space and allocation support
is basic. More advanced features are available via the Umpire library when Axom is configured to be built with
it.

• Attributes or metadata associated with a Sidre view. This metadata is available to user code to facilitate
program logic and is also used in Axom to enable selective writing of data subsets to files.

• Tree-structured data hierarchies. Many mesh-based application codes organize data into hierarchies of con-
texts (e.g., domains, regions, blocks, mesh centerings, subsets of elements containing different materials, etc.).
Sidre supports hierarchical, tree-based organizations in a simple, flexible way that aligns with the data organiza-
tion in many applications.

• APIs for C++, C, and Fortran along with mechanisms to ensure inter-language data consistency.

So far, Sidre development has focused on designing and building flexible and powerful concepts to build on. The Sidre
API includes five main concepts:

• DataStore. The main access point to data managed by Sidre; it contains a collection of Buffers, a collection of
default Attributes, and a tree structure of Groups.

• Buffer. Describes and holds a chunk of data in memory owned by Sidre.

• Group. Defines a tree structure like a filesystem, where Groups are like folders and Views are like files.

• View. Describes a conceptual layout of data in memory. Each View has a collection of its explicitly-set Attributes.

• Attribute. Provides a metadata descriptor of a View.

7.10. Sidre User Guide 187

../../../../doxygen/html/sidretop.html
https://github.com/LLNL/Umpire

Axom Documentation

These concepts will be described in more detail in later sections.

At this point, Sidre supports simple data types such as scalars, strings, and (multidimensional) arrays of scalars. Funda-
mentally, Sidre does not preclude the use of more complex data structures, but does not currently support them directly.
Future Sidre development will expand core functionality to support additional features such as:

• Support for more complex data types.

• Complex queries and actions involving Attributes.

Support for these enhancements and others will be added based on application needs and use cases.

An introductory example

As an introduction to the core concepts in Sidre and how they work, here is an example where we construct the Sidre
data hierarchy structure shown in the following figure:

Symbol Sidre class

Group

View

Attribute

The diagram represents a datastore container, holding all Sidre objects and provides the main interface to access those

188 Chapter 7. Axom Copyright and License Information

Axom Documentation

objects. Rounded rectangles represent Sidre Group objects. Each Group has a name and one parent group, except for
the root group (i.e. “/”), which has no parent. A datastore provides one root group (i.e. “/”) that is created when a
DataStore object is constructed; thus, an application does not create the root. A Group may have zero or more child
groups (indicated by an arrow from the parent to each child). Each group also owns zero or more View objects, which
are shown as rectangles. An arrow points from a group to each view it owns.

A Sidre View object has a name and, typically, some data associated with it. This example shows various types of data
that can be described by a view, including scalars, strings, and data in arrays (both externally allocated and owned by
Sidre Buffer objects). Each array view has a data pointer and describes data in terms of data type, number of elements,
offset, and stride. Data pointers held by array view are shown as dashed arrows.

A DataStore also contains a collection of Buffer objects, shown as segmented rectangles.

A DataStore contains a list of Attribute objects. Each Attribute is outlined with a hexagon and defines a metadata
label and a default value associated with that label. In the example, the datastore has “vis” (with default value 0) and
“restart” (with default value 1) attributes. Default attributes apply to all views unless explicitly set for individual views.
In the example, the “temp” and “rho” views have the “vis” attribute set to 1.

Various aspects of Sidre usage are illustrated in the C++ code shown next. Sidre provides full C and Fortran APIs that
can also be used to generate the same result.

First, we create a DataStore object, define some Attribute objects along with their default values, and add some
child Group objects to the root Group.

// Create Sidre datastore object and get root group
auto ds = std::unique_ptr<sidre::DataStore> {new sidre::DataStore()};
sidre::Group* root = ds->getRoot();

// Create two attributes
ds->createAttributeScalar("vis", 0);
ds->createAttributeScalar("restart", 1);

// Create group children of root group
sidre::Group* state = root->createGroup("state");
sidre::Group* nodes = root->createGroup("nodes");
sidre::Group* fields = root->createGroup("fields");

The createViewScalar() method lets an application store scalar values in a view owned by the group object the
method is called on.

// Populate "state" group
state->createViewScalar("cycle", 25);
state->createViewScalar("time", 1.2562e-2);
state->createViewString("name", "sample_20171206_a");

This example stores (x, y, z) node position data in one array. The array is managed by a Buffer object and three View
objects point into it. C++ Sidre operations that create a Buffer, a Group, and a View, as shown in the following code,
return a pointer to the object that is created. This allows chaining operations. (Chaining is supported in the C++ API
but not in C or Fortran.)

int N = 16;
int nodecount = N * N * N;
int eltcount = (N - 1) * (N - 1) * (N - 1);

// Populate "nodes" group
//

(continues on next page)

7.10. Sidre User Guide 189

Axom Documentation

(continued from previous page)

// "x", "y", and "z" are three views into a shared Sidre buffer object that
// holds 3 * nodecount doubles. These views might describe the location of
// each node in a 16 x 16 x 16 hexahedron mesh. Each view is described by
// number of elements, offset, and stride into that data.
sidre::Buffer* buff =
ds->createBuffer(sidre::DOUBLE_ID, 3 * nodecount)->allocate();

nodes->createView("x", buff)->apply(sidre::DOUBLE_ID, nodecount, 0, 3);
nodes->createView("y", buff)->apply(sidre::DOUBLE_ID, nodecount, 1, 3);
nodes->createView("z", buff)->apply(sidre::DOUBLE_ID, nodecount, 2, 3);

The last two integral arguments to the createView() method specify the offset from the beginning of the array and
the stride of the data. Thus, the x, y, z values for each position are stored contiguously with the x values, y values, and
z values each offset from each other by a stride of three in the array.

The next snippet creates two views (“temp” and “rho”) and allocates each of their data as an array of type double with
length ‘eltcount’. Then, it sets an attribute (“vis”) on each view with a value of 1. Lastly, it creates a group (“ext”)
that has a view holding an external pointer (“region”). The apply() method describes the view data as an array of
integer type and length ‘eltcount’. Note that it is the responsibility of the caller to ensure that the allocation to which
the “region” pointer references is adequate to contain that data description.

// Populate "fields" group
//
// "temp" is a view into a buffer that is not shared with another View.
// In this case, the data Buffer is allocated directly through the View
// object. Likewise with "rho." Both Views have the default offset (0)
// and stride (1). These Views could point to data associated with
// each of the 15 x 15 x 15 hexahedron elements defined by the nodes above.
sidre::View* temp =
fields->createViewAndAllocate("temp", sidre::DOUBLE_ID, eltcount);

sidre::View* rho =
fields->createViewAndAllocate("rho", sidre::DOUBLE_ID, eltcount);

// Explicitly set values for the "vis" Attribute on the "temp" and "rho"
// buffers.
temp->setAttributeScalar("vis", 1);
rho->setAttributeScalar("vis", 1);

// The "fields" Group also contains a child Group "ext" which holds a pointer
// to an externally owned integer array. Although Sidre does not own the
// data, the data can still be described to Sidre.
sidre::Group* ext = fields->createGroup("ext");
// int * region has been passed in as a function argument. As with "temp"
// and "rho", view "region" has default offset and stride.
ext->createView("region", region)->apply(sidre::INT_ID, eltcount);

The next code example shows various methods to retrieve a group object and data from a view in the group hierarchy.

// Retrieve Group pointers
sidre::Group* root = ds->getRoot();
sidre::Group* state = root->getGroup("state");
sidre::Group* nodes = root->getGroup("nodes");
sidre::Group* fields = root->getGroup("fields");

(continues on next page)

190 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

// Accessing a Group that is not there gives a null pointer
// Requesting a nonexistent View also gives a null pointer
sidre::Group* goofy = root->getGroup("goofy");
if(goofy == nullptr)
{
std::cout << "no such group: goofy" << std::endl;

}
else
{
std::cout << "Something is very wrong!" << std::endl;

}

// Access items in "state" group
int cycle = state->getView("cycle")->getScalar();
double time = state->getView("time")->getScalar();
const char* name = state->getView("name")->getString();

// Access some items in "nodes" and "fields" groups
double* y = nodes->getView("y")->getArray();
int ystride = nodes->getView("y")->getStride();
double* temp = fields->getView("temp")->getArray();
int* region = fields->getView("ext/region")->getArray();

// Nudge the 3rd node, adjust temp and region of the 3rd element
y[2 * ystride] += 0.0032;
temp[2] *= 1.0021;
region[2] = 6;

In the last section, the code accesses the arrays associated with the views “y”, “temp”, and “region”. While “temp”
and “region” have the default offset (0) and stride (1), “y” has offset 1 and stride 3 (as described earlier). The pointer
returned by View::getPointer() always points to the first data element described by the view (the view takes care
of the offset), but use of a stride other than 1 must be done by the code itself.

Unix-style path syntax using the slash (“/”) delimiter is supported for traversing Sidre group and view hierarchies and
accessing their contents. However, ‘..’ and ‘.’ syntax (up-directory and current directory) is not supported. This usage
is shown in the last call to getView() in the code example above. The method call retrieves the view named “region”
in the group named “ext” that is a child of the “fields” group. Character sequences before the first slash and between
two consecutive slashes are assumed to be group names (describing parent-child relationships). For this method, and
others dealing with view objects, the sequence following the last slash is assumed to be the name of a view. Similar
path syntax can be used to retrieve a group, create a group and a view, a nd so forth.

Core concepts

As noted earlier and described in the previous example, Sidre provides five main classes: DataStore, Buffer, Group,
View, and Attribute. In combination, these classes implement a data store with a tree structure to organize data in a
hierarchy. Before delving into details of these classes/concepts, we summarize their basic intent:

• DataStore is the main interface to access a data hierarchy.

• Buffer describes and holds a contiguous chunk of data in memory.

• Group defines parent-child relationships in a hierarchical tree data structure and provides access to file I/O
operations.

• View provides a virtual description of data and access to it.

7.10. Sidre User Guide 191

Axom Documentation

• Attribute allows a program to attach metadata to View objects for processing data selectively.

The following sections summarize the main interface features and functionality of these Sidre classes.

Note: Interfaces for each of these classes are provided natively in C++, C, and Fortran.

DataStore

A Sidre DataStore object provides the main access point for Sidre contents, including the data managed by Sidre.
A datastore maintains the Group object at the root of a Sidre data hierarchy, a collection of Buffer objects, and
a collection of Attribute objects. Generally, the first thing a Sidre user does is create the datastore object; this
operation also creates the root group. Apart from providing access to the root group, a datastore provides methods to
retrieve and interact with buffers and attributes.

The DataStore class provides methods to retrieve error state and messages arising from I/O errors reading or writing
Group data:

• Query or set Conduit error flag

• Query, append, or clear exception messages from a Conduit I/O error

Note: Buffer and Attribute objects can only be created and destroyed using DataStore methods noted below.
The Buffer and Attribute class constructors and destructors are private.

The DataStore class provides the following methods to manage and interact with Buffer objects:

• Create, destroy, and allocate data in buffers

• Query the number of buffers that exist

• Query whether a buffer exists with a given id

• Retrieve the buffer with a given id

• Iterate over the set of buffers in a datastore

Please see Buffer for more information about using Buffer objects.

The DataStore class provides the following methods to manage and interact with Attribute objects:

• Create and destroy attributes

• Query the number of attributes that exist

• Query whether an attribute exists with a given name or id

• Retrieve attribute with a given name or id

• Iterate over the set of attributes in a datastore

Please see Attribute for more information about using Attribute objects.

192 Chapter 7. Axom Copyright and License Information

Axom Documentation

Buffer

A Sidre Buffer object holds a contiguous array of data described by a data type and length. The data owned by a
buffer is unique to that buffer; i.e., buffers do not share data.

A buffer can be created without a data description and then described later in a separate operation, or it can be described
when it is created. In either case, data description and allocation are distinct operations. This allows an application
to create buffers it needs, then assess the types and amount of data they will hold before deciding how and when to
allocate data.

Note:

• Buffer objects can only be created and destroyed using DataStore class methods. Buffer constructor and
destructor methods are private (see DataStore).

• Each Buffer object has a unique integer identifier generated when the buffer is created. If you want to retrieve
a buffer or interact with it directly, you must keep a pointer to it or note its id so that you can retrieve it from a
DataStore when needed.

Buffer objects hold data for Sidre View objects in most cases. Each buffer maintains references to the views that refer
to its data. These references are created when a buffer object is attached to a view, or when data is allocated with a
view. Data stored in a buffer may be accessed through a view or through the buffer. See View for more information
about View objects.

The Buffer class provides the following operations:

• Retrieve the unique id of the buffer

• Query whether a buffer is described or allocated

• Describe buffer data (type and number of elements)

• Allocate, reallocate, deallocate buffer data

• Copy a given number of bytes of data from a given pointer to a buffer allocation

• Get data held by a buffer as a pointer or conduit::Node::Value type

• Query the data owned by a buffer: type, number of elements, total number of bytes, number of bytes per element,
etc.

• Retrieve the number of views the buffer is attached to

• Copy buffer description and its data to/from a conduit::Node

One can iterate through the buffers in the datastore using either “range-for” or iterator syntax:

// 'range-for' syntax
for(auto& buff: datastore->buffers()) { /* ... */ }

// 'iterator' syntax:
for(auto it = datastore->buffers().begin(),

itEnd = datastore->buffers().end(); it != itEnd; ++it)
{
auto& buff = *it;
/* ... */

}

7.10. Sidre User Guide 193

Axom Documentation

Group

Sidre Group objects are used to define a tree-like hierarchical organization for application data, such as meshes and
fields used in a simulation. Each group has a name and one parent group (except for the root group, which has no
parent) and contains zero or more child groups and zero or more data views. A Sidre datastore has exactly one root
group that is created when the datastore is created. The root group’s name is initially the empty string. See DataStore
for more information.

A group hierarchy is constructed by creating child groups of the root group, children of those groups, and so on. All
groups in a subtree rooted at a particular group are considered descendants of that group. View objects can be created
in groups to hold or provide access to data of various types.

Note: Group and View objects can only be created and destroyed using Group class methods. The Group and View
class constructors and destructors are private.

A group or view is owned by the group that created it; i.e., its parent group or owning group, respectively. Groups and
views maintain pointers to their parent/owning group. Thus, one may walk up or down a group hierarchy to access
groups and views in it, as needed.

Note:

• The name (string) of a group or view must be unique within its parent/owning Group.

• A group or view has a unique integer identifier within its parent/owning group, which is generated when it is
created.

• Views and child groups in a group can be accessed by name or integer id.

A group can be moved or copied to another group. When a group is moved to another group, it is removed from its
original parent and the group to which it is moved becomes its parent. This implies that the entire subtree of groups
and views within the moved group is moved as well and can no longer be accessed via the original parent group. When
a group is copied to another group, a copy of the entire group subtree rooted at the copied group is added to the group
to which it is copied. A shallow copy is performed for the data in each view. Specifically, a new view objects is created
in the destination, but the data is shared by the original and new view.

Note: View object copy operations perform shallow copies of the data in a view.

Some methods for creating, destroying, querying, and retrieving groups and views take a string with path syntax,
where parent and child group names are joined with the path separator character ‘/’. Other methods take the name of
an immediate child of a group. Methods that require the name of an immediate child are marked with ‘Child’ in their
name, such as hasChildView() and hasChildGroup(). When a path string is passed to a method that accepts path
syntax, the last item in the path indicates the item to be created, destroyed, accessed, etc. For example,:

View* view = group->createView("foo/bar/baz");

is equivalent to:

View* view = group->createGroup("foo")->createGroup("bar")->createView("baz");

In particular, intermediate groups “foo” and “bar” will be created in this case if they don’t already exist. The path
syntax is similar to a Unix filesystem, but the path string may not contain the parent entry, such as “../foo”, or current
group, such as “./bar”.

194 Chapter 7. Axom Copyright and License Information

Axom Documentation

Methods to Operate on Groups

The following lists summarize Group class methods that support operations related to groups.

Note:

• Methods that access groups by index only work with the immediate children of the current group because an id
has no meaning outside of the indexing of the current group. None of these methods is marked with ‘Child’ in
its name.

• When a group is created, destroyed, copied, or moved, ids of other views and groups in its parent group may
become invalid. This is analogous to iterator invalidation for containers when the container contents change.

Create, Modify, and Destroy Groups

• Create a child group given a name (child) or path (other descendant). If a path is given, intermediate groups in
path are created, if needed.

• Rename a group. A group cannot be renamed to the empty string, to a string containing the path separator
character, or to the name of another group or view owned by the same parent.

• Destroy a descendant group with given id (child), or name/path (child or other descendant).

• Destroy all child groups in a group.

Note: When a Group object is destroyed, all groups and views in the subtree rooted at the destroyed group are also
destroyed. However, the data associated with the views will remain intact.

Group Properties

• Retrieve the name or id of a group

• Retrieve the full path name from the root of the tree to a group

• Get a pointer to the parent group of a group

• Query the number of child groups of a group

• Query whether a group has a descendant group with a given name or path

• Query whether a group has an immediate child group with a given integer id

• Query the name of a child group with a given id, or the id of a child group with a given name

• Get a pointer to the datastore that owns the hierarchy in which a group resides

7.10. Sidre User Guide 195

Axom Documentation

Group Access

• Retrieve an immediate child group with a given name or id, or a descendant group with a given path

• Iterate over the set of child groups of a group. One can use the “range-for” syntax or the iterator
syntax

// 'range-for' syntax:

for(auto& grp: someGroup->groups()) { /* ... */ }

// 'iterator' syntax:
for(auto it = someGroup->groups().begin(),

itEnd = someGroup->groups().end(); it != itEnd; ++it)
{
auto& grp = *it;
/* ... */

}

Move and Copy Groups

• Move a group, and its associated subtree, from its parent group and make it a child of another group

• Create a copy of group subtree rooted at some group and make it a child of another group

• Query whether a group subtree is equivalent to another; i.e., identical subtree structures with same names for all
groups and views, and views are also equivalent (see View Property Operations).

Methods to Operate on Views

Group class methods that support operations related to View objects are summarized below. For more details on View
concepts and operations, please see View.

Note: Methods that access views by index work only with the views owned by the current group because an id has no
meaning outside of the indexing of the current group. None of these methods is marked with ‘Child’ in its name.

Create Views

• Create a view in the group with a name only.

• Create a view in the group with a name and data description.

• Create a view in the group with a name and with a Buffer attached. The View may or may not have a data
description.

• Create a view in the group with a name and an external data pointer. The data may or may not be described.

• Create a view in the group with a name and data description, and allocate the data. Implicitly the data is held in
a buffer that is attached to the view.

• Create a view in the group with a name holding a given scalar or string.

196 Chapter 7. Axom Copyright and License Information

Axom Documentation

Destroy Views

• Destroy view with given id (child), or name/path (view in the group or some descendant group), and leave view
data intact.

• Destroy all views in the group, and leave their data intact.

• Destroy view with given id, or name/path, and destroy their data.

• Destroy all views in the group and destroy their data.

View Queries

• Query the number of views in a group.

• Query whether a group subtree has a view with a given name or path.

• Query whether a group has a view with a given integer id.

• Query the name of a view with a given id, or the id of a view with a given name.

View Access

• Retrieve a view in the group with a given name or id, or a descendant view (somewhere in the subtree)
with a given path.

• Iterate over the set of views owned by the group. One can use the “range-for” syntax or the iterator
syntax

// 'range-for' syntax:
for(auto& view: someGroup->views()) { /* ... */ }

// 'iterator' syntax:
for(auto it = someGroup->views().begin(),

itEnd = someGroup->views().end(); it != itEnd; ++it)
{
auto& view = *it;
/* ... */

}

Move and Copy Views

• Move a view from its owning group to another group (removed from original owning group).

• Copy a view to another group. Note that this is a shallow copy of the view data; i.e., it is shared by the original
and the new view in the destination group.

7.10. Sidre User Guide 197

Axom Documentation

List Format

The list format is an alternate way for a group to hold its child groups and views. In list format, any number of child
group or view items can be created. Each can be accessed, in order of creation, using an iterator over groups or over
views. Child groups and views held in list format cannot be accessed by name.

To create a group that uses the list format, the optional argument is_list must be set to true in the call to
createGroup.

// list_group will hold its child items in the list format.
Group* list_group = group->createGroup("my_list", true);

It is recommended but not required that the items held in the list format be created without names. String names may
be assigned to these items, but the names will not be useful for accessing them from their parent group, and none of
the methods that access child items by name or path will return a valid pointer. The method createUnnamedGroup is
available to create an unnamed child group, while unnammed views can be created by passing an empty string to any
of the several createView methods in the Group class.

Group* g0 = list_group->createUnnamedGroup();
Group* g1 = list_group->createUnnamedGroup();
Group* g2 = list_group->createUnnamedGroup();
View* v0 = list_group->createView("");
View* v1 = list_group->createViewScalar("", 1.0);
View* v2 = list_group->createViewString("", "foo");
View* v3 = list_group->createView("", type, num_elems, buffer);

While it is allowed to pass a non-empty string to be the name of a child item held in the list format, a string with path
syntax, like "foo/bar/baz", will be considered invalid, and the object creation methods will return a nullptr if such
a string is provided.

// This is valid, but the string name will not be useful for future access.
View* foo = list_group->createView("foo");
// This is invalid due to the path syntax, a nullptr will be returned.
View* baz = list_group->createView("bar/baz");

Group I/O Operations

The group interface provides methods to perform data I/O operations on views in the group subtree rooted at any group.

• Copy a description of a group subtree to a conduit::Node.

• Create native and external data layouts in conduit::Node hierarchies (used mainly for I/O operations)

• Save and load group subtrees, including data in associated views, to and from files. A variety of methods are
provided to support different I/O operations, different I/O protocols, etc.

I/O methods on the group class use Conduit to write the data (sub)tree rooted in a group to a file, HDF5 handle, or
other Conduit protocol, or to an in-memory Conduit data structure. Please see Sidre Interaction with Conduit for more
information. An application may provide an attribute to the method call, so only views with that attribute explicitly set
will be written. See Parallel File I/O for more information.

198 Chapter 7. Axom Copyright and License Information

https://github.com/LLNL/conduit
https://www.hdfgroup.org/HDF5/

Axom Documentation

View

A Sidre View object describes data and provides access to it. A view can describe a (portion of a) data allocation in
any way that is compatible with the allocation. Specifically, the allocation must contain enough bytes to support the
description. In particular, the data type of a view description need not match the types associated with the allocation
or types of other views that refer to that data.

Note: View objects can only be created and destroyed using Group class methods. The View class constructor and
destructor are private.

Each view has a name and is owned by one group in a Sidre group hierarchy; i.e., its owning group. A view maintains
a pointer to the group that owns it.

Note:

• The name (string) of a view must be unique within its owning group.

• A view has a unique integer identifier within its owning group, which is generated when the view is created.

• Views in a group can be accessed by name or integer id.

A view can describe and provide access to data referenced by a pointer in one of four ways described below. A view
data description includes: data type, length (number of elements), offset (from base data pointer) and stride (based on
the pointer address and data type).

• A view can describe (a subset of) data owned by a pre-existing buffer. In this case, the buffer is manually
attached to the view and the view’s data description is applied to the buffer data. Buffer data can be (re)allocated
or deallocated by the view if and only if it is the only view attached to the buffer. In general, a buffer can be
attached to more than one view.

• A view description can be used to allocate data for the view using a View class allocate() method similar to
buffer data description and allocation (see Buffer). In this case, the view is usually exclusively associated with a
buffer and no other view is allowed to (re)allocate or deallocate the data held by the buffer.

• A view can describe data associated with a pointer to an external data allocation. In this case, the view cannot
(re)allocate or deallocate the data. However, all other view operations can be applied to the data in essentially
the same ways as the previous two cases.

• A view can hold a pointer to an undescribed (opaque) data pointer. In this case, the view knows nothing about
the type or structure of the data; it can only provide access to it. A user is entirely responsible for casting the
pointer to a proper type when accessed through the view, knowing the size of the data, etc.

A view may also refer to a scalar quantity or a string. Such views hold their data differently than the pointer cases
described above.

Before we describe the Sidre View class interface, we present some view concepts that describe various states a view
can be in at any given time. Hopefully, this will provide some useful context for the method descriptions that follow.

The key view concepts that users should be aware of are:

• View data description (data type, number of elements, stride, offset, etc.)

• View data association (data lives in an attached Sidre buffer, accessed via an external pointer, or is a scalar or
string owned by the view)

• Whether the view data description has been applied to the data

The table below summarizes View data associations (rows) and view states with respect to the data (columns).

7.10. Sidre User Guide 199

Axom Documentation

Fig. 7.31: This table summarizes Sidre view data associations and data states. Each row is a data association and each
column refers to a data state. The True/False entries in the cells indicate return values of the View class methods at the
tops of the columns. The circumstances under which those values are returned are noted as well.

200 Chapter 7. Axom Copyright and License Information

Axom Documentation

The three View data state methods at the tops of columns and their return values are:

• isDescribed() returns true if a view has a data description, and false otherwise.

• isAllocated() returns true if a view is associated with data, such as a non-null pointer, and false otherwise.

• isApplied() returns true if a view has a data description and is associated with data that is compatible with that
description, and the description has been applied to the data; otherwise false is returned.

The rows indicate data associations; the View class has methods to query these as well; e.g., isEmpty(), hasBuffer(),
etc. The associations are:

• EMPTY. A view has no associated data; the view may or may not have a data description.

• BUFFER. A view has an attached buffer; the view may or may not have a data description and the buffer may
or may not be allocated and the description (if view has one) may or may not be applied to the buffer data (if
allocated).

• EXTERNAL. A view has a non-null pointer to external data; the view may or may not have a data description
and the description, if the view has one, may or may not be applied to the external data.

• SCALAR. A view was created to hold a scalar value; such a view always has a valid data description, is allocated,
and the description is applied.

• STRING. A view was created to hold a string; such a view always has a valid data description, is allocated, and
the description is applied.

Note that there are specific consequences that follow from each particular association/state that a view is in. For
example, an EMPTY view cannot have an attached buffer. Neither can an EXTERNAL, SCALAR or STRING view.
A view that is EMPTY, BUFFER, SCALAR, or STRING cannot be EXTERNAL, etc.

The following lists summarize the View class interface:

Note: Most View class methods return a pointer to the view object on which the method is called. This allows
operations to be chained; e.g.,

View* view = ...;
view->describe(...)->allocate(...)->apply();

View Property Operations

• Retrieve the name or id of the view object.

• Retrieve the view path name from the root of the tree or the path to the group that owns it.

• Get a pointer to the group that owns the view.

• Is the view equivalent to another view; i.e., are names and data descriptions the same?

• Rename a view.

• Clear the view by removing description and data.

7.10. Sidre User Guide 201

Axom Documentation

Data Association Queries

• Is view empty?

• Does view have a buffer attached?

• Is view associated with external data?

• Is it a scalar view?

• Is it a string view?

Data State Queries

• Does view have a data description?

• Is view data allocated?

• Is view data description applied to data?

• Is view opaque; i.e., it has an external pointer and no description?

Data Description Queries

• Get the type of the data described by a view.

• Get total number of bytes of data.

• Get number of elements (total bytes / size of type).

• Get number of bytes per data element (for type).

• Get data offet.

• Get data stride.

• Get number of dimensions and shape of multi-dimensional data.

• Get a conduit::Schema object that contains the view data description.

Data Management Operations

• Allocate, reallocate, and deallocate view data.

• Attach buffer to view (with or without data description), and detach buffer from view.

• Apply current view description to data or apply a new description.

• Set view scalar value.

• Set view string.

• Set external data pointer, with or without a data description.

202 Chapter 7. Axom Copyright and License Information

Axom Documentation

Data Access Methods

• Get a pointer to the view data, actual type or void*.

• Get scalar value for a scalar view.

• Retrieve pointer to buffer attached to view.

• Get a conduit::Node object that holds the view data.

Attribute Methods

• Query whether a view has an attribute with given id or name.

• Get attribute associated with a view by id or name.

• Query whether aAttribute has been set explicitly for view.

• Reset attribute with given id or name to its default value.

• Set attribute with given id or name to a given scalar value or string.

• Retrieve scalar value or string of an attribute.

• Iterate over attributes of a view.

I/O Operations

• Copy view data description to a conduit::Node.

Attribute

Sidre Attribute objects enable users to attach metadata (strings and values) to Sidre views to support queries (e.g.,
search for views with a given attribute name), outputting data for a subset of views to files, and other ways an application
may need to selectively process views in a Sidre data hierarchy.

An attribute is created with a string name and a default scalar or string value. A default value can be changed later as
needed.

Note:

• Attribute objects can only be created and destroyed using DataStore class methods. The Attribute class
constructor and destructor are private (see DataStore).

• Each Attribute object has a unique name and integer identifier. Either can be used to retrieve an Attribute
object from a DataStore object..

Each Sidre view inherits all attributes contained in a datastore with their default strings or values. Then, an application
may explicitly set any attribute on a view. The application may also query the value of a view attribute, query whether
the attribute was explicitly set, or set the attribute back to its default value. See View for more information about View
objects.

The Attribute class provides the following operations:

• Retrieve the name and unique id of an attribute

• Set the scalar or string value of an attribute

7.10. Sidre User Guide 203

Axom Documentation

• Get the type of an attribute’s scalar value

One can iterate through the attributes in the datastore using either “range-for” or iterator syntax:

// 'range-for' syntax
for(auto& attr: datastore->attributes()) { /* ... */ }

// 'iterator' syntax:
for(auto it = datastore->attributes().begin(),

itEnd = datastore->attributes().end(); it != itEnd; ++it)
{
auto& attr = *it;
/* ... */

}

Data vs. Metadata Concepts

This section includes examples that illustrate some common Sidre usage patterns involving buffers, groups, and views.
In particular, it shows how data associated with a view is related to a buffer, how the lifetimes of a view, its associated
data, and the buffer owning the data are related, and how the description of data in a view (metadata) is independent of
the the allocation state of the data in a view and a corresponding buffer.

Note: Object and data creation and destruction is very explicit in Sidre to allow maximum flexibility to compose
complex operations from simpler ones. This should become apparent by following the examples.

The code snippets shown and described here exist in the file axom/src/axom/sidre/examples/
sidre_data_vs_metadata.cpp, which can be built and run to experiment with if you wish.

The starting point for the first three examples is a simple Sidre datastore group hierarchy in which the root group has
two child groups named “A” and “B”. The generation of this structure is shown in the following code along with some
print statements to verify the state is what we expect.

DataStore* ds = new DataStore();
Group* root_grp = ds->getRoot();

Group* A_grp = root_grp->createGroup("A");
Group* B_grp = root_grp->createGroup("B");

//
// Initially, datastore contains no buffer objects since no data has
// been allocated yet. Also, the groups have no views.
//
std::cout << "Datastore start state...." << std::endl;
std::cout << "\tNum buffers in datastore: " << ds->getNumBuffers() << std::endl;
std::cout << "\tNum views in group A: " << A_grp->getNumViews() << std::endl;
std::cout << "\tNum views in group B: " << B_grp->getNumViews() << std::endl;

As expected, the datastore has no buffers and the groups have no views, which we can see from the output of the code:

Datastore start state....
Num buffers in datastore: 0
Num views in group A: 0
Num views in group B: 0

204 Chapter 7. Axom Copyright and License Information

Axom Documentation

Example 1: One View, One Buffer

The first example shows a common Sidre usage pattern in which a view is created in a group and the data associated
with the view is managed via the view. This case represents a one-to-one relationship between a view and a buffer.

We begin by creating a view named “aview” in group “A” describing an integer array of length 10 and allocate it, all
in one method call. This creates a buffer in the datastore which holds the array data. Then, we get a pointer to the start
of the array from the view and initialize the array values. To give some insight into how Sidre works, we access and
print various pieces of information about the state of the group, view, and buffer. We also print the value of the buffer
array at slot 5 to confirm that the buffer is indeed holding the view’s data. Here’s the relevant code section.

const int dat_size = 10;

View* aview = A_grp->createViewAndAllocate("aview", INT_ID, dat_size);
std::cout << "After A_grp->createViewAndAllocate() call\n";
std::cout << "\tNum views in group A: " << A_grp->getNumViews() << std::endl;
axom::IndexType nelems = aview->getNumElements();
std::cout << "\tNum elements in view: " << nelems << std::endl;

Buffer* buf1 = aview->getBuffer();
std::cout << "\tNum buffers in datastore: " << ds->getNumBuffers() << std::endl;
std::cout << "\tNum views attached to buffer: " << buf1->getNumViews()

<< std::endl;
std::cout << "\tNum elements in buffer array: " << buf1->getNumElements()

<< std::endl;

int* a_array = aview->getArray();
for(axom::IndexType i = 0; i < nelems; ++i)
{
a_array[i] = i + 2;

}

std::cout << std::endl;

std::cout << "After initialization of view array\n";
int* buf1_ptr = buf1->getData();
std::cout << "\tValue of elt 5 in buffer array (expect 7): " << buf1_ptr[5]

<< std::endl;

The output printed by the code is:

After A_grp->createViewAndAllocate() call
Num views in group A: 1
Num elements in view: 10
Num buffers in datastore: 1
Num views attached to buffer: 1
Num elements in buffer array: 10

After initialization of view array
Value of elt 5 in buffer array (expect 7): 7

Next, we deallocate the view and show that its description remains intact; for example, the number of elements is still
10. The view is still attached to the buffer. The view is no longer allocated since the buffer data was deallocated. The
buffer’s data description remains intact.

7.10. Sidre User Guide 205

Axom Documentation

Then, we allocate the view again. Since the buffer is still attached to the view, a new buffer is not created in the datastore
and the existing buffer is re-allocated. The same data description as before is used for the allocation since we haven’t
changed it. We verify this in the code output which follows the code snippet (i.e., the datastore still has one buffer).

aview->deallocate();
std::cout << "After view deallocate call, the data no longer exists,\n"

<< "but the view description remains." << std::endl;
std::cout << "\tNum elements in view: " << aview->getNumElements() << std::endl;
std::cout << "\tView has buffer? " << aview->hasBuffer() << std::endl;
std::cout << "\tIs view allocated? " << aview->isAllocated() << std::endl;
std::cout << "\tNum buffers in datastore: " << ds->getNumBuffers() << std::endl;
std::cout << "\tIs buffer allocated? " << buf1->isAllocated() << std::endl;
std::cout << "\tNum views attached to buffer: " << buf1->getNumViews()

<< std::endl;
std::cout << "\tNum elements in buffer array: " << buf1->getNumElements()

<< std::endl;

std::cout << std::endl;

aview->allocate();
std::cout << "After allocating view again...\n";
std::cout << "\tNum buffers in datastore: " << ds->getNumBuffers() << std::endl;
std::cout << "\tIs buffer allocated? " << buf1->isAllocated() << std::endl;
std::cout << "\tIs view allocated? " << aview->isAllocated() << std::endl;
std::cout << "\tNum elements in view: " << aview->getNumElements() << std::endl;

The output of the code is:

After view deallocate call, the data no longer exists,
but the view description remains.

Num elements in view: 10
View has buffer? 1
Is view allocated? 0
Num buffers in datastore: 1
Is buffer allocated? 0
Num views attached to buffer: 1
Num elements in buffer array: 10

After allocating view again...
Num buffers in datastore: 1
Is buffer allocated? 1
Is view allocated? 1
Num elements in view: 10

Lastly, we destroy the view and its data with a single method call and verify that the view and associated buffer no
longer exist.

A_grp->destroyViewAndData("aview");
std::cout << "After destroyViewAndData() call\n";
std::cout << "\tNum views in group A: " << A_grp->getNumViews() << std::endl;
std::cout << "\tNum buffers in datastore: " << ds->getNumBuffers() << std::endl;

The output of this portion of code is:

206 Chapter 7. Axom Copyright and License Information

Axom Documentation

After destroyViewAndData() call
Num views in group A: 0
Num buffers in datastore: 0

Example 2: Two Views, One Buffer

The second example illustrates a Sidre usage pattern in which multiple views are created to describe distinct portions
of data held in a shared buffer. This case represents a many-to-one relationship between views and a buffer. Before we
start, we verify that the datastore contains no buffers and that the groups we created earlier contain no views.

We start by creating and allocating a buffer holding an array of doubles of length 10. We initialize the array so that
each element has a value matching its position in the array; i.e., the values 0 through 9. Then, we create two views
in group “A” and attach each to the buffer. Next, we apply a data description containing an offset and stride to each
view so that one view is associated with the even values in the buffer and the other is associated with the odd values.
Accessing the data pointer in each view and printing the values shows that this is indeed the case.

We call a method to destroy the first view and its data, similar to the last part of the first example. The view is destroyed.
However, since the buffer that held its data is shared by the other view, the buffer and its data remain intact. In particular,
the data associated with the remaining view is also untouched.

std::cout << "\nDatastore start state\n";
std::cout << "\tNum buffers in datastore: " << ds->getNumBuffers() << std::endl;
std::cout << "\tNum views in group A: " << A_grp->getNumViews() << std::endl;
std::cout << "\tNum views in group B: " << B_grp->getNumViews() << std::endl;

Buffer* buf2 = ds->createBuffer(DOUBLE_ID, dat_size)->allocate();

double* dat2 = buf2->getData();
for(axom::IndexType i = 0; i < dat_size; ++i)
{
dat2[i] = i;

}

View* aview1 = A_grp->createView("aview1", buf2);
View* aview2 = A_grp->createView("aview2", buf2);

//
// aview1 data gets even values, aview2 data gets odd values.
//
axom::IndexType view_nelem = dat_size / 2;

aview1->apply(DOUBLE_ID, view_nelem, 0 /*offset*/, 2 /*stride*/);
aview2->apply(DOUBLE_ID, view_nelem, 1 /*offset*/, 2 /*stride*/);

std::cout << "\nAfter buffer allocation and attaching to views\n";
std::cout << "\tNum buffers in datastore: " << ds->getNumBuffers() << std::endl;
std::cout << "\tBuffer num elements: " << buf2->getNumElements() << std::endl;

std::cout << "\n\taview1 data has even values:\n";
std::cout << "\taview1 num elements: " << aview1->getNumElements() << std::endl;
std::cout << "\taview1 offset: " << aview1->getOffset() << std::endl;
std::cout << "\taview1 stride: " << aview1->getStride() << std::endl;

(continues on next page)

7.10. Sidre User Guide 207

Axom Documentation

(continued from previous page)

double* arr1 = aview1->getArray();
axom::IndexType vlen = aview1->getNumElements();
axom::IndexType vstr = aview1->getStride();
std::cout << "\taview1 data:\t";
for(axom::IndexType i = 0; i < vlen * vstr; i += vstr)
{
std::cout << arr1[i] << " ";

}
std::cout << std::endl;

std::cout << "\n\taview2 data has odd values:\n";
std::cout << "\taview2 num elements: " << aview2->getNumElements() << std::endl;
std::cout << "\taview2 offset: " << aview2->getOffset() << std::endl;
std::cout << "\taview2 stride: " << aview2->getStride() << std::endl;
double* arr2 = aview2->getArray();
vlen = aview2->getNumElements();
vstr = aview2->getStride();
std::cout << "\taview2 data:\t";
for(axom::IndexType i = 0; i < vlen * vstr; i += vstr)
{
std::cout << arr2[i] << " ";

}
std::cout << std::endl;

A_grp->destroyViewAndData("aview1");

std::cout << "\nAfter destroyViewAndData(aview1) call\n";
std::cout << "\tNum views in group A: " << A_grp->getNumViews() << std::endl;
std::cout << "\tNum buffers in datastore: " << ds->getNumBuffers() << std::endl;
std::cout << "\tBuffer num elements: " << buf2->getNumElements() << std::endl;
std::cout << "\taview2 data still has its odd values:\t";
arr2 = aview2->getArray();
vlen = aview2->getNumElements();
vstr = aview2->getStride();
for(axom::IndexType i = 0; i < vlen * vstr; i += vstr)
{
std::cout << arr2[i] << " ";

}

The output of the code is:

Datastore start state
Num buffers in datastore: 0
Num views in group A: 0
Num views in group B: 0

After buffer allocation and attaching to views
Num buffers in datastore: 1
Buffer num elements: 10

aview1 data has even values:
aview1 num elements: 5

(continues on next page)

208 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

aview1 offset: 0
aview1 stride: 2
aview1 data: 0 2 4 6 8

aview2 data has odd values:
aview2 num elements: 5
aview2 offset: 1
aview2 stride: 2
aview2 data: 1 3 5 7 9

After destroyViewAndData(aview1) call
Num views in group A: 1
Num buffers in datastore: 1
Buffer num elements: 10
aview2 data still has its odd values: 1 3 5 7 9

Example 3: Two Views and One Buffer (View Copy)

The third example illustrates another Sidre usage pattern in which multiple views share the same data in a single buffer.
Before we start, we verify that the datastore contains one buffer and that the “A” group contains one view. This is the
Sidre buffer, group, and view state that exists at the end of the previous example.

We begin by making a copy of the group “A” view “aview2” in group “B”. The new view is identical in name, descrip-
tion, and data associated with it as the original view. In particular, the data in the new view is the same data associated
with the original view. Recall that Sidre copy operations for groups and views are shallow copy operations. This
means that a copy of a group or view is made in the destination group, but the data associated with the copy is the same
as in the original. We verify this by printing the values of the array associated with each view and also the base address
of the array for each view.

Next, we destroy the “A” group which owned the original view. We verify that the view copy remains in the “B” group
and its data is still intact. When we destroyed the “A” group, its view is also destroyed. So we can no longer access it
with the usual method calls. If we maintained a handle (e.g., pointer) to it, it would no longer be valid.

Lastly, we destroy the “B” group. Similar to the destruction of the “A” group, the view in the “B” group is destroyed.
However, since we did not explicitly delete (i.e., destroy) the data, we see from the code output below that the buffer
still exists in the datastore and is allocated. However, it has no attached views. Here is the complete example source
code.

std::cout << "\nDatastore start state\n";
std::cout << "\tNum buffers in datastore: " << ds->getNumBuffers() << std::endl;
std::cout << "\tNum views in group A: " << A_grp->getNumViews() << std::endl;
std::cout << "\tNum views in group B: " << B_grp->getNumViews() << std::endl;

B_grp->copyView(aview2);

std::cout << "\nAfter copying aview2 to group B\n";
std::cout << "\tNum buffers in datastore: " << ds->getNumBuffers() << std::endl;
std::cout << "\tNum views in group A: " << A_grp->getNumViews() << std::endl;
std::cout << "\tNum views in group B: " << B_grp->getNumViews() << std::endl;

View* aview2_in_Agrp = A_grp->getView("aview2");
View* aview2_in_Bgrp = B_grp->getView("aview2");

(continues on next page)

7.10. Sidre User Guide 209

Axom Documentation

(continued from previous page)

std::cout << "\taview2 in A group has values:\t";
double* arr_A = aview2_in_Agrp->getArray();
vlen = aview2_in_Agrp->getNumElements();
vstr = aview2_in_Agrp->getStride();
for(axom::IndexType i = 0; i < vlen * vstr; i += vstr)
{
std::cout << arr_A[i] << " ";

}
std::cout << std::endl;

std::cout << "\taview2 in B group has values:\t";
double* arr_B = aview2_in_Bgrp->getArray();
vlen = aview2_in_Bgrp->getNumElements();
vstr = aview2_in_Bgrp->getStride();
for(axom::IndexType i = 0; i < vlen * vstr; i += vstr)
{
std::cout << arr_B[i] << " ";

}
std::cout << std::endl;

std::cout << std::endl;

std::cout << "\tBase address of array in A group: " << arr_A << std::endl;
std::cout << "\tBase address of array in B group: " << arr_B << std::endl;

root_grp->destroyGroup("A");

Buffer* buf_aview2 = aview2_in_Bgrp->getBuffer();

std::cout << "\nAfter destroyGroup(A) call:\n";
std::cout << "\tNum views in group B: " << B_grp->getNumViews() << std::endl;

std::cout << "\taview2 in B group has values:\t";
aview2_in_Bgrp = B_grp->getView("aview2");
arr_B = aview2_in_Bgrp->getArray();
vlen = aview2_in_Bgrp->getNumElements();
vstr = aview2_in_Bgrp->getStride();
for(axom::IndexType i = 0; i < vlen * vstr; i += vstr)
{
std::cout << arr_B[i] << " ";

}

std::cout << std::endl;

std::cout << "\tNum buffers in datastore: " << ds->getNumBuffers() << std::endl;
std::cout << "\tIs buffer allocated? " << buf_aview2->isAllocated()

<< std::endl;
std::cout << "\tNum views attached to buffer: " << buf_aview2->getNumViews()

<< std::endl;
std::cout << std::endl;

(continues on next page)

210 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

root_grp->destroyGroup("B");

std::cout << "\nAfter destroyGroup(B) call:\n";
std::cout << "\tNum buffers in datastore: " << ds->getNumBuffers() << std::endl;
std::cout << "\tIs buffer allocated? " << buf_aview2->isAllocated()

<< std::endl;
std::cout << "\tNum views attached to buffer: " << buf_aview2->getNumViews()

<< std::endl;

The output of the code is:

Datastore start state
Num buffers in datastore: 1
Num views in group A: 1
Num views in group B: 0

After copying aview2 to group B
Num buffers in datastore: 1
Num views in group A: 1
Num views in group B: 1
aview2 in A group has values: 1 3 5 7 9
aview2 in B group has values: 1 3 5 7 9

Base address of array in A group: 0xc595b8
Base address of array in A group: 0xc595b8

After destroyGroup(A) call:
Num views in group B: 1
aview2 in B group has values: 1 3 5 7 9
Num buffers in datastore: 1
Is buffer allocated? 1
Num views attached to buffer: 1

After destroyGroup(B) call:
Num buffers in datastore: 1
Is buffer allocated? 1
Num views attached to buffer: 0

The last operation in this example is intended to emphasize the explicit nature of Sidre methods. In particular, when a
group is destroyed, its views are also destroyed, but their data may remain intact. At first, this may seem unexpected.
Such behavior was a design choice for Sidre to provide maximum flexibility in defining and manipulating views and
data independently (e.g., describing data and allocating it in separate phases of code execution) while keeping Sidre’s
internal bookkeeping implementations reasonably simple. The example following this one continues on this point.

Note: Object and data creation and destruction is very explicit in Sidre to allow maximum flexibility to compose
complex operations from simpler ones. Specific methods must be called to destroy views and deallocate their data.

7.10. Sidre User Guide 211

Axom Documentation

Example 4: More Basic Mechanics

The last example should help to make clear the point made at the beginning of this section and at the end of previous
example about Sidre operations being explicit with respect to whether data associated with a group or view is destroyed.

We start with a fresh datastore and create one group “A” in the root group. We create a view “aview” in the group and
allocate it. The output of the code below shows that everything is working as expected.

We destroy the view and we see that the view is gone from the group, but that the buffer is still in the datastore and
allocated. This is so because we did not explicitly destroy or deallocate the data. This is in contrast to the first example,
where we destroyed the view and its data with a single method call designed for this purpose.

Next, we create the view again and attach the buffer to it. Then, we apply the data description. This restores the state
of everything before we destroyed the view.

Then, we deallocate the buffer and verify that the buffer and view are no longer allocated, but are still described. Also,
the view is still attached to the buffer.

Lastly, we destroy the buffer. It has been deallocated and is gone from the datastore. The view remains, is deallocated,
but is still described.

ds = new DataStore();
root_grp = ds->getRoot();

A_grp = root_grp->createGroup("A");

aview = A_grp->createViewAndAllocate("aview", INT_ID, dat_size);
std::cout << "\nAfter A_grp->createViewAndAllocate() call:\n";
std::cout << "\tNum views in group A: " << A_grp->getNumViews() << std::endl;
nelems = aview->getNumElements();
std::cout << "\tNum elements in view: " << nelems << std::endl;
std::cout << "\tIs view allocated? " << aview->isAllocated() << std::endl;

Buffer* bufa = aview->getBuffer();
std::cout << "\tNum buffers in datastore: " << ds->getNumBuffers() << std::endl;
std::cout << "\tNum views attached to buffer: " << bufa->getNumViews()

<< std::endl;
std::cout << "\tNum elements in buffer array: " << bufa->getNumElements()

<< std::endl;
std::cout << "\tIs buffer allocated? " << bufa->isAllocated() << std::endl;

std::cout << std::endl;

A_grp->destroyView("aview");
std::cout << "After A_grp->destroyView() call:\n";
std::cout << "\tNum views in group A: " << A_grp->getNumViews() << std::endl;
std::cout << "\tNum buffers in datastore: " << ds->getNumBuffers() << std::endl;
std::cout << "\tNum views attached to buffer: " << bufa->getNumViews()

<< std::endl;
std::cout << "\tNum elements in buffer array: " << bufa->getNumElements()

<< std::endl;
std::cout << "\tIs buffer allocated? " << bufa->isAllocated() << std::endl;

std::cout << std::endl;

aview = A_grp->createView("aview1", bufa);
(continues on next page)

212 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

aview->apply(INT_ID, dat_size);
std::cout
<< "After recreating view, attaching buffer, and describing data:\n";

std::cout << "\tNum views in group A: " << A_grp->getNumViews() << std::endl;
nelems = aview->getNumElements();
std::cout << "\tNum elements in view: " << nelems << std::endl;
std::cout << "\tIs view allocated? " << aview->isAllocated() << std::endl;

std::cout << "\tNum buffers in datastore: " << ds->getNumBuffers() << std::endl;
std::cout << "\tNum views attached to buffer: " << bufa->getNumViews()

<< std::endl;
std::cout << "\tNum elements in buffer array: " << bufa->getNumElements()

<< std::endl;
std::cout << "\tIs buffer allocated? " << bufa->isAllocated() << std::endl;

std::cout << std::endl;

bufa->deallocate();
std::cout << "After buffer deallocate call:\n";
nelems = aview->getNumElements();
std::cout << "\tNum elements in view: " << nelems << std::endl;
std::cout << "\tIs view allocated? " << aview->isAllocated() << std::endl;

std::cout << "\tNum buffers in datastore: " << ds->getNumBuffers() << std::endl;
std::cout << "\tNum views attached to buffer: " << bufa->getNumViews()

<< std::endl;
std::cout << "\tNum elements in buffer array: " << bufa->getNumElements()

<< std::endl;
std::cout << "\tIs buffer allocated? " << bufa->isAllocated() << std::endl;

std::cout << std::endl;

ds->destroyBuffer(bufa);
std::cout << "After destroy buffer call:\n";
nelems = aview->getNumElements();
std::cout << "\tNum elements in view: " << nelems << std::endl;
std::cout << "\tIs view allocated? " << aview->isAllocated() << std::endl;

std::cout << "\tNum buffers in datastore: " << ds->getNumBuffers() << std::endl;

The output of the code is:

After A_grp->createViewAndAllocate() call:
Num views in group A: 1
Num elements in view: 10
Is view allocated? 1
Num buffers in datastore: 1
Num views attached to buffer: 1
Num elements in buffer array: 10
Is buffer allocated? 1

After A_grp->destroyView() call:
(continues on next page)

7.10. Sidre User Guide 213

Axom Documentation

(continued from previous page)

Num views in group A: 0
Num buffers in datastore: 1
Num views attached to buffer: 0
Num elements in buffer array: 10
Is buffer allocated? 1

After recreating view, attaching buffer, and describing data:
Num views in group A: 1
Num elements in view: 10
Is view allocated? 1
Num buffers in datastore: 1
Num views attached to buffer: 1
Num elements in buffer array: 10
Is buffer allocated? 1

After buffer deallocate call:
Num elements in view: 10
Is view allocated? 0
Num buffers in datastore: 1
Num views attached to buffer: 1
Num elements in buffer array: 10
Is buffer allocated? 0

After destroy buffer call:
Num elements in view: 10
Is view allocated? 0
Num buffers in datastore: 0

The point of this final example is to emphasize the point that most Sidre operations are atomic and do precisely what
their name describes with few side effects. If this were not the case, we believe that the Sidre API would become bloated
and confusing to be able to support the range of usage patterns employed by Axom users.

Datastore Queries

Sidre provides a couple of methods that can be called to query certain information about the contents of a datastore
object. Each method takes a Conduit Node and inserts information related to the query into it. The caller can then
inspect the information by retrieving values of specifically named fields from the Node. This is often helpful for
debugging.

Buffer Query

A datastore object can be queried for information about the buffer objects it contains. For example:

Datastore* ds = ...;

conduit::Node n;
ds->getBufferInfo(n);

// Print Conduit node contents to stdout, if desired.
// Note that when running with multiple MPI ranks, each rank will

(continues on next page)

214 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

// independently print its node contents to stdout, which may not be wanted.
n.print();

This method call inserts four fields into the Node that have numeric values accessible as type axom::IndexType. For
example:

using IndexType = axom::IndexType;

IndexType num_buffers = n["num_buffers"].value();
IndexType num_buffers_referenced = n["num_buffers_referenced"].value();
IndexType num_buffers_detached = n["num_buffers_detached"].value();
IndexType num_bytes_allocated = n["num_bytes_allocated"].value();

The variables have the following values:

• num_buffers : Total number of buffer objects in the datastore.

• num_buffers_referenced : Number of buffers referenced (i.e. attached to) a view.

• num_buffers_detached : Number of buffers not referenced by a view. Note: num_buffers_detached =
num_buffers - num_buffers_referenced.

• num_bytes_allocated : Total number of bytes allocated in all buffers.

Group Subtree Query

A group can be queried for information about the data associated with it, or associated with the entire subtree rooted
at the group. For example:

Group* group = ...;

bool recursive = false;

// get information about a single group
conduit::Node n;
group->getDataInfo(n, recursive);

// Print Conduit node contents to stdout, if desired.
// Note that when running with multiple MPI ranks, each rank will
// independently print its node contents to stdout, which may not be wanted.
n.print();

// get information about entire subtree rooted at group
recursive = true;
conduit::Node n1;
group->getDataInfo(n1, recursive);
n1.print(); // print Conduit node contents to std out, if desired

Similar to the Datastore::getBufferInfo method described above, the Group::getDataInfo method inserts
fields into the given Conduit Node that have numeric values accessible as type axom::IndexType. For example:

using IndexType = axom::IndexType;

IndexType num_groups = n["num_groups"].value();
(continues on next page)

7.10. Sidre User Guide 215

Axom Documentation

(continued from previous page)

IndexType num_views = n["num_views"].value();
IndexType num_views_empty = n["num_views_empty"].value();
IndexType num_views_buffer = n["num_views_buffer"].value();
IndexType num_views_external = n["num_views_external"].value();
IndexType num_views_scalar = n["num_views_scalar"].value();
IndexType num_views_string = n["num_views_string"].value();
IndexType num_bytes_assoc_with_views = n["num_bytes_assoc_with_views"].value();
IndexType num_bytes_external = n["num_bytes_external"].value();
IndexType num_bytes_in_buffers = n["num_bytes_in_buffers"].value();

The variables have the following values describing the single group or entire group subtree:

• num_groups : Total number of groups.

• num_views : Total number of views.

• num_views_empty : Number of views with no associated buffer or data (may or may not be described).

• num_views_buffer : Number of views associated with a buffer.

• num_views_external : Number of views associated with external data.

• num_views_scalar : Number of views associated with a single scalar data item.

• num_views_string : Number of views associated with string data.

• num_bytes_assoc_with_views : Total number of bytes associated with views (buffer, string, and scalar). Note
that this may be an over-count if two or more views share a buffer and their data overlap, for example.

• num_bytes_external : Total number of bytes described by external views. Note that this may be an over-count.
For example, if two or more views share an external allocation and their data overlaps more bytes may be reported
than exist.

• num_bytes_in_buffers : Total number of bytes allocated in buffers that are attached to views. Each buffer is
counted exactly once if attached to multiple views.

Important: num_bytes_assoc_with_views and num_bytes_external may over-count the actual data that exists.
For example, if two or more views share a buffer or if two or more views share an external allocation and the view data
overlaps in either case.

Serial File I/O

Sidre provides file I/O to HDF5 files and file handles and to JSON files. Serial I/O is accomplished using methods of
the Group class; parallel I/O is done using the IOManager class.

HDF5 is an optional dependency for Sidre. Sidre APIs that rely on HDF5 will be available only if Sidre was compiled
with HDF5 support. The CMake variable that controls dependency on HDF5 is AXOM_USE_HDF5, defined in the file
axom/config.hpp.

216 Chapter 7. Axom Copyright and License Information

Axom Documentation

File I/O using the Group class

The Group class provides methods: save(), load(), and loadExternalData() methods. Each method can be
called with a file name or an HDF5 handle. The save() and load() methods allow users to specify a protocol, which
indicates how the operation should be performed and what file format to use. The loadExternalData()method takes
no protocol argument since it is only used with the sidre_hdf5 protocol. The save() method can also take a pointer
to an Attribute object. If the attribute pointer is null, all views are saved. If a non-null attribute pointer is given, only
views with that attribute set will be saved.

The load() method retrieves the hierarchical data structure stored in the file and creates groups, views, and attributes
to represent the hierarchy with its root in the group on which the method is called. By default, the contents of the
group are destroyed prior to reading the file contents. This can be suppressed by passing a Boolean value of true as the
preserve_contents argument to the load() method, resulting in the current group subtree being merged with the
file contents.

Usage of the save() and load()methods is shown in the following example, which omits error-checking and recovery
for brevity and clarity.

// Save the data store to a file,
// saving all Views
ds->getRoot()->save(filename, protocol);
// Delete the data hierarchy under the root, then load it from the file
ds->getRoot()->load(filename, protocol);
sidre::Group* additional = ds->getRoot()->createGroup("additional");
additional->createGroup("yetanother");
// Load another copy of the data store into the "additional" group
// without first clearing all its contents
std::string groupname;
additional->load(filename, protocol, true, groupname);

The loadExternalData() method is used to read “external” data from an HDF5 file created with the sidre_hdf5
protocol. This is data referred to by external views. Such views refer to data that is not stored in Sidre buffers but in
an external data allocation.

Overloads of the save() and load() methods that take HDF5 handles and the loadExternalData() method are
used to implement parallel I/O through the Sidre IOManager class.

The save(), load(), and loadExternalData() methods return a bool value indicating success or failure. If no
Conduit error occurred, the return value is true. If an error occurred, the method returns false. The error state and
accumulated messages are stored in the DataStore object that owns the Group. In the course of recovering from the
error, the user can clear the error flag and messages from the DataStore.

Please see Sidre API Documentation for more detailed description of these Group class methods and the Sidre I/O
protocols that can be used with them.

Protocols for file I/O

sidre_hdf5

This is the protocol that supports the most features. It preserves the entire Sidre hierarchy of Groups and
Views, with Buffers saved separately from the Views that use them. Each Buffer is saved exactly once, to
avoid duplicating data when a Buffer is used by more than one View. The schemas describing the datatypes
in each View are saved, and all numerical data is saved with full binary accuracy.

sidre_hdf5 is the only protocol that supports the loadExternalData()method and is the only protocol
that allows data to be added to root files produced by IOManager after they are first created.

7.10. Sidre User Guide 217

../../../../doxygen/html/sidretop.html

Axom Documentation

sidre_conduit_json

This protocol saves data in the same layout as sidre_hdf5, but in plain text in the JSON format. The
datatypes in all Views are saved, but floating-point values saved in plain text may not load with exact
binary equality.

sidre_json

This uses the same hierarchical format as the above protocols and saves in the JSON format, but it does
not save datatype information for scalar and string Views. When loading scalars or strings, the library will
determine implicitly what type to use, which may not be the same type used in the original objects that
were saved. For example, the value of a 32-bit integer will be saved in plain text with no information about
its original bit width. When loading, the library may read that value into a 64-bit integer.

conduit_hdf5

This saves a group as a conduit node hierarchy. Datatypes are preserved, but no information about Buffers
or external arrays is saved. Data arrays for each View are saved; if multiple Views use data from the same
Buffer, the values from that Buffer will duplicated.

conduit_json

This is the same as conduit_hdf5 except it uses JSON text. The same caveats about floating-point accu-
racy apply here as in the other JSON protocols.

conduit_bin

This protocol writes data in conduit’s native binary format, and also produces an accompanying JSON file
that contains the schema describing how to parse the binary data. The hierarchal layout of the data is the
same as conduit_hdf5 and conduit_json. The binary accuracy of floating-point values is preserved.

json

This protocol saves the smallest amount of information, as it writes all data in a basic JSON hierarchy with
no type information beyond what can be interpreted implicitly. When loading, the library will allocate the
largest supported bit width for integer or floating-point values.

sidre_layout_json

This is one of two protocols that is provided as a debugging aid and not to support the full save and load
features of Sidre. It is intended to provide user-readable JSON output that shows the full layout of the Sidre
hierarchy, but it excludes the data arrays held by the buffers. With the exception of those data arrays, it
matches the output layout of the sidre_conduit_json protocol. This protocol should only be used with
save, as it does not output all of the data that would be needed for a successful load.

conduit_layout_json

This is the second protocol that is a debugging aid without supporting the full save and load features of
Sidre. Its JSON output writes the Sidre hierarchy layout in way that matches the condut_json protocol
while again excluding the data arrays from the Views. This should only be used with save and not load.

Another way to create file output that has the data arrays fully or partially removed is to use the
convert_sidre_protocol tool that is built as part of the build of Sidre. This tool takes as input a root
file that was created by IOManager with the sidre_hdf5 protocol and converts it to output in another
selected protocol. This tool has a has a command-line option to strip all or part of the data arrays from the
output. Unlike this tool, the *_layout_* protocols described above do not require usage of IOManager.

218 Chapter 7. Axom Copyright and License Information

Axom Documentation

Parallel File I/O

The Sidre IOManager class provides an interface to manage parallel I/O of hierarchical data managed by Sidre. It
enables the writing of data from parallel runs and can be used for the purposes of restart or visualization.

Introduction

The IOManager class provides parallel I/O services to Sidre. It relies on the fact that Sidre Group and View objects are
capable of saving and loading themselves. The I/O operations provided by those two classes are inherently serial. So
the IOManager class coordinates I/O operations of multiple Sidre objects that exist across the MPI ranks of a parallel
run.

• The internal details of the I/O of individual Sidre objects are opaque to the IOManager class, which needs only
to make calls to I/O methods in Group and View class methods.

• Sidre data can be written from M ranks to N files (M >= N), and the files can be read to restart a run on M ranks.

• When saving output, a root file is created that contains bookkeeping information that is used to coordinate a
subsequent restart read.

• The calling code can also add extra data to the root file to provide metadata that gives necessary instructions to
visualization tools.

Parallel I/O using the IOManager class

A Sidre IOManager object is created with an MPI communicator and provides various overloads of write() and
read() methods. These methods save a Group object in parallel to a set of files and read a Group object from existing
files. The I/O manager can optionally use the SCR library for scalable I/O management (such as using burst buffers
when available).

In typical usage, a run that calls read() on a certain set of files should be executed on the same number of MPI ranks
as the run that created those files with a write() call. However, if using the sidre_hdf5 protocol, there are some
usage patterns that do not have this limitation.

A read() call using the sidre_hdf5 protocol will work when called from a greater number of MPI ranks. If write()
was performed on N ranks and read() is called while running on M ranks (M > N), then data will be read into ranks
0 to N-1, and all ranks higher than N-1 will receive no data.

If the read() method is called using the sidre_hdf5 protocol to read data that was created on a larger number of
ranks, this will work only in the case that the data was written in a file-per-processor mode (M ranks to M files). In this
case, the data in the group being filled with file input will look a bit different than in other usage patterns, since a group
on one rank will end up with data from multiple ranks. An integer scalar view named reduced_input_ranks will be
added to the group with the value being the number of ranks that wrote the files. The data from each output rank will
be read into subgroups located at rank_{%07d}/sidre_input in the input group’s data hierarchy.

Warning: If the read() is called to read data that was created on a larger number of ranks than the current run
with files produced in M-to-N mode (M > N), an error will occur. Support for this type of usage is intended to be
added in the future.

In the following example, an IOManager object is created and used to write the contents of the “root” group in parallel.

First include needed headers.

7.10. Sidre User Guide 219

https://github.com/LLNL/scr

Axom Documentation

#include "axom/config.hpp"

#include "conduit_blueprint.hpp"
#include "conduit_relay.hpp"
#ifdef AXOM_USE_HDF5
#include "conduit_relay_io_hdf5.hpp"

#endif

#include "axom/sidre.hpp"
#include "axom/fmt.hpp"

#include "mpi.h"

Then use IOManager to save in parallel.

/*
* Contents of the DataStore written to files with IOManager.
*/
int num_files = num_output;
axom::sidre::IOManager writer(MPI_COMM_WORLD);

const std::string file_name = "out_spio_parallel_write_read";

writer.write(root, num_files, file_name, PROTOCOL, "tree_%07d");

std::string root_name = file_name + ROOT_EXT;

Loading data in parallel is easy:

/*
* Create another DataStore that holds nothing but the root group.
*/
DataStore* ds2 = new DataStore();

/*
* Read from the files that were written above.
*/
IOManager reader(MPI_COMM_WORLD);

reader.read(ds2->getRoot(), root_name, PROTOCOL);

IOManager class use

An IOManager object is constructed with an MPI communicator and does I/O operations on all ranks associated with
that communicator.

The core functionality of the IOManager class is contained in its write() and read() methods.

void write(sidre::DataGroup * group,
int num_files,
const std::string& file_string,
const std::string& protocol);

220 Chapter 7. Axom Copyright and License Information

Axom Documentation

The write() method is called on each rank and passed a group pointer for its local data. The calling code specifies
the number of output files, and the I/O manager organizes the output so that each file receives data from a roughly
equal number of ranks. The files containing the data from the group will have names of the format file_string/
file_string_*******.suffix, with a 7-digit integer value identifying the files from 0 to num_files-1, and the
suffix indicating the file format according to the protocol argument. Additionally the write() method will produce a
root file with the name file_string.root that holds bookkeeping data about other files and can also receive extra
user-specified data.

void read(sidre::DataGroup * group,
const std::string& root_file);

The read() methods is called in parallel with the root file as an argument. It must be called on a run with the same
processor count as the run that called the write() method. The first argument is a pointer to a group that contains no
child groups and owns no views. The second argument is the name of the root file; the information in the root file is
used to identify the files that each processor will read to load data into the argument group.

The write() and read() methods above are sufficient to do a restart save/load when the data in the group hierarchy
is completely owned by the Sidre data structures. If Sidre is used to manage data that is externally allocated (i.e., the
hiearchy contains external views), the loading procedure requires additional steps to restore data in the same externally-
allocated state.

First the read() method is called, and the full hierarchy structure of the group is loaded, but no data is allocated for
views identified as external. Then, the calling code can examine the group and allocate data for the external views, as
needed. The View class method setExternalDataPtr() is used to associate the pointer with the view. Once this is
done, the I/O manager method loadExternalData() can be used to load the data from the file into the user-allocated
arrays.

Below is a code example for loading external data. We assume that this code somehow has knowledge that the root
group contains a single external view at the location “fields/external_array” describing an array of doubles. See the
Sidre API Documentation for details about Group and View class methods to query the Sidre data structures for this
type of information when the code does not have a priori knowledge.

// Construct a DataStore with an empty root group.
DataStore * ds = new DataStore();
DataGroup * root = ds->getRoot();

// Read from file into the root group. The full Sidre hierarchy is built,
// but the external view is created without allocating a data buffer.
IOManager reader(MPI_COMM_WORLD);
reader.read(root, "checkpoint.root");

// Get a pointer to the external view.
DataView * external_view = root->getView("fields/external_array");

// Allocate storage for the array and associate it with the view.
double * external_array = new double[external_view->getNumElements()];
external_view->setExternalDataPtr(external_array);

// Load the data values from file into the external view.
reader.loadExternalData(root, "checkpoint.root");

7.10. Sidre User Guide 221

../../../../doxygen/html/sidretop.html

Axom Documentation

User-specified data in the root file

The root file is automatically created to provide the IOManager object with bookkeeping information that is used when
reading data, but it can also be used to store additional data that may be useful to the calling code or is needed to allow
other tools to interact with the data in the output files, such as for visualization. For example, a Conduit Mesh Blueprint
index can be stored in a DataGroup written to the root file to provide metadata about the mesh layout and data fields
that can be visualized from the output files.

void writeGroupToRootFile(sidre::DataGroup * group,
const std::string& file_name);

void writeGroupToRootFileAtPath(sidre::DataGroup * group,
const std::string& file_name,
const std::string& group_path);

void writeViewToRootFileAtPath(sidre::DataView * view,
const std::string& file_name,
const std::string& group_path);

The above methods are used to write this extra data to the root file. The first simply writes data from the given group
to the top of the root file, while the latter two methods write their Sidre objects to a path that must already exist in the
root file.

Sidre Interaction with Conduit

Internally, Sidre uses the in-memory data description capabilities of the Conduit library. Sidre also leverages Conduit
to facilitate data exchange, shown here applied to visualization. The following discussion gives a basic overview of
Sidre capabilities when combined with Conduit.

Mesh Blueprint

The Mesh Blueprint is a data exchange protocol supported by Conduit, consisting of a properly-structured Sidre data-
store hierarchy saved as an HDF5 or JSON file and a Conduit index file. The Blueprint can accomodate structured or
unstructured meshes, with node- or element-centered fields. The following example shows how to create a Blueprint-
conforming datastore hierarchy containing two unstructured adjacent hexahedrons with one node-centered field and
one element-centered field. In the diagram, nodes are labeled in black, the node-centered field values are in blue, and
the element-centered field values are in green.

222 Chapter 7. Axom Copyright and License Information

https://llnl-conduit.readthedocs.io/en/latest/blueprint.html
https://github.com/LLNL/conduit
http://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html

Axom Documentation

A simulation organizes Sidre data as the code design dictates. Here is a simple example data hierarchy.

Here is the code to create that example data hierarchy.

auto ds = std::unique_ptr<sidre::DataStore> {new sidre::DataStore()};

int nodecount = 12;
int elementcount = 2;

// Create views and buffers to hold node positions and field values
sidre::Group* nodes = ds->getRoot()->createGroup("nodes");
sidre::View* xs =
nodes->createViewAndAllocate("xs", sidre::DOUBLE_ID, nodecount);

sidre::View* ys =
nodes->createViewAndAllocate("ys", sidre::DOUBLE_ID, nodecount);

sidre::View* zs =
nodes->createViewAndAllocate("zs", sidre::DOUBLE_ID, nodecount);

(continues on next page)

7.10. Sidre User Guide 223

Axom Documentation

(continued from previous page)

sidre::Group* fields = ds->getRoot()->createGroup("fields");
sidre::View* nodefield =
fields->createViewAndAllocate("nodefield", sidre::INT_ID, nodecount);

sidre::View* eltfield =
fields->createViewAndAllocate("eltfield", sidre::DOUBLE_ID, elementcount);

// Set node position for two adjacent hexahedrons
double* xptr = xs->getArray();
double* yptr = ys->getArray();
double* zptr = zs->getArray();
for(int pos = 0; pos < nodecount; ++pos)
{
xptr[pos] = ((pos + 1) / 2) % 2;
yptr[pos] = (pos / 2) % 2;
zptr[pos] = pos / 4;

}

// Assign a value to the node field
int* nf = nodefield->getArray();
for(int pos = 0; pos < nodecount; ++pos)
{
nf[pos] = static_cast<int>(xptr[pos] + yptr[pos] + zptr[pos]);

}
// and to the element field.
double* ef = eltfield->getArray();
// There are only two elements.
ef[0] = 2.65;
ef[1] = 1.96;

return ds;

To use the Conduit Mesh Blueprint, make a group hierarchy tinymesh conforming to the Mesh Blueprint protocol.
The structure of the group hierarchy is shown below (summarizing the Mesh Blueprint documentation).

First build top-level groups required by the Mesh Blueprint.

224 Chapter 7. Axom Copyright and License Information

http://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html

Axom Documentation

// Conduit needs a specific hierarchy.
// We'll make a new DataStore with that hierarchy, pointing at the
// application's data.
std::string mesh_name = "tinymesh";

// The Conduit specifies top-level groups:
sidre::Group* mroot = ds->getRoot()->createGroup(mesh_name);
sidre::Group* coords = mroot->createGroup("coordsets/coords");
sidre::Group* topos = mroot->createGroup("topologies");
// no material sets in this example
sidre::Group* fields = mroot->createGroup("fields");
// no adjacency sets in this (single-domain) example

Add the node coordinates. The views under tinymesh will point to the same buffers that were created for the views
under nodes so that tinymesh can use the data without new data allocations or data copying.

7.10. Sidre User Guide 225

Axom Documentation

// Set up the coordinates as Mesh Blueprint requires
coords->createViewString("type", "explicit");
// We use prior knowledge of the layout of the original datastore
sidre::View* origv = ds->getRoot()->getView("nodes/xs");
sidre::Group* conduitval = coords->createGroup("values");
conduitval->createView("x",

sidre::DOUBLE_ID,
origv->getNumElements(),
origv->getBuffer());

origv = ds->getRoot()->getView("nodes/ys");
conduitval->createView("y",

sidre::DOUBLE_ID,
origv->getNumElements(),
origv->getBuffer());

origv = ds->getRoot()->getView("nodes/zs");
conduitval->createView("z",

sidre::DOUBLE_ID,
origv->getNumElements(),
origv->getBuffer());

Arrange the nodes into elements. Each simulation has its own knowledge of its mesh topology. This tiny example
didn’t previously encode the topology, so we must explicitly specify it.

// Sew the nodes together into the two hexahedra, using prior knowledge.
sidre::Group* connmesh = topos->createGroup("mesh");
connmesh->createViewString("type", "unstructured");
connmesh->createViewString("coordset", "coords");
sidre::Group* elts = connmesh->createGroup("elements");
elts->createViewString("shape", "hex");

// We have two eight-node hex elements, so we need 2 * 8 = 16 ints.
sidre::View* connectivity =
elts->createViewAndAllocate("connectivity", sidre::INT_ID, 16);

(continues on next page)

226 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

// The Mesh Blueprint connectivity array for a hexahedron lists four nodes on
// one face arranged by right-hand rule to indicate a normal pointing into
// the element, then the four nodes of the opposite face arranged to point
// the normal the same way (out of the element). This is the same as for
// a VTK_HEXAHEDRON. See
// https://www.vtk.org/wp-content/uploads/2015/04/file-formats.pdf.

int* c = connectivity->getArray();

// First hex. In this example, the Blueprint node ordering matches the
// dataset layout. This is fortuitous but not required.
c[0] = 0;
c[1] = 1;
c[2] = 2;
c[3] = 3;
c[4] = 4;
c[5] = 5;
c[6] = 6;
c[7] = 7;

// Second and last hex
c[8] = 4;
c[9] = 5;
c[10] = 6;
c[11] = 7;
c[12] = 8;
c[13] = 9;
c[14] = 10;
c[15] = 11;

Link the fields into tinymesh. As with the node positions, the views point to the existing buffers containing the field
data.

7.10. Sidre User Guide 227

Axom Documentation

// Set up the node-centered field
// Get the original data
sidre::View* origv = ds->getRoot()->getView("fields/nodefield");
sidre::Group* nodefield = fields->createGroup("nodefield");
nodefield->createViewString("association", "vertex");
nodefield->createViewString("type", "scalar");
nodefield->createViewString("topology", "mesh");
nodefield->createView("values",

sidre::INT_ID,
origv->getNumElements(),
origv->getBuffer());

// Set up the element-centered field
// Get the original data
origv = ds->getRoot()->getView("fields/eltfield");
sidre::Group* eltfield = fields->createGroup("eltfield");
eltfield->createViewString("association", "element");
eltfield->createViewString("type", "scalar");
eltfield->createViewString("topology", "mesh");
eltfield->createView("values",

sidre::DOUBLE_ID,
origv->getNumElements(),
origv->getBuffer());

Conduit includes a verify method to test if the structure of the tinymesh conforms to the Mesh Blueprint. This is
valuable for writing and debugging data adapters. Once the datastore hierarchy is properly structured, save it, then use
Conduit to save the index file (ending with .root). This toy data set is small enough that we can choose to save it in a
JSON format.

conduit::Node info, mesh_node, root_node;
ds->getRoot()->createNativeLayout(mesh_node);
std::string bp_protocol = "mesh";
if(conduit::blueprint::verify(bp_protocol, mesh_node[mesh_name], info))
{
// Generate the Conduit index
conduit::Node& index = root_node["blueprint_index"];
conduit::blueprint::mesh::generate_index(mesh_node[mesh_name],

mesh_name,
1,
index[mesh_name]);

std::string root_output_path = mesh_name + ".root";
std::string output_path = mesh_name + ".json";

root_node["protocol/name"] = "json";
root_node["protocol/version"] = "0.1";
root_node["number_of_files"] = 1;
root_node["number_of_trees"] = 1;
root_node["file_pattern"] = output_path;
root_node["tree_pattern"] = "/";

// Now save both the index and the data set
conduit::relay::io::save(root_node, root_output_path, "json");

(continues on next page)

228 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

conduit::relay::io::save(mesh_node, output_path, "json");
}
else
{
std::cout << "does not conform to Mesh Blueprint: ";
info.print();
std::cout << std::endl;

}

The code listed above produces the files tinymesh.json and tinymesh.root. Any code that uses Mesh Blueprint can open
and use this pair of files.

The DataStore also contains a method that can automatically generate the Blueprint index within a Sidre group rather
than calling directly into Conduit. Set up a mesh similarly to the example above.

// Conduit needs a specific hierarchy.
// We'll make a new Group with that hierarchy, pointing at the
// application's data.
std::string domain_name = "domain";
std::string domain_location = "domain_data/" + domain_name;
std::string mesh_name = "mesh";
std::string domain_mesh = domain_location + "/" + mesh_name;

sidre::Group* mroot = ds->getRoot()->createGroup(domain_location);
sidre::Group* coords = mroot->createGroup(mesh_name + "/coordsets/coords");
sidre::Group* topos = mroot->createGroup(mesh_name + "/topologies");
// no material sets in this example
sidre::Group* fields = mroot->createGroup(mesh_name + "/fields");
// no adjacency sets in this (single-domain) example

Then call the DataStore::generateBlueprintIndex() method to generate the index within a group in the datas-
tore. Additional data needed in the root file can be added and saved using Sidre I/O calls.

conduit::Node info, mesh_node, root_node;
ds->getRoot()->createNativeLayout(mesh_node);
std::string bp_protocol = "mesh";
if(conduit::blueprint::verify(bp_protocol, mesh_node[domain_mesh], info))
{
std::string bp("rootfile_data/blueprint_index/automesh");

ds->generateBlueprintIndex(domain_mesh, mesh_name, bp, 1);

sidre::Group* rootfile_grp = ds->getRoot()->getGroup("rootfile_data");
rootfile_grp->createViewString("protocol/name", "json");
rootfile_grp->createViewString("protocol/version", "0.1");
rootfile_grp->createViewScalar("number_of_files", 1);
rootfile_grp->createViewScalar("number_of_trees", 1);
rootfile_grp->createViewScalar("file_pattern", "bpgen.json");
rootfile_grp->createViewScalar("tree_pattern", "/domain");
rootfile_grp->save("bpgen.root", "json");

ds->getRoot()->getGroup("domain_data")->save("bpgen.json", "json");
}

(continues on next page)

7.10. Sidre User Guide 229

Axom Documentation

(continued from previous page)

else
{
std::cout << "does not conform to Mesh Blueprint: ";
info.print();
std::cout << std::endl;

}

Additionally, the Sidre Parallel I/O (SPIO) class IOManager provides a method that both generates a Blueprint index
and adds it to a root file. Using the same mesh data from the last example, first write out all of the parallel data using the
IOManager::write() method. This will output to files all of the data for all domains, and will also create a basic root
file. Then the IOManager::writeBlueprintIndexToRootFile() methods can be called to generate the Blueprint
index and add it to the root file. This is currently only implemented to work with the sidre_hdf5 I/O protocol.

sidre::IOManager writer(MPI_COMM_WORLD);

conduit::Node info, mesh_node, root_node;
ds->getRoot()->createNativeLayout(mesh_node);
std::string bp_protocol = "mesh";
if(conduit::blueprint::mpi::verify(bp_protocol,

mesh_node[domain_mesh],
info,
MPI_COMM_WORLD))

{
#if defined(AXOM_USE_HDF5)
std::string protocol = "sidre_hdf5";

#else
std::string protocol = "sidre_json";

#endif
std::string output_name = "bpspio";
if(comm_size > 1)
{
output_name = output_name + "_par";

}

std::string bp_rootfile = output_name + ".root";

writer.write(ds->getRoot()->getGroup(domain_location), 1, output_name, protocol);

writer.writeBlueprintIndexToRootFile(ds, domain_mesh, bp_rootfile, mesh_name);
}

230 Chapter 7. Axom Copyright and License Information

Axom Documentation

Data Visualization

The VisIt tool can read in a Conduit Mesh Blueprint conforming file, interpret the index file, and sensibly display the
data contained in the data file. Starting from version 2.13.1, VisIt can open a .root file just like any other data file. VisIt
produced the following image from the Mesh Blueprint file saved above.

Conduit is also a foundational building block for the Ascent project, which provides a powerful in situ data analytics
and visualization facility (without copying memory) to distributed-memory simulation codes.

Using Sidre with MFEM

Note: The functionality described in this page is only available if Axom is configured with MFEM and if the CMake
variable AXOM_ENABLE_MFEM_SIDRE_DATACOLLECTION is set to ON

The MFEMSidreDataCollection class implements MFEM’s DataCollection interface for recording simulation
data. Specifically, it knows about fields (mfem::GridFunction objects) and the mesh on which these fields are defined.

7.10. Sidre User Guide 231

http://visitusers.org/
http://ascent.readthedocs.io/
https://mfem.org

Axom Documentation

The MFEMSidreDataCollection class internally organizes its data according to the Mesh Blueprint, a hierarchical
schema for describing mesh data.

See the Conduit page for more information on the Mesh Blueprint.

In this page, we first discuss how MFEM objects can be associated with the MFEMSidreDataCollection. We then
explain the process and options available when Saving Data to a File. The workflow for reading saved data back in is
discussed in Restarting a Simulation.

Associating MFEM Objects with an MFEMSidreDataCollection

We begin to describe the data in an MFEMSidreDataCollection object by registering an MFEM mesh with an instance
of the class when we create the data collection:

// Initialize the datacollection with the mesh
// Note: all fields (added with RegisterField) must be on this mesh
axom::sidre::MFEMSidreDataCollection dc("sidre_mfem_datacoll_vis_ex", mesh);

The MFEM mesh can also be registered after construction:

dc.SetMesh(/* mfem::Mesh* */ mesh);

Note: There is a 1-1 relationship between MFEMSidreDataCollection objects and MFEM meshes. That is, multiple
meshes cannot be associated with a single MFEMSidreDataCollection.

After a mesh has been registered, fields can be association with the MFEMSidreDataCollection object:

// Note: Any number of fields can be registered
dc.RegisterField("solution", &soln);

Special kinds of fields (material-dependent fields, material set volume fraction fields, and species set values fields)
require additional setup before they can be registered - see Mixed-material Fields for more informantion.

Saving Data to a File

The data in an instance of the MFEMSidreDataCollection class can be saved to a file using a variety of protocols.
These files can be visualized with tools like VisIt or used to restart a simulation by loading them back into an instance
of the MFEMSidreDataCollection class (see Restarting a Simulation).

Current options for output protocols/formats include:

• sidre_hdf5

• sidre_conduit_json

• sidre_json

• conduit_hdf5

Note: The AXOM_USE_HDF5 CMake build option must be enabled to use HDF5-based formats.

Before saving, simulation state metadata should be updated. Currently, this metadata consists of:

• cycle, the current iteration number for the simulation

232 Chapter 7. Axom Copyright and License Information

https://wci.llnl.gov/simulation/computer-codes/visit

Axom Documentation

• time, the current simulation time

• time_step, the current simulation time step (sometimes called dt)

Each of these variables has a corresponding setter function:

// Save the initial state
dc.SetCycle(0); // Iteration counter
dc.SetTime(0.0); // Simulation time
dc.SetTimeStep(dt); // Time step

Note: There are also corresponding accessors for these state quantities (GetCycle, GetTime, GetTimeStep).

Once state information has been updated, the complete simulation state can be written to a file:

// Filename and protocol, both of which are optional
dc.Save("sidre_mfem_datacoll_vis_ex", sidre_protocol);

Note: By default, saved files will be written to the current working directory. To write to/read from a different
directory, use SetPrefixPath to change the directory location of where the MFEMSidreDataCollection object’s
data will be written.

See the sidre_mfem_datacollection_vis example for a more thorough example of the above functionality.

Restarting a Simulation

Experimental support for complete reconstruction of a simulation mesh, fields, and qfields is also pro-
vided by the MFEMSidreDataCollection class. That is, when an output file is read in using the
MFEMSidreDataCollection::Load() method, the data read in will be used to reconstruct MFEM objects than can
be accessed with the GetField, GetQField, and GetMesh methods.

Warning: Currently, an MFEMSidreDataCollection object must own the mesh and field data in order to com-
pletely reconstruct simulation state. Mesh data ownership can be configured with the owns_mesh_data constructor
option (should be set to true), and field data ownership requires that each GridFunction object be unallocated
when passed to the RegisterField() method, which performs the allocation within Sidre-owned memory. After
registration, a GridFunction object can be used normally. The same conditions apply for QuadratureFunction
objects.

A complete demonstration of functionality is provided in the sidre_mfem_datacollection_restart example,
which is a stripped-down example of how a simulation code might utilize the automatic reconstruction logic when
loading in a datastore.

Note: The mesh/field reconstruction logic requires that the saved file was created with an
MFEMSidreDataCollection object. In Mesh Blueprint terms, the following constraints are imposed on the
structure of the data:

• There must be a coordinate set named coords

• There must be a topology named mesh with corresponding attributes stored in a field named
mesh_material_attribute

7.10. Sidre User Guide 233

http://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html

Axom Documentation

• There must be a topology named boundary with corresponding attributes stored in a field named
boundary_material_attribute

Mixed-material Fields

The Mesh Blueprint provides support for mixed-material simulations through its material set construct. Material meta-
data (stored in mfem::GridFunction objects) can be registered with the MFEMSidreDataCollection like any other
field (with the RegisterField() method), given that some additional setup is performed and the field names match
a specific naming convention.

Currently, there are three kinds of special fields that can be associated with mixed-material metadata:

• Volume fraction fields in a material set (the per-element volume fraction of a given material)

• Material-dependent fields (a different set of values for each material)

• Species set fields (a different set of values for each material and for each dimension)

Material sets are defined by associating a volume fraction field name with a material set name:

// Inform the DataCollection that volume fraction information for a material set
// called "matset" will be in fields called "volume_fraction"
dc.AssociateMaterialSet("volume_fraction", "matset");

Once this association has been made, corresponding fields can be registered. Their names must follow the format
<associated volume fraction field name>_<material id>, for example:

dc.RegisterField("volume_fraction_001", vol_frac_1);
dc.RegisterField("volume_fraction_002", vol_frac_2);

Material-dependent fields are defined by associating a field name with a material set name:

// Inform the DataCollection of a material-dependent field "density" associated
// with a material set called "matset"
dc.AssociateMaterialDependentField("density", "matset");

Material-specific values can be registered with a name in the format <associated dependent field
name>_<material id>:

dc.RegisterField("density", density_independent);
dc.RegisterField("density_001", density_dependent_1);
dc.RegisterField("density_002", density_dependent_2);

Species sets are defined by associating a field name with a species set name and corresponding material set name:

// Inform the DataCollection that species set data for the species set "specset"
// associated with material set "matset" will be in fields called "partial_density"
constexpr bool volume_dependent = false;
dc.AssociateSpeciesSet("partial_density", "specset", "matset", volume_dependent);

Species set values can be registered with the name in the format <associated field name>_<material
id>_<component>:

dc.RegisterField("partial_density_001_001", partial_density_1_1);
dc.RegisterField("partial_density_001_002", partial_density_1_2);

(continues on next page)

234 Chapter 7. Axom Copyright and License Information

https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html#material-sets
https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html#fields
https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html#species-sets

Axom Documentation

(continued from previous page)

dc.RegisterField("partial_density_002_001", partial_density_2_1);
dc.RegisterField("partial_density_002_002", partial_density_2_2);

7.11 Slam User Guide

Axom’s Set-theoretic Lightweight API for Meshes (SLAM) component provides high performance building blocks for
distributed-memory mesh data structures in HPC simulation codes.

7.11.1 API Documentation

Doxygen generated API documentation can be found here: API documentation

7.11.2 Introduction

Simulation codes have a broad range of requirements for their mesh data structures, spanning the complexity gamut
from structured Cartesian grids to fully unstructured polyhedral meshes. Codes also need to support features like
dynamic topology changes, adaptive mesh refinement (AMR), submesh elements and ghost/halo layers, in addition to
other custom features.

Slam targets the low level implementation of these distributed mesh data structures and is aimed at developers who
implement mesh data structures within HPC applications.

7.11.3 Set-theoretic abstraction

Slam’s design is motivated by the observation that despite vast differences in the high level features of such mesh data
structures, many of the core concepts are shared at a lower level, where we need to define and process mesh entities
and their associated data and relationships.

Slam provides a simple, intuitive, API centered around a set-theoretic abstraction for meshes and associated data.
Specifically, it models three core set-theoretic concepts:

• Sets of entities (e.g. vertices, cells, domains)

• Relations among a pair of sets (e.g. incidence, adjacency and containment relations)

• Maps defining fields and attributes on the elements of a given set.

The goal is for users to program against Slam’s interface without having to be aware of different design choices, such
as the memory layout and underlying data containers. The exposed API is intended to feel natural to end users (e.g.
application developers and domain scientists) who operate on the meshes that are built up from Slam’s abstractions.

See Core concepts for more details.

7.11. Slam User Guide 235

../../../../doxygen/html/slamtop.html

Axom Documentation

7.11.4 Policy-based design

There is considerable variability in how these abstractions can be implemented and user codes make many different
design choices. For example, we often need different data structures to support dynamic meshes than we do for static
meshes. Similarly, codes might choose different container types for their arrays (e.g. STL vectors vs. raw C-arrays vs.
custom array types).

Performance considerations can also come in to play. For example, in some cases, a code has knowledge of some fixed
parameters (e.g. the stride between elements in a relation). Specifying this information at compile-time allows the
compiler to better optimize the generated code than specifying it at runtime.

Slam uses a Policy-based design to orthogonally decompose the feature space without sacrificing performance. This
makes it easier to customize the behavior of Slam’s sets, relations and maps and to extend support for custom features
extend the basic interface.

See Policy-based design for more details.

7.11.5 Current limitations

• Slam is under active development with many features planned.

• Support for GPUs in Slam is under development.

• Slam’s policy-based design enable highly configurable classes which are explicitly defined via type aliases. We
are investigating ways to simplify this set up using Generator classes where enumerated strings can define related
types within a mesh configuration.

An introductory example

This file contains an introductory example to define and traverse a simple quadrilateral mesh. The code for this example
can be found in axom/src/axom/slam/examples/UserDocs.cpp.

We first import the unified Slam header, which includes all necessary files for working with slam:

#include "axom/slam.hpp"

Note: All code in slam is in the axom::slam namespace. For convenience, we add the following namespace declara-
tion to our example to allow us to directly use the slam namespace:

namespace slam = axom::slam;

Type aliases and variables

We begin by defining some type aliases for the Sets, Relations and Maps in our mesh. These type aliases would typically
be found in a configuration file or in class header files.

We use the following types throughout this example:

using ArrayIndir = slam::policies::CArrayIndirection<PosType, ElemType>;

236 Chapter 7. Axom Copyright and License Information

Axom Documentation

Fig. 7.32: An unstructured mesh with eleven vertices (red circles) and five elements (quadrilaterals bounded by black
lines)

7.11. Slam User Guide 237

Axom Documentation

Sets

Our mesh is defined in terms of two sets: Vertices and Elements, whose entities are referenced by integer-valued indices.
Since both sets use a contiguous range of indices starting from 0, we use slam::PositionSet to represent them.

We define the following type aliases:

using PosType = slam::DefaultPositionType;
using ElemType = slam::DefaultElementType;
using VertSet = slam::PositionSet<PosType, ElemType>;
using ElemSet = slam::PositionSet<PosType, ElemType>;

and declare them as:

VertSet verts; // The set of vertices in the mesh
ElemSet elems; // The set of elements in the mesh

For other available set types, see Set.

Relations

We also have relations describing the incidences between the mesh vertices and elements.

The element-to-vertex boundary relation encodes the indices of the vertices in the boundary of each element. Since this
is a quad mesh and there are always four vertices in the boundary of a quadrilateral, we use a ConstantCardinality
policy with a CompileTimeStride set to 4 for this StaticRelation.

// Type aliases for element-to-vertex boundary relation
enum
{
VertsPerElem = 4

};
using CTStride = slam::policies::CompileTimeStride<PosType, VertsPerElem>;
using ConstCard = slam::policies::ConstantCardinality<PosType, CTStride>;
using ElemToVertRelation =

slam::StaticRelation<PosType, ElemType, ConstCard, ArrayIndir, ElemSet, VertSet>;

The vertex-to-element coboundary relation encodes the indices of all elements incident in each of the vertices.
Since the cardinality of this relation changes for different vertices, we use a VariableCardinality policy for this
StaticRelation.

// Type aliases for vertex-to-element coboundary relation
using VarCard = slam::policies::VariableCardinality<PosType, ArrayIndir>;
using VertToElemRelation =

slam::StaticRelation<PosType, ElemType, VarCard, ArrayIndir, VertSet, ElemSet>;

We declare them as:

ElemToVertRelation bdry; // Boundary relation from elements to vertices
VertToElemRelation cobdry; // Coboundary relation from vertices to elements

For other available set types, see Relation.

238 Chapter 7. Axom Copyright and License Information

Axom Documentation

Maps

Finally, we have some maps that attach data to our sets.

The following defines a type alias for the positions of the mesh vertices. It is templated on a point type (Point2) that
handles simple operations on 2D points.

using BaseSet = slam::Set<PosType, ElemType>;
using ScalarMap = slam::Map<Point2, BaseSet>;
using PointMap = slam::Map<Point2, BaseSet>;
using VertPositions = PointMap;

It is declared as:

VertPositions position; // vertex position

Constructing the mesh

This example uses a very simple fixed mesh, which is assumed to not change after it has been initialized.

Sets

The sets are created using a constructor that takes the number of elements.

verts = VertSet(11); // Construct vertex set with 11 vertices
elems = ElemSet(5); // Construct the element set with 5 elements

The values of the vertex indices range from 0 to verts.size()-1 (and similarly for elems).

Note: All sets, relations and maps in Slam have internal validity checks using the isValid() function:

SLIC_ASSERT_MSG(verts.isValid(), "Vertex set is not valid.");
SLIC_ASSERT_MSG(elems.isValid(), "Elment set is not valid.");

Relations

The relations are constructed by binding their associated sets and arrays of data to the relation instance. In this example,
we use an internal helper class RelationBuilder.

We construct the boundary relation by attaching its two sets (elems for its fromSet and verts for its toSet) and an
array of indices for the relation’s data.

// construct boundary relation from elements to vertices
using RelationBuilder = ElemToVertRelation::RelationBuilder;
bdry = RelationBuilder().fromSet(&elems).toSet(&verts).indices(
RelationBuilder::IndicesSetBuilder()
.size(static_cast<int>(evInds.size()))
.data(evInds.data()));

7.11. Slam User Guide 239

Axom Documentation

The Coboundary relation requires an additional array of offsets (begins) to indicate the starting index in the relation
for each vertex:

// construct coboundary relation from vertices to elements
using RelationBuilder = VertToElemRelation::RelationBuilder;
cobdry = RelationBuilder()

.fromSet(&verts)

.toSet(&elems)

.begins(RelationBuilder::BeginsSetBuilder()
.size(verts.size())
.data(veBegins.data()))

.indices(RelationBuilder::IndicesSetBuilder()
.size(static_cast<int>(veInds.size()))
.data(veInds.data()));

Since these are static relations, we used data that was constructed elsewhere. Note that these relations are lightweight
wrappers over the underlying data – no data is copied. To iteratively build the relations, we would use the
DynamicConstantRelation and DynamicVariableRelation classes.

See Simplifying mesh setup for more details about Slam’s Builder classes for sets, relations and maps.

Maps

We define the positions of the mesh vertices as a Map on the verts set. For this example, we set the first vertex to lie
at the origin, and the remaining vertices line within an annulus around the unit circle.

// construct the position map on the vertices
position = VertPositions(&verts);

// first vertex is at origin
position[0] = Point2(0., 0.);

// remaining vertices lie within annulus around unit disk
// in cw order, starting at angleOffset
constexpr double rInner = 0.8;
constexpr double rOuter = 1.2;
constexpr double angleOffset = 0.75;
const double N = verts.size() - 1;

for(int i = 1; i < verts.size(); ++i)
{
const double angle = -(i - 1) / N * 2 * M_PI + angleOffset;
const double mag = axom::utilities::random_real(rInner, rOuter);

position[i] = Point2(mag * std::cos(angle), mag * std::sin(angle));
}

240 Chapter 7. Axom Copyright and License Information

Axom Documentation

Traversing the mesh

Now that we’ve constructed the mesh, we can start traversing the mesh connectivity and attaching more fields.

Computing a derived field

Our first traversal loops through the vertices and computes a derived field on the position map. For each vertex, we
compute its distance to the origin.

// Create a Map of scalars over the vertices
ScalarMap distances(&verts);

for(int i = 0; i < distances.size(); ++i) // <-- Map::size()
{
auto vID = verts[i]; // <-- Set::operator[]
const Point2& pt = position[vID]; // <-- Map::operator[]

distances[i] = std::sqrt(pt[0] * pt[0] // <-- Map::operator[]
+ pt[1] * pt[1]);

}

Computing element centroids

Our next example uses element-to-vertex boundary relation to compute the centroids of each element as the average of
its vertex positions.

// Create a Map of Point2 over the mesh elements
using ElemCentroidMap = PointMap;
ElemCentroidMap centroid = ElemCentroidMap(&elems);

// for each element...
for(int eID = 0; eID < elems.size(); ++eID) // <-- Set::size()
{
Point2 ctr;

auto elVerts = bdry[eID]; // <-- Relation::operator[]

// find average position of incident vertices
for(int i = 0; i < elVerts.size(); ++i) // <-- Set::size()
{
auto vID = elVerts[i]; // <-- Set::operator[]
ctr += position[vID]; // <-- Map::operator[]

}
ctr /= elVerts.size(); // <-- Set::size())
centroid[eID] = ctr; // <-- Map::operator[]

}

Perhaps the most interesting line here is when we call the relation’s subscript operator (bdry[eID]). This function
takes an element index (eID) and returns the set of vertices that are incident in this element. As such, we can use all
functions in the Set API on this return type, e.g. size() and the subscript operator.

7.11. Slam User Guide 241

Axom Documentation

Outputting mesh to disk

As a final example, we highlight several different ways to iterate through the mesh’s Sets, Relations and Maps as we
output the mesh to disk (in the vtk format).

This is a longer example, but the callouts (left-aligned comments of the form // <-- message) point to different
iteration patterns.

std::ofstream meshfile;
meshfile.open("quadMesh.vtk");
std::ostream_iterator<PosType> out_it(meshfile, " ");

// write header
meshfile << "# vtk DataFile Version 3.0\n"

<< "vtk output\n"
<< "ASCII\n"
<< "DATASET UNSTRUCTURED_GRID\n\n"
<< "POINTS " << verts.size() << " double\n";

// write positions
for(auto pos : position) // <-- Uses range-based for on position map
{
meshfile << pos[0] << " " << pos[1] << " 0\n";

}

// write elem-to-vert boundary relation
meshfile << "\nCELLS " << elems.size() << " " << 5 * elems.size();
for(auto e : elems) // <-- uses range-based for on element set
{
meshfile << "\n4 ";
std::copy(bdry.begin(e), // <-- uses relation's iterators

bdry.end(e),
out_it);

}

// write element types (9 == VKT_QUAD)
meshfile << "\n\nCELL_TYPES " << elems.size() << "\n";
for(int i = 0; i < elems.size(); ++i)
{
meshfile << "9 ";

}

// write element ids
meshfile << "\n\nCELL_DATA " << elems.size() << "\nSCALARS cellIds int 1"

<< "\nLOOKUP_TABLE default \n";
for(int i = 0; i < elems.size(); ++i)
{
meshfile << elems[i] << " "; // <-- uses size() and operator[] on set

}

// write vertex ids
meshfile << "\n\nPOINT_DATA " << verts.size() << "\nSCALARS vertIds int 1"

<< "\nLOOKUP_TABLE default \n";
for(int i = 0; i < verts.size(); ++i)

(continues on next page)

242 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

{
meshfile << verts[i] << " ";

}
meshfile << "\n";

Core concepts

Describe Slam concepts, what they mean, how they are used, etc.

Fig. 7.33: A relation (blue lines) between two sets (ovals with red and green dots, as elements) and a map of scalar
values (brown) on the second set.

7.11. Slam User Guide 243

Axom Documentation

Set

• Taxonomy of set types (OrderedSet, IndirectionSet, Subset, static vs. dynamic)

• Simple API (including semantics of operator[] and iterators)

• Example to show how we iterate through a set

Relation

• Relational operator (from element of Set A to set of elements in Set B)

• Taxonomy:

– Cardinality: Fixed vs Variable number of elements per relation

– Mutability: Static vs. Dynamic relation

– Storage: Implicit vs. Explicit (e.g. product set)

• Simple API (including semantics of operator[])

• Three ways to iterate through a relations

– Double subscript

– Separate subscripts

– Iterators

Map

• Data associated with all members of a set

• Simple API (including semantics of operator[])

Implementation details

Policy-based design

Handling the combinatorial explosion of features; avoid paying for what we don’t need

• SizePolicy, StridePolicy, OffsetPolicy (compile time vs. runtime)

• IndirectionPolicy (none, C-array, std::vector, custom, e.g. mfem::Array)

• SubsettingPolicy (none, virtual parent, concrete parent)

• OwnershipPolicy (local, sidre, other repository)

Feature diagram of OrderedSet policies (subset).

The figure shows how certain these policies interact with the subscript operator.

244 Chapter 7. Axom Copyright and License Information

Axom Documentation

Simplifying mesh setup

• Builder classes

– Chained initialization using named-parameter idiom

• Generator classes to simplify types

7.12 Slic User Guide

Slic provides a light-weight, modular and extensible logging infrastructure that simplifies logging application messages.

7.12.1 API Documentation

Doxygen generated API documentation can be found here: API documentation

7.12.2 Key Features

• Interoperability across the constituent libraries of an application. Messages logged by an application and any of
its libraries using Slic have a unified format and routed to a centralized output destination.

• Customizable Log Message Format to suit application requirements.

• Customizable handling and filtering of log messages by extending the Log Stream base class.

• Built-In Log Streams to support common logging use cases, e.g., log to a file or console.

• Native integration with Lumberjack for logging and filtering of messages at scale.

• Fortran bindings that provide an idiomatic API for Fortran applications.

7.12. Slic User Guide 245

../../../../doxygen/html/slictop.html
../../../lumberjack/docs/sphinx/index.html

Axom Documentation

7.12.3 Requirements

Slic is designed to be light-weight and self-contained. The only requirement for using Slic is a C++11 compliant
compiler. However, to use Slic in the context of a distributed parallel application and in conjunction with Lumberjack,
support for building with MPI is provided.

For further information on how to build the Axom Toolkit, consult the Axom Quick Start Guide.

7.12.4 About this Guide

This guide presents core concepts, key capabilities, and guiding design principles of Slic’s Component Architecture.
To get started with using Slic quickly within an application, see the Getting Started with Slic section. For more detailed
information on the interfaces of the various classes and functions in Slic, developers are advised to consult the Slic
Doxygen API.

Additional questions, feature requests or bug reports on Slic can be submitted by creating a new issue on Github or by
sending e-mail to the Axom Developers mailing list at axom-dev@llnl.gov.

Getting Started with Slic

This section illustrates some of the key concepts and capabilities of Slic by presenting a short walk-through of a C++
application. The complete Slic Application Code Example is included in the Appendix section and is also available
within the Slic source code, under src/axom/slic/examples/basic/logging.cpp.

This example illustrates the following concepts:

• Initializing the Slic Logging Environment,

• Prescribing the Log Message Format,

• Basic logging to the console using the Generic Output Stream, and,

• Using some of the various Slic Macros Used in Axom to log messages.

Step 1: Add Header Includes

First, the Slic header must be included to make all the Slic functions and classes accessible to an application:

1 // Slic includes
2 #include "axom/slic.hpp"

Note: All the classes and functions in Slic are encapsulated within the axom::slic namespace.

246 Chapter 7. Axom Copyright and License Information

../../../lumberjack/docs/sphinx/index.html
../../../../index.html
../../../../docs/sphinx/quickstart_guide/index.html
../../../../doxygen/html/slictop.html
../../../../doxygen/html/slictop.html
https://github.com/LLNL/axom/issues
mailto:axom-dev@llnl.gov

Axom Documentation

Step 2: Initialize Slic

Prior to logging any messages, the Slic Logging Environment is initialized by the following:

1 slic::initialize();

This creates the root logger instance. However, in order to log messages, an application must first specify an output
destination and optionally, prescribe the format of the log messages. These steps are demonstrated in the following
sections.

Warning: If you do not initialize Slic, Slic will call slic::initialize(), setup a minimal configuration (per-
form Steps 2 through 5), and issue a warning message. It is recommended that you call slic::initialize() to
get rid of the warning and perform your own configuration.

Step 3: Set the Message Format

The Log Message Format is specified as a string consisting of keywords, enclosed in < ... >, that Slic knows how to
interpret when assembling the log message.

1 std::string format = std::string("<TIMESTAMP>\n") +
2 std::string("[<LEVEL> <TAG>]: <MESSAGE> \n") +
3 std::string("FILE=<FILE>\n") + std::string("LINE=<LINE>\n\n");

For example, the format string in the code snippet above indicates that the resulting log messages will have the fol-
lowing format:

• A line with the message time stamp

• A line consisting of the Log Message Level, enclosed in brackets [], followed by the user-supplied message,

• A third line with the name of the file where the message was emitted and

• The corresponding line number location within the file, in the fourth line.

The format string is used in Step 5: Register a Log Stream. Specifically, it is passed as an argument to the Generic
Output Stream object constructor to prescribe the format of the messages.

See the Log Message Format section for the complete list of keyword options available that may be used to customize
the format of the messsages.

Note: This step is optional. If the format is not specified, a Default Message Format will be used to assemble the
message.

7.12. Slic User Guide 247

Axom Documentation

Step 4: Set Severity Level

The severity of log messages to be captured may also be adjusted at runtime to the desired Log Message Level by calling
slic::setLoggingMsgLevel(). This provides another knob that the application can use to filter the type and level
of messages to be captured.

All log messages with the specified severity level or higher are captured. For example, the following code snippet sets
the severity level to debug.

1 slic::setLoggingMsgLevel(slic::message::Debug);

This indicates that all log messages that are debug or higher are captured otherwise, the messages are ignored. Since
debug is the lowest severity level, all messages will be captured in this case.

Warning: All messages will be ignored until the first call to slic::setLoggingMsgLevel().

Step 5: Register a Log Stream

Log messages can have one or more output destination. The output destination is specified by registering a correspond-
ing Log Stream object to each Log Message Level.

The following code snippet uses the Generic Output Stream object, one of the Built-In Log Streams provided by Slic,
to specify std::cout as the output destination for messages at each Log Message Level.

1 slic::addStreamToAllMsgLevels(new slic::GenericOutputStream(&std::cout, format));

Note: Instead of calling slic::addStreamToAllMsgLevels() an application may use
slic::addStreamToMsgLevel() that allows more fine grain control of how to bind Log Stream objects to
each Log Message Level. Consult the Slic Doxygen API Documentation for more information.

The Generic Output Stream, takes two arguments in its constructor:

• A C++ std::ostream object that specifies the destination of messages. Consequently, output of messages can
be directed to the console, by passing std::cout or std::cerr, or to a file by passing a C++ std::ofstream
object. In this case, std::cout is specified as the output destination.

• A string corresponding to the Log Message Format, discussed in Step 3: Set the Message Format.

Note: Slic maintains ownership of all registered Log Stream instances and will deallocate them when
slic::finalize() is called.

248 Chapter 7. Axom Copyright and License Information

../../../../../doxygen/html/slictop.html

Axom Documentation

Step 5.1: Tagged Log Streams

Slic has limited support for tags, where users can bind streams to user-defined tags. The bound streams only output
messages with the given tag, disregarding the message’s Log Message Level. The tagged Log Stream can be created by
calling slic::addStreamToTag().

The following code snippet uses the Generic Output Stream object to specify std::cout as the output destination for
messages tagged with the custom tag myTag.

1 slic::addStreamToTag(new slic::GenericOutputStream(&std::cout, format),
2 "myTag");

Step 6: Log Messages

Once the output destination of messages is specified, messages can be logged using the Slic Macros Used in Axom, as
demonstrated in the code snippet below.

1 SLIC_DEBUG("Here is a debug message!");
2 SLIC_INFO("Here is an info mesage!");
3 SLIC_WARNING("Here is a warning!");
4 SLIC_ERROR("Here is an error message!");
5 SLIC_INFO_TAGGED("Here is a message for tagged streams with tag 'myTag'!",
6 "myTag");

Note: By default, SLIC_ERROR() will print the specified message and a stacktrace to the corresponding output
destination and call axom::utilities::processAbort() to gracefully abort the application. This behavior can be tog-
gled by calling slic::disableAbortOnError(). Additionally, a custom abort function can be registered with
slic::setAbortFunction(). See the Slic Doxygen API Documentation for more details.

Note: A subset of SLIC macros are collective operations when used with MPI-aware Log Stream instances such as
Synchronized Stream or Lumberjack Stream. Consult Collective Slic Macros for a list of collective Axom macros.

Step 7: Finalize Slic

Before the application terminates, the Slic Logging Environment must be finalized, as follows:

1 slic::finalize();

Calling slic::finalize() will properly deallocate the registered Log Stream objects and terminate the Slic Logging
Environment.

Note: slic::finalize() is a collective operation when used with MPI-aware Log Stream instances such as Syn-
chronized Stream or Lumberjack Stream. See the Slic Doxygen API Documentation for more details.

7.12. Slic User Guide 249

../../../../../doxygen/html/slictop.html
../../../../../doxygen/html/slictop.html

Axom Documentation

Step 8: Run the Example

After building the Axom Toolkit the Slic Application Code Example may be run from within the build space directory
as follows:

> ./example/slic_logging_ex

The resulting output should look similar to the following:

Fri Apr 26 14:29:53 2019
[DEBUG]: Here is a debug message!
FILE=/Users/zagaris2/dev/AXOM/source/axom/src/axom/slic/examples/basic/logging.cpp
LINE=44

Fri Apr 26 14:29:53 2019
[INFO]: Here is an info mesage!
FILE=/Users/zagaris2/dev/AXOM/source/axom/src/axom/slic/examples/basic/logging.cpp
LINE=45

Fri Apr 26 14:29:53 2019
[WARNING]: Here is a warning!
FILE=/Users/zagaris2/dev/AXOM/source/axom/src/axom/slic/examples/basic/logging.cpp
LINE=46

Fri Apr 26 14:29:53 2019
[ERROR]: Here is an error message!
** StackTrace of 3 frames **
Frame 1: axom::slic::logErrorMessage(std::__1::basic_string<char, std::__1::char_traits
→˓<char>,
std::__1::allocator<char> > const&, std::__1::basic_string<char, std::__1::char_traits
→˓<char>,
std::__1::allocator<char> > const&, int)
Frame 2: main
Frame 3: start
=====

FILE=/Users/zagaris2/dev/AXOM/source/axom/src/axom/slic/examples/basic/logging.cpp
LINE=47

Abort trap: 6

Component Architecture

Slic provides a simple and easy to use logging interface for applications.

The basic component architecture of Slic, depicted in Fig. 7.34, consists of three main components:

1. A static logger API. This serves as the primary interface to the application.

2. One or more Logger object instances. In addition to the root logger, which is created when Slic is initialized, an
application may create additional loggers. However, at any given instance, there is only a single active logger to
which all messages are logged.

• A Logger consists of four log message levels: ERROR, WARNING, INFO and DEBUG.

250 Chapter 7. Axom Copyright and License Information

../../../../../index.html

Axom Documentation

Fig. 7.34: Basic Component Architecture of Slic.

• Each Log Message Level can have one or more Log Stream instances, which, specify the output destination,
format and filtering of messages.

3. One or more Log Stream instances, bound to a particular logger, that can be shared between log message levels.

The application logs messages at an appropriate Log Message Level, i.e., ERROR, WARNING, INFO, or, DEBUG using the
static API. Internally, the Logger routes the message to the corresponding Log Stream instances that are bound to the
associated Log Message Level.

The following sections discuss some of these concepts in more detail.

Log Message Level

The Log Message Level indicates the severity of a message. Slic provides four levels of messages ranked from highest
to lowest as follows:

Message
Level

Usage Description

ERROR Indicates that the application encountered a critical error or a faulty state. Includes also stack-
trace.

WARNING Indicates that the application encountered an error, but, the application should proceed.
INFO General information reported by an application.
DEBUG Information useful to application developers.

Note: ERROR messages by default will cause the application to abort. This behavior may be toggled by calling

7.12. Slic User Guide 251

Axom Documentation

slic::enableAbortOnError() and slic::disableAbortOnError(). See the Slic Doxygen API Documentation
for more details.

An application may adjust at runtime the severity level of messages to capture by calling
slic::setLoggingMsgLevel(). For example, the following code snippet, sets the severity level to WARNING

slic::setLoggingMsgLevel(slic::message::Warning);

This indicates that all messages with a level of severity of WARNING and higher will be captured, namely WARNING and
ERROR messages. Thereby, enable the application to filter out messages with lower severity.

Warning: All messages will be ignored until the first call to slic::setLoggingMsgLevel().

Log Stream

The Log Stream class, is an abstract base class that facilitates the following:

• Specifying the Log Message Format and output destination of log messages.

• Implementing logic for handling and filtering messages.

• Defines a pure abstract interface for all Log Stream instances.

Since Log Stream is an abstract base class, it cannot be instantiated and used directly. Slic provides a set of Built-In
Log Streams, which provide concrete implementations of the Log Stream base class that support common use cases for
logging, e.g., logging to a file or output to the console.

Applications requiring custom functionality, may extend the Log Stream class and provide a concrete Log Stream
instance implementation that implements the abstract interface defined by the Log Stream base class. See the Add a
Custom Log Stream section for details.

A concrete Log Stream instance can be attached to one or more Log Message Level by calling
slic::addStreamToMsgLevel() and slic::addStreamToAllMsgLevels(). See the Slic Doxygen API
Documentation for more details.

Log Message Format

The Log Message Format is specified as a string consisting of keywords that are encapsulated in <...>, which, Slic
knows to interpret when assembling the log message.

The list of keywords is summarized in the table below.

252 Chapter 7. Axom Copyright and License Information

../../../../../doxygen/html/slictop.html
../../../../../doxygen/html/slictop.html
../../../../../doxygen/html/slictop.html

Axom Documentation

key-
word

Replaced With

<TIMES-
TAMP>

A textual representation of the time a message is logged, as returned by std::asctime().

<LEVEL> The Log Message Level, i.e., ERROR, WARNING, INFO, or DEBUG.
<MES-
SAGE>

The supplied message that is being logged.

<FILE> The file from where the message was emitted.
<LINE> The line location where the message was emitted.
<TAG> A string tag associated with a given message, e.g., for filtering during post-processing, etc.
<RANK> The MPI rank that emitted the message. Only applicable when the Axom Toolkit is compiled with MPI

enabled and with MPI-aware Log Stream instances, such as, the Synchronized Stream and Lumberjack
Stream.

These keywords can be combined in a string to specify a template for a log message.

For example, the following code snippet, specifies that all reported log messages consist of the level, enclosed in
brackets followed by the user-supplied log message.

std::string format = "[<LEVEL>]: <MESSAGE>";

To get the file and line location within the file where the message was emitted, the format string above could be amended
with the following:

std::string format = "[<LEVEL>]: <MESSAGE> \n\t<FILE>:<LINE>";

This indicates that the in addition to the level and user-supplied, the resulting log messages will have an additional line
consisting of the file and line where the message was emitted.

Default Message Format

If the Log Message Format is not specified, the Log Stream base class defines a default format that is set to the following:

std::string DEFAULT_FORMAT = "*****\n[<LEVEL>]\n\n <MESSAGE> \n\n <FILE>\n<LINE>\n****\n"

Built-In Log Streams

The Built-In Log Streams provided by Slic are summarized in the following table, followed by a brief description for
each.

Log Stream Use & Availability
Generic Output Stream Always available. Used in serial applications, or, for logging on rank zero.
Synchronized Stream Requires MPI. Used with MPI applications.
Lumberjack Stream Requires MPI. Used with MPI applications.

7.12. Slic User Guide 253

../../../../../index.html

Axom Documentation

Generic Output Stream

The Generic Output Stream, is a concrete implementation of the Log Stream base class, that can be constructed by
specifying:

1. A C++ std::ostream object instance, e.g., std::cout`, ``std::cerr for console output, or to a file by
passing a C++ std::ofstream object, and,

2. Optionally, a string that specifies the Log Message Format.

For example, the following code snippet registers a Generic Output Stream object that is bound to the the std::cout.

slic::addStreamToAllMsgLevels(
new slic::GenericOutputStream(&std::cout, format));

Similarly, the following code snippet, registers a Generic Output Stream object that is bound to a file.

std::ofstream log_file;
log_file.open("logfile.dat");

slic::addStreamToAllMsgLevels(
new slic::GenericOutputStream(&log_file, format));

Synchronized Stream

The Synchronized Stream is intended to be used with parallel MPI applications, primarily for debugging. The Synchro-
nized Stream provides similar functionality to the Generic Output Stream, however, the log messages are synchronized
across the MPI ranks of the specified communicator.

Similar to the Generic Output Stream the Synchronized Stream is constructed by specifying:

1. A C++ std::ostream object instance, e.g., std::cout`, ``std::cerr for console output, or to a file by
passing a C++ std::ofstream object.

2. The MPI communicator, and,

3. Optionally, a string that specifies the Log Message Format.

The following code snippet illustrates how to register a Synchronized Stream object with Slic to log messages to
std::cout.

slic::addStreamToAllMsgLevels(
new slic::SynchronizedStream(&std::cout, mpi_comm, format));

Note: Since, the Synchronized Stream works across MPI ranks, logging messages using the Slic Macros Used in Axom
or the static API directly only logs the messages locally. To send the messages to the output destination the application
must call slic::flushStreams() explicitly, which, in this context is a collective call.

Warning: In the event of an abort in Synchronized Stream, SLIC calls slic::outputLocalMessages(), which
will output the locally stored messages to the output destination for log messages (file or console) and then SLIC
calls MPI_Abort(). The call to slic::outputLocalMessages() is non-collective, and does not guarantee all
locally stored messages will be outputted by all ranks.

254 Chapter 7. Axom Copyright and License Information

Axom Documentation

Lumberjack Stream

The Lumberjack Stream is intended to be used with parallel MPI applications. In contrast to the Synchronized Stream,
which logs messages from all ranks, the Lumberjack Stream uses Lumberjack internally to filter out duplicate messages
that are emitted from multiple ranks.

The Lumberjack Stream is constructed by specifying:

1. A C++ std::ostream object instance, e.g., std::cout`, ``std::cerr for console output, or to a file by
passing a C++ std::ofstream object.

2. The MPI communicator,

3. An integer that sets a limit on the number of duplicate messsages reported per rank, and,

4. Optionally, a string that specifies the Log Message Format.

The following code snippet illustrates how to register a Lumberjack Stream object with Slic to log messages to
std::cout.

slic::addStreamToAllMsgLevels(
new slic::LumberjackStream(&std::cout, mpi_comm, 5, format));

Note: Since, the Lumberjack Stream works across MPI ranks, logging messages using the Slic Macros Used in Axom
or the static API directly only logs the messages locally. To send the messages to the output destination the application
must call slic::flushStreams() explicitly, which, in this context is a collective call.

Warning: In the event of an abort in Lumberjack Stream, SLIC calls slic::outputLocalMessages(), which
will output the locally stored messages to the output destination for log messages (file or console) and then SLIC
calls MPI_Abort(). The call to slic::outputLocalMessages() is non-collective, and does not guarantee all
locally stored messages will be outputted by all ranks.

Add a Custom Log Stream

Slic can be customized by implementing a new subclass of the Log Stream. This section demonstrates the basic steps
required to Add a Custom Log Stream by walking through the implementation of a new Log Stream instance, which we
will call MyStream.

Note: MyStream provides the same functionality as the Generic Output Stream. The implementation presented herein
is primarily intended for demonstrating the basic process for extending Slic by providing a custom Log Stream.

7.12. Slic User Guide 255

../../../../lumberjack/docs/sphinx/index.html

Axom Documentation

Create a LogStream Subclass

First, we create a new class, MyStream, that is a subclass of the Log Stream class, as illustrated in the code snippet
below.

1 class MyStream : public LogStream
2 {
3 public:
4

5 MyStream() = delete;
6 MyStream(std::ostream* os, const std::string& format);
7

8 virtual ~MyStream();
9

10 /// \see LogStream::append
11 virtual void append(message::Level msgLevel,
12 const std::string& message,
13 const std::string& tagName,
14 const std::string& fileName,
15 int line,
16 bool filter_duplicates);
17 private:
18 std::ostream* m_stream;
19

20 // disable copy & assignment
21 MyStream(const MyStream &) = delete;
22 MyStream& operator=(const MyStream&) = delete;
23

24 // disable move & assignment
25 MyStream(const MyStream&&) = delete;
26 MyStream& operator=(const MyStream&&) = delete;
27 };

The class has a pointer to a C++ std::ostream object as a private class member. The std::ostream object holds
a reference to the output destination for log messages, which can be any std::ostream instance, e.g., std::cout,
std::cerr, or a file std::ofstream, etc.

The reference to the std::ostream is specified in the class constructor and is supplied by the application when a
MyStream object is instantiated.

Since MyStream is a concrete instance of the Log Stream base class, it must implement the append() method, which
is a pure virtual method.

Implement LogStream::append()

The MyStream class implements the LogStream::append() method of the Log Stream base class, as demonstrated
in the code snippet below.

1 void MyStream::append(message::Level msgLevel,
2 const std::string& message,
3 const std::string& tagName,
4 const std::string& fileName,
5 int line,

(continues on next page)

256 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

6 bool AXOM_UNUSED_PARAM(filtered_duplicates))
7 {
8 assert(m_stream != nillptr);
9

10 (*m_stream) << this->getFormatedMessage(message::getLevelAsString(msgLevel),
11 message,
12 tagName,
13 "",
14 fileName,
15 line);
16 }

The append() method takes all the metadata associated with a message through its argument list:

• The Log Message Level

• The user-specified message

• A tag associated with the message, may be set MSG_IGNORE_TAG

• The file where the message was emitted

• The line location within the file where the message was emitted

The append() method calls LogStream::getFormatedMessage(), a method implemented in the Log Stream base
class, which, applies the Log Message Format according to the specified format string supplied to the MyStream class
constructor, when the class is instantiated.

Register the new class with Slic

The new Log Stream class may be used with Slic in a similar manner to any of the Built-In Log Streams, as demonstrated
in the code snippet below:

slic::addStreamToAllMsgLevels(new MyStream(&std::cout, format));

Wrapping Slic in Macros

The recommended way of integrating Slic into an application is to wrap the Slic API for logging messages into a set
of convenience application macros that are used throughout the application code.

This allows the application code to:

• Centralize all use of Slic behind a thin macro layer,

• Insulate the application from API changes in Slic,

• Customize and augment the behavior of logging messages if needed, e.g., provide macros that are only active
when the code is compiled with debug symbols etc.

The primary function used to log messages is slic::logMessage(), which in its most basic form takes the following
arguments:

1. The Log Message Level associated with the message

2. A string corresponding to the user-supplied message

3. The name of the file where the message was emitted

7.12. Slic User Guide 257

Axom Documentation

4. The corresponding line number within the file where the message was emitted

There are additional variants of the slic::logMessage() function that allow an application to specify a TAG for
different types of messages, etc. Consult the Slic Doxygen API Documentation for more details.

For example, an application, MYAPP, may want to define macros to log DEBUG, INFO, WARNING and ERROR messages as
illustrated below

1 #define MYAPP_LOGMSG(LEVEL, msg) \
2 { \
3 std::ostringstream oss; \
4 oss << msg; \
5 slic::logMessage(LEVEL, oss.str(), __FILE__, __LINE__); \
6 }
7

8 #define MYAPP_ERROR(msg) MYAPP_LOGMSG(slic::message::Error, msg)
9 #define MYAPP_WARNING(msg) MYAPP_LOGMSG(slic::message::Warning, msg)

10 #define MYAPP_INFO(msg) MYAPP_LOGMSG(slic::message::Info, msg)
11 #define MYAPP_DEBUG(msg) MYAPP_LOGMSG(slic::message::Debug, msg)

These macros can then be used in the application code as follows:

MYAPP_INFO("this is an info message")
MYAPP_ERROR("this is an error message");
...

Note: Another advantage of encapsulating the Slic API calls in macros is that this approach alleviates the burden from
application developers to have to pass the __FILE__ and __LINE__ to the logMessage() function each time.

Macros that use slic::logMessage() with a Log Message Level of WARNING or ERROR are collective operations
when used with MPI-aware Log Stream instances. Consult Collective Slic Macros for a list of collective Axom macros.

The Slic Macros Used in Axom provide a good resource for the type of macros that an application may want to adopt
and extend. Although these macros are tailored for use within the Axom Toolkit, these are also callable by application
code.

Appendix

Slic Application Code Example

Below is the complete Slic Application Code Example presented in the Getting Started with Slic section. The code can
be found in the Axom source code under src/axom/slic/examples/basic/logging.cpp.

1 // SPHINX_SLIC_INCLUDES_BEGIN
2 // Slic includes
3 #include "axom/slic.hpp"
4 // SPHINX_SLIC_INCLUDES_END
5

6 using namespace axom;
7

(continues on next page)

258 Chapter 7. Axom Copyright and License Information

../../../../../doxygen/html/slictop.html
../../../../../index.html

Axom Documentation

(continued from previous page)

8 //---
→˓-

9 int main(int AXOM_UNUSED_PARAM(argc), char** AXOM_UNUSED_PARAM(argv))
10 {
11 // SPHINX_SLIC_INIT_BEGIN
12

13 slic::initialize();
14

15 // SPHINX_SLIC_INIT_END
16

17 slic::disableAbortOnError();
18

19 // SPHINX_SLIC_FORMAT_MSG_BEGIN
20

21 std::string format = std::string("<TIMESTAMP>\n") +
22 std::string("[<LEVEL> <TAG>]: <MESSAGE> \n") +
23 std::string("FILE=<FILE>\n") + std::string("LINE=<LINE>\n\n");
24

25 // SPHINX_SLIC_FORMAT_MSG_END
26

27 // SPHINX_SLIC_SET_SEVERITY_BEGIN
28

29 slic::setLoggingMsgLevel(slic::message::Debug);
30

31 // SPHINX_SLIC_SET_SEVERITY_END
32

33 // SPHINX_SLIC_SET_STREAM_BEGIN
34 slic::addStreamToAllMsgLevels(new slic::GenericOutputStream(&std::cout,␣

→˓format));
35

36 // SPHINX_SLIC_SET_STREAM_END
37

38 // SPHINX_SLIC_SET_TAGGED_STREAM_BEGIN
39 slic::addStreamToTag(new slic::GenericOutputStream(&std::cout, format),
40 "myTag");
41

42 // SPHINX_SLIC_SET_TAGGED_STREAM_END
43

44 // SPHINX_SLIC_LOG_MESSAGES_BEGIN
45

46 SLIC_DEBUG("Here is a debug message!");
47 SLIC_INFO("Here is an info mesage!");
48 SLIC_WARNING("Here is a warning!");
49 SLIC_ERROR("Here is an error message!");
50 SLIC_INFO_TAGGED("Here is a message for tagged streams with tag 'myTag'!",
51 "myTag");
52

53 // SPHINX_SLIC_LOG_MESSAGES_END
54

55 // SPHINX_SLIC_FINALIZE_BEGIN
56

57 slic::finalize();

(continues on next page)

7.12. Slic User Guide 259

Axom Documentation

(continued from previous page)

58

59 // SPHINX_SLIC_FINALIZE_END
60

61 return 0;
62 }

axom::utilities::processAbort()

The axom::utilities::processAbort() function gracefully aborts the application by:

1. Calling abort() if it is a serial application.

2. Calls MPI_Abort() if the Axom Toolkit is compiled with MPI and the application has initialized MPI, i.e., it’s
a distributed MPI application.

Slic Macros Used in Axom

Slic provides a set of convenience macros that can be used to streamline logging within an application.

Note: The Slic Macros Used in Axom are not the only interface to log messages with Slic. They are used within the
Axom Toolkit for convenience. Applications or libraries that adopt Slic, typically, use the C++ API directly, e.g., call
slic::logMessage() and wrap the functionality in application specific macros to better suit the requirements of the
application.

Collective Slic Macros

A subset of SLIC macros are collective operations when used with MPI-aware Log Stream instances such as Synchro-
nized Stream or Lumberjack Stream.

Additionally, macros such as SLIC_WARNING and SLIC_CHECK become collective operations when certain flags are
toggled on or functions are called. Other macros such as SLIC_ERROR and SLIC_ASSERT can be made not collective
when certain functions are called.

The table below details which SLIC macros are collective:

260 Chapter 7. Axom Copyright and License Information

../../../../../index.html
../../../../../index.html

Axom Documentation

Macro Collective

SLIC_ASSERT

SLIC_ASSERT_MSG

Collective by default.
Collective after calling
slic::enableAbortOnError().
No longer collective after calling
slic::disableAbortOnError().

SLIC_CHECK

SLIC_CHECK_MSG

Not collective by default.
Collective after slic::debug::checksAreErrors is
set to true,

defaults to false.

SLIC_DEBUG

SLIC_DEBUG_IF

SLIC_DEBUG_ROOT

SLIC_DEBUG_ROOT_IF

Never

SLIC_INFO

SLIC_INFO_IF

SLIC_INFO_ROOT

SLIC_INFO_ROOT_IF

SLIC_INFO_TAGGED

Never

SLIC_ERROR

SLIC_ERROR_IF

SLIC_ERROR_ROOT

SLIC_ERROR_ROOT_IF

Collective by default.
Collective after calling
slic::enableAbortOnError().
No longer collective after calling
slic::disableAbortOnError()

SLIC_WARNING

SLIC_WARNING_IF

SLIC_WARNING_ROOT

SLIC_WARNING_ROOT_IF

Not collective by default.
Collective after calling
slic::enableAbortOnWarning().
No longer collective after calling
slic::disableAbortOnWarning()

Doxygen generated API documentation on Macros can be found here: SLIC Macros

7.12. Slic User Guide 261

../../../../doxygen/html/slic__macros_8hpp.html

Axom Documentation

7.13 Spin User Guide

The Spin component of Axom provides several index data structures to accelerate spatial queries. The Morton code
classes relate each point in a region of interest to a point on a one-dimensional space filling curve, and the Rectan-
gularLattice helps in the computation of bin coordinates. The UniformGrid and ImplicitGrid classes build one-level
indexes of non-intersecting bins, while the BVHTree and SpatialOctree classes build nesting hierarchies of bounding
boxes indexing a region of interest.

7.13.1 API Documentation

Doxygen generated API documentation can be found here: API documentation

RectangularLattice

The RectangularLattice is a helper class that maps all of N-D space into a regular, rectangular grid of cells identified
by integer coordinates. The grid is defined by an origin point and a vector indicating spacing in each dimension.

The figure shows an example RectangularLattice in 2D, with its origin (circled) at (-0.6, -0.2) and spacing (1.2,
0.8). Given a query point, the RectangularLattice will return the coordinates of the cell that contains the point. It
will also return the bounding box of a cell, or the coordinates of a cell’s lower-left corner.

The following example shows the use of the RectangularLattice. First, include the header and (if desired) declare
type aliases. Using const int in2d = 2 makes a 2D lattice.

#include "axom/spin/RectangularLattice.hpp"
// We'll be using a 2D lattice with space coordinates of type double
// and cell coordinates of type int.
using RectLatticeType = axom::spin::RectangularLattice<in2D, double, int>;
// Get the types of coordinates and bounding box from the RectangularLattice
using RLGridCell = RectLatticeType::GridCell;
using RLSpacePt = RectLatticeType::SpacePoint;
using RLSpaceVec = RectLatticeType::SpaceVector;
using RLBBox = RectLatticeType::SpatialBoundingBox;

262 Chapter 7. Axom Copyright and License Information

../../../../doxygen/html/spintop.html

Axom Documentation

Use the RectangularLattice to find grid cells.

// Origin and spacing
double origin[] = {-0.6, -0.2};
double spacing[] = {1.2, 0.8};

// Instantiate a RectangularLattice.
// Other constructors allow the use of Point and Vector objects.
RectLatticeType lat(origin, spacing);

// Query point (2.0, 1.2) should be in grid cell (2, 1)
RLSpacePt pA = RLSpacePt::make_point(2.0, 1.2);
RLGridCell cA = lat.gridCell(pA);
std::cout << "Point " << pA << " is in grid cell " << cA

<< " (should be (2, 1))" << std::endl;

// Query point (2.3, 0.8) should also be in grid cell (2, 1)
RLSpacePt pB = RLSpacePt::make_point(2.3, 0.8);
RLGridCell cB = lat.gridCell(pB);
std::cout << "Point " << pB << " is in grid cell " << cB

<< " (should be (2, 1))" << std::endl;

// What is the lowest corner and bounding box of the shared cell?
RLSpacePt cellcorner = lat.spacePoint(cB);
RLBBox cellbbox = lat.cellBounds(cB);
std::cout << "The lower corner of the grid cell is " << cellcorner

<< " and its bounding box is " << cellbbox << std::endl;

Mortonizer

The Mortonizer (along with its associated class MortonBase) implements the Morton index, an operation that asso-
ciates each point in N-D space with a point on a space-filling curve1. The PointHash class adapts the Mortonizer to
provide a hashing functionality for use with std::unordered_map or similar container classes.

The math of the Morton index works with integers. Thus the Mortonizer and its dependent class PointHash will not
work with floating point coordinates. The following code example shows how the cells of a RectangularLattice,
which have integer coordinates, can be used with a hash table.

The Mortonizerworks by interleaving bits from each coordinate of the input point and finite computer hardware limits
its resolution. If the MortonIndexType is 64-bits, then in 2D it can uniquely index the least significant 32 bits of the
x- and y-coordinates. In 3D, it can uniquely index the least significant 21 bits of the x-, y-, and z-coordinates.

To use the PointHash, include the header and (as desired) declare type aliases.

#include "axom/spin/MortonIndex.hpp"
#include <unordered_map>
// The PointHash will allow us to use integral N-D coordinates as a hash key.
// This example will use RectangularLattice grid cell coordinates as keys to
// a std::unordered_map.
using PointHashType = axom::spin::PointHash<RLGridCell::CoordType>;
// Here's a class defined elsewhere that will do some work on a point.
class DataContainer;
using MapType = std::unordered_map<RLGridCell, DataContainer, PointHashType>;

1 The Morton index is also known, among other things, as the Z-order curve: see its Wikipedia page.

7.13. Spin User Guide 263

https://wikipedia.org/wiki/Z-order_curve

Axom Documentation

The RectangularLattice grid cell associated with a query point can be stored, using a PointHash, in a
std::unordered_map.

// Make a RectangularLattice to bin query points.
double origin[] = {-0.6, -0.2};
double spacing[] = {1.2, 0.8};
RectLatticeType lat(origin, spacing);

// Make the map from grid point to DataContainer
MapType map;

// For several query points, create a DataContainer if necessary and register
// the point.
std::vector<RLSpacePt> pts = generatePoints();
for(RLSpacePt p : pts)
{
RLGridCell g = lat.gridCell(p);
DataContainer dat;
if(map.count(g) > 0)
{
dat = map[g];

}
dat.registerPoint(p);
map[g] = dat;

}

// Report on what was registered.
for(auto iter : map)
{
RLGridCell g = iter.first;
DataContainer dat = iter.second;
std::cout << "Grid cell " << g << " holds " << dat.count << " points."

<< std::endl;
}

UniformGrid

The UniformGrid is inspired by and can be used to implement the Cell list. This data structure tiles a rectilinear
region of interest into non-intersecting subregions (or “bins”) of uniform size. Each bin gets a reference to every object
in the region of interest that intersects that bin. UniformGrid can be used when a code compares each primitive in
a collection to every other spatially-close primitive, such as when checking if a triangle mesh intersects itself. The
following naive implementation is straightforward but runs in 𝑂(𝑛2) time, where 𝑛 is the number of triangles.

void findTriIntersectionsNaively(std::vector<TriangleType>& tris,
std::vector<std::pair<int, int>>& clashes)

{
int tcount = static_cast<int>(tris.size());

for(int i = 0; i < tcount; ++i)
{
TriangleType& t1 = tris[i];
for(int j = i + 1; j < tcount; ++j)

(continues on next page)

264 Chapter 7. Axom Copyright and License Information

https://en.wikipedia.org/wiki/Cell_lists

Axom Documentation

(continued from previous page)

{
TriangleType& t2 = tris[j];
if(intersect(t1, t2))
{
clashes.push_back(std::make_pair(i, j));

}
}

}
}

We want to call intersect() only for triangles that can intersect, ignoring widely-separated triangles. The
UniformGrid enables this optimization. In the following figure, the UniformGrid divides the region of interest into
three by three bins outlined in grey. A triangle 𝑡 (shown in orange) will be compared with neighbor triangles (shown
in black) that fall into the bins occupied by 𝑡. Other triangles (shown in blue) are too far away to intersect and are not
compared with 𝑡.

First, construct the UniformGrid and load it with triangles.

#include "axom/spin/UniformGrid.hpp"
// the UniformGrid will store ints ("thing" indexes) in 3D
using UniformGridType = axom::spin::UniformGrid<int, in3D>;

BoundingBoxType findBbox(std::vector<TriangleType>& tris);
BoundingBoxType findBbox(TriangleType& tri);

UniformGridType* buildUniformGrid(std::vector<TriangleType>& tris)
{

(continues on next page)

7.13. Spin User Guide 265

Axom Documentation

(continued from previous page)

// Prepare to construct the UniformGrid.
BoundingBoxType allbbox = findBbox(tris);
const PointType& minBBPt = allbbox.getMin();
const PointType& maxBBPt = allbbox.getMax();

int tcount = static_cast<int>(tris.size());

// The number of bins along one side of the UniformGrid.
// This is a heuristic.
int res = (int)(1 + std::pow(tcount, 1 / 3.));
int ress[3] = {res, res, res};

// Construct the UniformGrid with minimum point, maximum point,
// and number of bins along each side. Then insert the triangles.
UniformGridType* ugrid =
new UniformGridType(minBBPt.data(), maxBBPt.data(), ress);

for(int i = 0; i < tcount; ++i)
{
TriangleType& t1 = tris[i];
BoundingBoxType bbox = findBbox(t1);
ugrid->insert(bbox, i);

}

return ugrid;
}

Then, for every triangle, look up its possible neighbors

void findNeighborCandidates(TriangleType& t1,
int i,
UniformGridType* ugrid,
std::vector<int>& neighbors)

{
BoundingBoxType bbox = findBbox(t1);

// Get all the bins t1 occupies
const std::vector<int> bToCheck = ugrid->getBinsForBbox(bbox);
size_t checkcount = bToCheck.size();

// Load all the triangles in these bins whose indices are
// greater than i into a vector.
for(size_t curb = 0; curb < checkcount; ++curb)
{
axom::ArrayView<int> ntlist = ugrid->getBinContents(bToCheck[curb]);
for(axom::IndexType j = 0; j < ntlist.size(); ++j)
{
if(ntlist[j] > i)
{
neighbors.push_back(ntlist[j]);

}
}

}
(continues on next page)

266 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

// Sort the neighboring triangles, and throw out duplicates.
// This is not strictly necessary but saves some calls to intersect().
std::sort(neighbors.begin(), neighbors.end());
std::vector<int>::iterator jend =
std::unique(neighbors.begin(), neighbors.end());

neighbors.erase(jend, neighbors.end());
}

and test the triangle against those neighbors.

void findTriIntersectionsAccel(std::vector<TriangleType>& tris,
UniformGridType* ugrid,
std::vector<std::pair<int, int>>& clashes)

{
int tcount = static_cast<int>(tris.size());

// For each triangle t1,
for(int i = 0; i < tcount; ++i)
{
TriangleType& t1 = tris[i];
std::vector<int> neighbors;
findNeighborCandidates(t1, i, ugrid, neighbors);

// Test for intersection between t1 and each of its neighbors.
int ncount = static_cast<int>(neighbors.size());
for(int n = 0; n < ncount; ++n)
{
int j = neighbors[n];
TriangleType& t2 = tris[j];
if(axom::primal::intersect(t1, t2))
{
clashes.push_back(std::make_pair(i, j));

}
}

}
}

The UniformGrid has its best effect when objects are roughly the same size and evenly distributed over the region of
interest, and when bins are close to the characteristic size of objects in the region of interest.

ImplicitGrid

Where the UniformGrid divides a rectangular region of interest into bins, the ImplicitGrid divides each axis of the
region of interest into bins. Each UniformGrid bin holds indexes of items that intersect that bin; each ImplicitGrid
bin is a bitset that indicates the items intersecting that bin.

The following figure shows a 2D ImplicitGrid indexing a collection of polygons. A query point determines the bin
to search for intersecting polygons. The application retrieves that bin’s bitset from each axis and computes bitwise
AND operator. The code takes that result and tests for query point intersection (possibly an expensive operation) with
each of the polygons indicated by bits set “on.”

The ImplicitGrid is designed for quick indexing and searching over a static index space in a relatively coarse

7.13. Spin User Guide 267

Axom Documentation

grid, making it suitable for repeated construction as well as lookup. The following example shows the use of the
ImplicitGrid. It is similar to the figure but tests a point against 2D triangles instead of polygons.

#include "axom/spin/ImplicitGrid.hpp"

// the ImplicitGrid will be in 2D
using IGridT = axom::spin::ImplicitGrid<in2D>;

// useful derived types
using IGridCell = typename IGridT::GridCell;
using ISpacePt = typename IGridT::SpacePoint;
using IBBox = typename IGridT::SpatialBoundingBox;
using IBitsetType = typename IGridT::BitsetType;
using IBitsetIndexType = typename IBitsetType::Index;

// some functions we'll use
bool expensiveTest(ISpacePt& query, Triangle2DType& tri);
void makeTriangles(std::vector<Triangle2DType>& tris);

After including the header and setting up types, set up the index.

// here are the triangles.
std::vector<Triangle2DType> tris;
makeTriangles(tris);

// Set up the ImplicitGrid: ten bins on an axis
IGridCell res(10);
// establish the domain of the ImplicitGrid.
IBBox bbox(ISpacePt::zero(), ISpacePt::ones());
// room for one hundred elements in the index
const int numElts = static_cast<int>(tris.size());
IGridT grid(bbox, &res, numElts);

// load the bounding box of each triangle, along with its index,
// into the ImplicitGrid.

(continues on next page)

268 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

for(int i = 0; i < numElts; ++i)
{
grid.insert(findBbox(tris[i]), i);

}

Inexpensive queries to the index reduce the number of calls to a (possibly) expensive test routine.

// Here is our query point
ISpacePt qpt = ISpacePt::make_point(0.63, 0.42);

// Which triangles might it intersect?
IBitsetType candidates = grid.getCandidates(qpt);
int totalTrue = 0;

// Iterate over the bitset and test the candidates expensively.
IBitsetIndexType index = candidates.find_first();
while(index != IBitsetType::npos)
{
if(expensiveTest(qpt, tris[index]))
{
totalTrue += 1;

}
index = candidates.find_next(index);

}

BVH

The BVH class implements a bounding volume hierarchy. This data structure recursively subdivides a rectilinear region
of interest into a “tree” of subregions.

BVH is well-suited for particle-mesh or ray-mesh intersection tests. It is also well-suited to data sets where the contents
are unevenly distributed, since the bins are subdivided based on their contents.

The following code example shows how a BVH can be used to accelerate a point-mesh intersection algorithm. First, we
generate bounding boxes for all triangles in the mesh, and call BVH::initialize() with the bounding boxes.

#include "axom/spin/BVH.hpp"
// the BVH is in 2D, storing an index to 2D triangles
using BVH2DType = axom::spin::BVH<in2D>;
// supporting classes
using BoundingBox2DType = axom::primal::BoundingBox<double, in2D>;
using Point2DType = axom::primal::Point<double, in2D>;
using Triangle2DType = axom::primal::Triangle<double, in2D>;

BoundingBox2DType findBbox(Triangle2DType& tri);

BVH2DType* buildBVHTree(std::vector<Triangle2DType>& tris)
{
// Create a BVH
BVH2DType* tree = new BVH2DType;

std::vector<BoundingBox2DType> bboxes(tris.size());
(continues on next page)

7.13. Spin User Guide 269

https://en.wikipedia.org/wiki/Bounding_volume_hierarchy

Axom Documentation

(continued from previous page)

// Get bounding boxes of each element
for(size_t i = 0; i < tris.size(); ++i)
{
bboxes[i] = findBbox(tris[i]);

}

// Build bounding volume hierarchy from bounding boxes
tree->initialize(bboxes.data(), bboxes.size());

return tree;
}

After the structure is built, we can use the BVH to generate a list of element IDs that are candidate neighbors to the
query points. Call BVH::findPoints() to get the list of element IDs that the query point intersects. The key idea of
findPoints() is that testing for probe intersection with a child node (bounding box) is cheap. If a node intersection
test fails (misses), the child node, and all of its corresponding elements, can be skipped during the BVH traversal. If the
probe does intersect a child node, the node’s children are also tested for probe intersection. Without the acceleration
data structure, each probe point must be tested against each triangle.

void findCandidateBVHTreeBins(BVH2DType* tree,
Point2DType ppoint,
std::vector<int>& candidates)

{
axom::IndexType offsets;
axom::IndexType counts;
// Get the candidates for a given probe point:
// BVH::findPoints takes an array of points, and allocates and fills an array
// for all the candidate intersections with the points in a packed manner.
axom::Array<axom::IndexType> candidatesArray;
tree->findPoints(axom::ArrayView<axom::IndexType>(&offsets, 1),

axom::ArrayView<axom::IndexType>(&counts, 1),
candidatesArray,
1,
&ppoint);

// Since we are only querying one point, offsets == 0 and
// len(candidatesPtr) == counts
candidates =
std::vector<int>(candidatesArray.data(), candidatesArray.data() + counts);

}

Note that the returned packed candidate intersection array (candidatesPtr above) needs to be deallocated by the
caller.

Finally, test the point against all candidate neighbor triangles.

void findIntersectionsWithCandidates(std::vector<Triangle2DType>& tris,
std::vector<int>& candidates,
Point2DType ppoint,
std::vector<int>& intersections)

{
// Test if ppoint lands in any of its neighbor triangles.

(continues on next page)

270 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

int csize = static_cast<int>(candidates.size());
for(int i = 0; i < csize; ++i)
{
Triangle2DType& t = tris[candidates[i]];
if(t.checkInTriangle(ppoint))
{
intersections.push_back(candidates[i]);

}
}

}

Device Traversal API

The BVH class contains a getTraverser() method, which returns an object that can be used to traverse a BVH with
user-defined actions.

The returned traverser type has one function, traverse_tree(), which takes the following arguments:

• const QueryObject& p: the object to traverse the BVH with. This is passed into each invocation of the
traversal predicate.

• LeafAction&& lf: a function or lambda which is executed on each leaf node of the BVH that is reached during
traversal. It should take in two arguments, the index of the leaf node in the BVH, and a pointer to an array
mapping leaf node indices to the original index of elements.

• Predicate&& predicate: a function which determines whether to traverse down to a given internal node. It
should take in two arguments: the query object, and the tentative node’s bounding box.

This object may be used within a CUDA kernel, so long as the execution space parameter of BVH is set correctly.

This method can be used to avoid the extra memory allocation needed for holding an array of candidate intersections.
For example, if we only wish to count the number of intersections for a given query point, our leaf action could get the
underlying mesh element based on the element index, check whether the query point intersects it and then increment a
per-point counter.

This method also allows uses of the BVH beyond intersection testing. quest::SignedDistance uses the BVH traver-
sal object to search for the closest surface elements to a query point. The leaf action that is used checks each candidate
leaf against a current-minimum candidate; if closer, the current-minimum candidate is set to the new surface element.
The predicate used for traversal also utilizes the current-minimum candidate data to avoid traversing internal nodes that
are farther than the current minimum squared distance.

Example: Broad-phase collision detection

The following example tests each element of a surface mesh for intersection with each other element. It provides an
example of how the device traversal object might be used in a broad-phase collision detection problem. First, we
initialize the BVH with the bounding boxes of all the query objects (mesh elements), and create a traverser object:

// Initialize BVH
spin::BVH<3, ExecSpace, double> bvh;
bvh.setAllocatorID(allocatorId);
bvh.initialize(v_aabbs, v_aabbs.size());

// Create a traverser object from the BVH
const auto bvh_device = bvh.getTraverser();

7.13. Spin User Guide 271

Axom Documentation

Next, we define a traversal predicate. In this case, since we are testing objects in the mesh against each other, our query
objects are bounding boxes. Thus, the traversal predicate tests if the query bounding box intersects with the bounding
boxes of nodes in the BVH:

auto bbIsect = [] AXOM_HOST_DEVICE(const BoxType& queryBbox,
const BoxType& bvhBbox) -> bool {

return queryBbox.intersectsWith(bvhBbox);
};

Since we do not know the total number of candidate intersections yet, we must traverse the BVH twice; for the first
traversal we count the number of candidate intersections for each query object, allowing us to compute offset indices
and total storage requirements for the collision pairs:

// Allocate arrays for offsets and counts
axom::Array<IndexType> offsets(ncells, ncells, allocatorId);
axom::Array<IndexType> counts(ncells, ncells, allocatorId);
const auto v_counts = counts.view();
const auto v_offsets = offsets.view();

// First pass: get number of bounding box collisions for each surface element
axom::for_all<ExecSpace>(
ncells,
AXOM_LAMBDA(IndexType icell) {
IndexType count = 0;

// Define a function that is called on every leaf node reached during
// traversal. The function below simply counts the number of candidate
// collisions with the given query object.
auto countCollisions = [&](std::int32_t currentNode,

const std::int32_t* leafNodes) {
AXOM_UNUSED_VAR(leafNodes);
if(currentNode > icell)
{
count++;

}
};

// Call traverse_tree() to run the counting query.
bvh_device.traverse_tree(v_aabbs[icell], countCollisions, bbIsect);

// Afterwards, we can store the number of collisions for each surface
// element, as well as an overall count of intersections.
v_counts[icell] = count;
total_count_reduce += count;

});

// Generate offsets
RAJA::exclusive_scan<exec_pol>(RAJA::make_span(counts.data(), ncells),

RAJA::make_span(offsets.data(), ncells),
RAJA::operators::plus<IndexType> {});

After computing offset indices and allocating output arrays, we can then perform a second traversal through the BVH.
This time, we will store candidate collision pairs when we reach a leaf node:

272 Chapter 7. Axom Copyright and License Information

Axom Documentation

// Allocate arrays for intersection pairs
firstPair = axom::Array<IndexType>(ncollisions, ncollisions, allocatorId);
secondPair = axom::Array<IndexType>(ncollisions, ncollisions, allocatorId);
const auto v_first_pair = firstPair.view();
const auto v_second_pair = secondPair.view();

// Second pass: fill broad-phase collisions array
axom::for_all<ExecSpace>(
ncells,
AXOM_LAMBDA(IndexType icell) {
IndexType offset = v_offsets[icell];

// Define a leaf node function that stores the intersection candidate.
auto fillCollisions = [&](std::int32_t currentNode,

const std::int32_t* leafs) {
if(currentNode > icell)
{
v_first_pair[offset] = icell;
v_second_pair[offset] = leafs[currentNode];
offset++;

}
};

// Call traverse_tree() a second time to run the counting query.
bvh_device.traverse_tree(v_aabbs[icell], fillCollisions, bbIsect);

});

The result of the two-pass query is a list of candidate collision pairs. A code could then do further operations on these
pairs of elements, such as test them for actual intersection.

SpatialOctree

Axom provides an implementation of the octree spatial index. The SpatialOctree recursively divides a bounding
box into a hierarchy of non-intersecting bounding boxes. Each level of subdivision divides the bounding box of interest
along each of its dimensions, so 2D SpatialOctree objects contain four child bounding boxes at each level, while
3D objects contain eight children at each level.

The Octree class hierarchy is useful for building custom spatial acceleration data structures, such as
quest::InOutOctree.

The figure below shows the construction of several levels of a 2D octree.

In contrast to a BVHTree, which computes a bounding box at each step, the octree structure begins with a user-specified
bounding box.

The octree divides all dimensions in half at each step.

Similar to the BVHTree, the Octree divides a bounding box only if an object intersects that bounding box. In contrast
to the BVHTree, the bounding box bins are non-intersecting, and division does not depend on the data in the bounding
box. An 𝑁 -dimensional octree divides into 2𝑁 bounding boxes at each step.

The following code example shows use of the SpatialOctree. Include headers and define types:

#include "axom/spin/SpatialOctree.hpp"

(continues on next page)

7.13. Spin User Guide 273

Axom Documentation

274 Chapter 7. Axom Copyright and License Information

Axom Documentation

7.13. Spin User Guide 275

Axom Documentation

276 Chapter 7. Axom Copyright and License Information

Axom Documentation

7.13. Spin User Guide 277

Axom Documentation

(continued from previous page)

using LeafNodeType = axom::spin::BlockData;

using OctreeType = axom::spin::SpatialOctree<in3D, LeafNodeType>;
using OctBlockIndex = OctreeType::BlockIndex;
using OctSpacePt = OctreeType::SpacePt;
using OctBBox = OctreeType::GeometricBoundingBox;

Then, instantiate the SpatialOctree and locate or refine blocks that contain query points.

OctBBox bb(OctSpacePt(10), OctSpacePt(20));

// Generate a point within the bounding box
double alpha = 2. / 3.;
OctSpacePt queryPt = OctSpacePt::lerp(bb.getMin(), bb.getMax(), alpha);

// Instantiate the Octree
OctreeType octree(bb);

// Find the block containing the query point
OctBlockIndex leafBlock = octree.findLeafBlock(queryPt);
// and the bounding box of the block.
OctBBox leafBB = octree.blockBoundingBox(leafBlock);

for(int i = 0; i < octree.maxInternalLevel(); ++i)
{
// SpatialOctree allows a code to refine (subdivide) a block
octree.refineLeaf(leafBlock);
// and locate the (new) child block containing the query point.
leafBlock = octree.findLeafBlock(queryPt);

}

Unlike the BVHTree class, the SpatialOctree is intended as a building block for further specialization. Please see
the quest::InOutOctree as an example of this.

Some ancillary classes used in the implementation of SpatialOctree include BlockData, which ties data to a block;
Brood, used to construct and organize sibling blocks; OctreeBase, implementing non-geometric operations such as
refinement and identification of parent or child nodes; and SparseOctreeLevel and DenseOctreeLevel, which
hold the blocks at any one level of the SpatialOctree. Of these, library users will probably be most interested in
providing a custom implementation of BlockData to hold algorithm data associated with a box within an octree. See
the quest::InOutOctree class for an example of this.

7.14 Developer Guide

This guide describes important aspects of software development processes used by the Axom project. It does not
contain information about building the code or coding guidelines. Please see the note below.

This development guide is intended for all team members and contributors. It is especially helpful for individuals who
are less familiar with the project and wish to understand how the team works. We attempt to employ simple practices
that are easy to understand and follow and which improve our software without being overly burdensome. We believe
that when everyone on our team follows similar practices, the likelihood that our software will be high quality (i.e.,
robust, correct, easy to use, etc.) is improved. Everyone who contributes to Axom should be aware of and follow these
guidelines.

278 Chapter 7. Axom Copyright and License Information

Axom Documentation

We also believe that the benefits of uniformity and rigor are best balanced with allowances for individual preferences,
which may work better in certain situations. Therefore, we do not view these processes as fixed for all time. They should
evolve with project needs and be improved when it makes sense. Changes should be agreed to by team members after
assessing their merits using our collective professional judgment. When changes are made, this guide should be updated
accordingly.

Note: This document does not describe how to configure and build the Axom code, or discuss Axom coding guidelines.
For information on those topics please refer to the following documents: Axom Quickstart Guide, Axom Coding Guide.

Contents:

7.14.1 Development Process Summary

This section provides a high-level overview of key Axom software development topics and includes links to more
detailed discussion.

Software Development Cycles

The Axom team uses a sprint-based development process. We collect and track issues (bugs, feature requests, tasks,
etc.) using Github and define a set of development tasks (i.e., issues) to complete for each sprint. While the team
meets to discuss issues and plan which ones will be worked in each sprint, developers of individual Axom components
may plan and schedule work in any way that works for them as long as this is coordinated with other team efforts. Work
performed in each sprint work period is tracked as a single unified sprint encompassing activities for the entire project.

Software Releases and Version Numbers

Typically, Axom releases are done when it makes sense to make new features or other changes available to users. A
release may coincide with the completion of a sprint cycle or it may not.

See Release Process for a description of the Axom release process.

The Axom team follows the semantic versioning scheme for assigning release numbers. Semantic versioning conveys
specific meaning about the code and modifications from version to version by the way version numbers are constructed.

See Semantic Versioning for a description of semantic versioning.

Branch Development

The Axom project has a Github project space and the team follows the Gitflow branching model for software devel-
opment and reviews. Gitflow is a common workflow centered around software releases. It makes clear which branches
correspond to which phases of development and those phases are represented explicitly in the structure of the source
code repository. As in other branching models, developers develop code locally and push their work to a central repos-
itory.

See Gitflow Branching Model for a detailed description of how we use Gitflow.

7.14. Developer Guide 279

../quickstart_guide/index.html
../coding_guide/index.html

Axom Documentation

Code Reviews and Acceptance

Before any code is merged into one of our main Gitflow branches (i.e., develop or main), it must be adequately tested,
documented, and reviewed for acceptance by other team members. The review process is initiated via a pull request on
the Axom Github project.

See Pull Requests and Code Reviews for a description of our review process and how we use pull requests.

Contributors and Project Access

Axom maintains three levels of project access on it GitHub project:

• Core team members. Individuals on the core Axom team are frequent Axom contributors and participate reg-
ularly in project meetings, discussions, and other project activities. They are members of the LLNL GitHub
organization and the axom GitHub team. Their project privileges include the ability to create branches in the
repository, push code changes to the Axom repo, make PRs, and merge them when they are approved and all
checks have passed.

• Regular contributors. Individuals, who are not on the core Axom team, but are members of the LLNL GitHub
organization and are involved in some aspects of Axom development are considered regular contributors. They
are members of the axom-contrib GitHub team. Their project privileges include the ability to create branches
in the repository, push code changes to the Axom repo, and make PRs. However, they may not merge PRs and
must coordinate with the core team to have their work included in the develop branch. This is mainly due to the
way GitHub structures its project access levels.

• Everyone else. Anyone with a GitHub account is welcome to contribute to Axom. Individuals outside of the
two groups described above, and specifically not a member of LLNL GitHub organization, can make PRs in the
Axom project, but must do so from a branch on a fork of the Axom repo. Thus, the process of reviewing and
merging contributions involves additional steps which we describe here.

Forking the repository

The requirement for individuals outside of the LLNL GitHub organization to contribute on a fork of the repo is due
to policies enforced by the LLNL organization on GitHub (in which the Axom project resides) and the Livermore
Computing (LC) organization (in which we run our GitLab CI testing). Fortunately, you may still contribute to Axom
by forking the Axom repo. Forking creates a copy of the Axom repository that you own. You can make changes on
your local copy and push them to your fork on GitHub. When you are ready to have your Axom contribution reviewed
and added to the Axom project, you may create a pull request in the Axom project.

Accepting a pull request from a forked repository

Due to LLNL security policies, some Axom pull requests cannot be run through all Axom CI checks. The Livermore
Computing (LC) Center GitLab systems restrict which GitHub PRs may run automatically through its CI test pipelines.
For example, a PR made from branch on a forked repository will not trigger GitLab CI checks. GitLab CI on LC
platforms will be run only on PRs that are made from branches in the GitHub Axom repository.

Note: The following process for accepting PR contributions from a fork of the Axom repo must be executed by
a member of the Axom team:

To facilitate testing contributions in PRs from forked repositories, we maintain a script to pull a PR branch from a
forked repo into the Axom repo. First, identify the number of the PR, which appears at the top of a PR. Then, run a
script from the top-level Axom directory:

280 Chapter 7. Axom Copyright and License Information

https://github.com/LLNL/axom/fork

Axom Documentation

$./scripts/make_local_branch_from_fork_pr -b <PR #>

If successful, this will create a branch in your local copy of the Axom repo labeled pr-from-fork/<PR #> and you
will be on that local branch in your checkout space. To verify this, you can run the following command after you run
the script:

$ git branch

You will see the new branch in the listing of branches and the branch you are on will be starred.

You can push the new branch to the Axom repo on GitHub:

$ git push git@github.com:LLNL/axom.git <branch-name>

and make a PR for the new branch. It is good practice to reference the original PR in the description of the new PR to
track the original PR discussion and reviews.

All CI checks will be triggered to run on the new PR made in the Axom repo. When everything passes and the PR is
approved, it may be merged. When it is merged, the original PR from the forked repo will be closed and marked as
merged unless it is referenced elsewhere, such as in a GitHub issue. If this is the case, then the original PR (from the
forked repo) must be closed manually.

Testing and Code Health

Comprehensive software testing processes and use of code health tools (e.g., static analysis, memory checkers, code
coverage) are essential ingredients in the Axom development process.

See Tests and Examples for a description of our software testing process, including continuous integration.

Software Development Tools

In addition to the tools listed above, we use a variety of other tools to help manage and automate our software devel-
opment processes. The tool philosophy adopted by the Axom project focuses on three central tenets:

• Employ robust, commonly-used tools and don’t re-invent something that already exists.

• Apply tools in ways that non-experts find easy to use.

• Strive for automation and reproducibility.

The main interaction hub for Axom developers is the Atlassian tool suite on the Livermore Computing Collaboration
Zone (CZ). These tools can be accessed through the MyLC Portal. Developer-level access to Axom project spaces in
these tools requires membership in the LC group ‘axomdev’. If you are not in this group, and need to be, please send
an email request to ‘axom-dev@llnl.gov’.

The main tools we use are listed below. Please navigate the links provided for details about how we use them and
helpful information about getting started with them.

• Confluence. We use the Axom Confluence space for team discussion (e.g., hashing out design ideas), maintain-
ing meeting notes, etc.

• Github. We use the Axom Github project to manage our issues and Git repository which contains the Axom
source code, build configurations, scripts, test suites, documentation, etc.

– See Git/Github: Version Control and Branch Development for more information about how we use Git and
Github.

7.14. Developer Guide 281

https://lc.llnl.gov
mailto:'axom-dev@llnl.gov
https://lc.llnl.gov/confluence/display/ASCT
https://github.com/LLNL/axom

Axom Documentation

• Gitlab. We use Gitlab for continuous integration to ensure code quality on our LC systems.: Axom Gitlab project

– See LC GitLab for more information about how we use Gitlab.

• Azure Pipelines. We use Azure Pipelines for continuous integration to ensure every code change passes a level
of quality before being merged.: Azure Pipelines

– See Azure Pipelines for more information about how we use Azire Pipelines.

7.14.2 Continuous Integration

The Axom project uses two CI tools, Azure Pipelines via Github and GitLab CI on the LLNL LC Collaboration Zone
(CZ).

Azure Pipelines

Every Pull Request created on Github is automatically run through a series of CI jobs to ensure that the Axom source
builds and passes our unit tests. These configurations mimic the LC compilers and systems as closely as possible via
Docker containers that have our third-party libraries pre-built on them.

Axom’s Github project is also configured to require pull requests to pass checks from our LC GitLab CI (as described
below).

LC GitLab

We also maintain a mirror of the Axom project on LLNL’s LC GitLab instance primarily for testing Axom pull requests
against the various LC System Types and compilers.

There are two types of GitLab plans. The first is triggered automatically by pull requests on GitHub, while the second
runs nightly and tests Axom’s develop branch against a new build of our third-party library stack.

Our GitLab CI configuration also allows manual runs. To initiate a new run, navigate to the CI/CD page, click on the
“Run pipeline” button and select the branch to test.

7.14.3 Release Process

The Axom team decides as a group when the code is ready for a release. Typically, a release is done when we want
to make changes available to users; e.g., when some new functionality is sufficiently complete or we want users to try
something out and give us feedback early in the development process. A release may also be done when some other
development goal is reached. This section describes how an Axom releases is done. The process is fairly informal.
However, we want to ensure that the software is in a reasonably robust and stable state when a release is done. We
follow this process to avoid simple oversights and issues that we do not want to pass on to users.

In the Gitflow Branching Model section, we noted that the main branch records the official release history of the
project. Specifically, whenever, the main branch is changed, it is tagged with a new version number. We use a git
‘lightweight tag’ for this purpose. Such a tag is essentially a pointer to a specific commit on the main branch.

We finalize preparations for a release on a release branch so that other work may continue on the develop branch without
interruption.

Note: No significant code development is performed on a release branch. In addition to preparing release notes and
other documentation, the only code changes that should be done are bug fixes identified during release preparations

Here are the steps to follow for an Axom release.

282 Chapter 7. Axom Copyright and License Information

https://lc.llnl.gov/gitlab/axom/axom
https://azure.microsoft.com/en-us/services/devops/pipelines/
https://azure.microsoft.com/en-us/services/devops/pipelines/
https://docs.gitlab.com/ee/ci/
https://lc.llnl.gov/gitlab/axom/axom
https://lc.llnl.gov/gitlab/axom/axom/-/pipelines

Axom Documentation

1: Start Release Candidate Branch

Create a release candidate branch off of the develop branch to initiate a release. The name of a release branch must
contain the associated release version number. Typically, we use a name like v0.5.0-rc (i.e., version 0.5.0 release
candidate). See Semantic Versioning for a description of how version numbers are chosen.

2: Issue a Pull Request

Create a pull request to merge the release candidate branch into main so that release changes can be reviewed. Such
changes include:

1. Update the version information (major, minor, and patch version numbers) at the top of the axom/src/cmake/
AxomVersion.cmake file and in the axom/RELEASE file.

2. Update the release notes in axom/RELEASE-NOTES.md by adding the release version number and release date in
the heading, as well as, the corresponding link to the version on Github.

3. Update the mail map in axom/.mailmap by adding the names and emails of new contributors since the last
release.

4. Update the citations in axom/CITATION.cff by adding the names of new LLNL contributors since the last
release.

5. Test the code by running it through all continuous integration tests and builds. This will ensure that all build
configurations are working properly and all tests pass.

6. Fix any issues discovered during final release testing if code changes are reasonably small and re-run appropriate
tests to ensure issues are resolved. If a major bug is discovered, and it requires significant code modifications to
fix, do not fix it on the release branch. Create a new Github issue for it and note it in the known bugs section of
the release notes.

7. Make sure all documentation (source code, user guides, etc.) is updated and reviewed. This should not be a
substantial undertaking as most of this should have been done during the regular development cycle.

8. Proofread the release notes for completeness and clarity and address any shortcomings. Again, this should not
take much time as release notes should be updated during the regular development cycle. See Release Notes for
information about release notes.

3: Merge Release Candidate

Merge the release candidate branch into the main branch once it is ready and approved. Do not “squash merge:” that
will make the histories of main and release branches disagree, and we want to preserve the history. After merging, the
release candidate branch can be deleted.

4: Draft a Github Release

Draft a new Release on Github

1. Enter the desired tag version, e.g., v0.5.0

2. Select main as the target branch to tag a release.

3. Enter a Release title. We typically use titles of the following form Axom-v0.3.1

4. Copy and paste the information for the release from the axom/RELEASE-NOTES.md into the release description
(omit any sections if empty).

7.14. Developer Guide 283

https://github.com/LLNL/axom/issues/new
https://github.com/LLNL/axom/releases/new

Axom Documentation

5. Publish the release. This will create a tag at the tip of the main branch and add corresponding entry in the
Releases section

Note: Github will add a corresponding tarball and zip archives consisting of the source files for each release. However,
these files do not include any submodules. Consequently, a tarball that includes all of the submodules is generated
manually in a seperate step.

5: Make a Release Tarball

• Checkout the main branch locally and run axom/scripts/make_release_tarball.sh --with-data Run
this script from the top level axom subdirectory. This will generate a two tarballs of the form Axom-v0.3.1.
tar.gz and AxomData-v0.3.1.tar.gz consisting of the axom source and data respectively.

• Upload the tarballs for the corresponding release, by going to the Github Releases section and Edit the release
created earlier.

• Attach the tarball to the release.

• Add a note at the top of the release description that indicates which tarball consists of all the submodules, e.g.,
"Please download the Axom-v0.3.1.tar.gz tarball below, which includes all of the Axom submodules as well"

• Update the release.

6: Merge Main to Develop

Create a pull request to merge main into develop. When approved, merge it.

7.14.4 Release Notes

Axom release notes are maintained in a single file axom/RELEASE-NOTES.md. The release notes for the latest version
are at the top of the file. Notes for previous releases appear after that in descending version number order.

For each version, the release notes must contain the following information:

• Axom version number and date of release

• One or two sentence overview of release, including any major changes.

• Release note items should be broken out into the following sections:

– Added: Descriptions of new features

– Removed: Notable removed functionality

– Deprecated: Deprecated features that will be removed in a future release

– Changed: Enhancements or other changes to existing functionality

– Fixed: Major bug fixes

– Known bugs: Existing issues that are important for users to know about

Note: Release notes for each Axom version should explain what changed in that version of the software – and nothing
else!!

284 Chapter 7. Axom Copyright and License Information

https://github.com/LLNL/axom/releases
https://github.com/LLNL/axom/releases

Axom Documentation

Release notes are an important way to communicate software changes to users (functionality enhancements, new fea-
tures, bug fixes, etc.). Arguably, they are the simplest and easiest way to do so. Each change listed in the release notes
should contain a clear, concise statement of the change. Items should be ordered based on the impact to users (higher
impact - first, lower impact last).

Note: When writing release notes, think about what users need to know and what is of value to them.

Release notes should summarize new developments and provide enough detail for users to get a clear sense of what’s
new. They should be brief – don’t make them overly verbose or detailed. Provide enough description for users to
understand a change, but no more than necessary. In other words, release notes summarize major closed issues in a
human-readable narrative. Direct users to other documentation (user guides, software documentation, example codes)
for details and additional information.

Note: Release notes should be updated as work is completed and reviewed along with other documentation in a pull
request. This is much easier than attempting to compile release notes before a release by looking at commit logs, etc.
Preparing release notes as part of the release process should take no more than one hour.

Lastly, release notes provide an easy-to-find retrospective record of progress for users and other stakeholders. They are
useful for developers and for project reporting and reviews.

7.14.5 Semantic Versioning

The Axom team uses the semantic versioning scheme for assigning release numbers. Semantic versioning is a method-
ology for assigning version numbers to software releases in a way that conveys specific meaning about the code and
modifications from version to version. See Semantic Versioning for a more detailed description.

Version Numbers and Meaning

Semantic versioning is based on a three part version number MM.mm.pp:

• MM is the major version number. It is incremented when an incompatible API change is made. That is, the API
changes in a way that may break code using an earlier release of the software with a smaller major version number.
Following Gitflow (above), the major version number may be changed when the develop branch is merged into
the main branch.

• mm is the minor version number. It changes when functionality is added that is backward-compatible. The API
may grow to support new functionality. However, the software will function the same as any earlier release of
the software with a smaller minor version number when used through the intersection of two APIs. Following
Gitflow (above), the minor version number is always changed when the develop branch is merged into the main
branch, except possibly when the major version is changed.

• pp is the patch version number. It changes when a bug fix is made that is backward compatible. That is, such a
bug fix is an internal implementation change that fixes incorrect behavior. Following Gitflow (above), the patch
version number is always changed when a hotfix branch is merged into main, or when develop is merged into
main and the changes only contain bug fixes.

7.14. Developer Guide 285

http://semver.org

Axom Documentation

What Does a Change in Version Number Mean?

A key consideration in meaning for these three version numbers is that the software has a public API. Changes to the API
or code functionality are communicated by the way the version number is incremented. Some important conventions
followed when using semantic versioning are:

• Once a version of the software is released, the contents of the release must not change. If the software is modified,
it must be released as a new version.

• A major version number of zero (i.e., 0.mm.pp) is considered initial development where anything may change.
The API is not considered stable.

• Version 1.0.0 defines the first stable public API. Version number increments beyond this point depend on how
the public API changes.

• When the software is changed so that any API functionality becomes deprecated, the minor version number must
be incremented.

• A pre-release version may be denoted by appending a hyphen and a series of dot-separated identifiers after the
patch version. For example, 1.0.1-alpha, 1.0.1-alpha.1, 1.0.2-0.2.5.

• Versions are compared using precedence that is calculated by separating major, minor, patch, and pre-release
identifiers in that order. Major, minor, and patch numbers are compared numerically from left to right. For
example, 1.0.0 < 2.0.0 < 2.1.0 < 2.1.1. When major, minor, and patch numbers are equal, a pre-release version
has lower precedence. For example, 1.0.0-alpha < 1.0.0.

By following these conventions, it is fairly easy to communicate intent of version changes to users and it should be
straightforward for users to manage dependencies on Axom.

7.14.6 Gitflow Branching Model

The Axom team uses the ‘Gitflow’ branch development model, which is summarized in this section. See the Atlassian
Gitflow Description for more details.

Gitflow is a branching model centered around software releases. It is a simple workflow that makes clear which branches
correspond to which phases of development and those phases are represented explicitly in the structure of the repository.
As in other branching models, developers develop code locally and push their work to a central repository.

Main and Develop Branches

The main and develop branches are the two main branches used in Gitflow. They always exist and the distinction
between them is central to the Gitflow model. Other branches are temporary and used to perform specific development
tasks.

The main branch records the official release history of the project. Each time the main branch is changed, it is tagged
with a new version number. For a description of our versioning scheme, see Semantic Versioning.

The develop branch is used to integrate and test new features and most bug fixes before they are merged into main.

Important: Development never occurs directly on the main or develop branches.

286 Chapter 7. Axom Copyright and License Information

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

Axom Documentation

Topic Branches

Topic branches are created off of other branches (usually develop) and are used to develop new features and resolve
issues before they propagate to main. Topic branches are temporary, living only as long as they are needed to complete
a development task.

Each new feature, or other well-defined portion of work, is developed on its own topic branch, with changes being
pushed to the central repository regularly for backup. We typically include a label, such as “feature” or “bugfix”, in the
topic branch name to make it clear what type of work is being done on the branch. See Topic Branch Development for
a description of common Git mechanics when doing topic branch development.

When a feature is complete, a pull request is submitted for review by other team members. When all issues arising in
a review have been addressed and reviewers have approved the pull request, the feature branch is merged into develop.
See Pull Requests and Code Reviews for more information about code reviews and pull request approval.

Important: Feature branches never interact directly with the main branch.

Release Branches

Release branches are another important temporary branch type in Gitflow: When the team has decided that enough
features, bug fixes, etc. have been merged into develop (for example, all items identified for a release have been
completed), a release branch is created off of develop to finalize the release. Creating a release branch starts the
next release cycle on develop. At that point, new work can start on feature branches for the next release. Only changes
required to complete the release are added to a release branch. When a release branch is ready, it is merged into main
and main is tagged with a new version number. Finally, main is merged back into develop since it may have changed
since the release was initiated.

The basic mechanics for generating a new release of the main branch for the Axom project are described in Release
Process.

Important: No new features are added to a release branch. Only bug fixes, documentation, and other release-
oriented changes go into a release branch.

Hotfix Branches

The last important temporary branch type in Gitflow is a hotfix branch. Sometimes, there is a need to resolve an issue
in a released version on the main branch. When the fix is complete, it is reviewed using a pull request and then merged
into both main and develop when approved. At this point, main is tagged with a new version number. A dedicated line
of development for a bug fix, using a hotfix branch, allows the team to quickly address issues without disrupting other
parts of the workflow.

Important: Hotfix branches are the only branches created off of main.

7.14. Developer Guide 287

Axom Documentation

Gitflow Illustrated

The figure below shows how branches interact in Gitflow.

Fig. 7.35: This figure shows typical interactions between branches in the Gitflow workflow. Here, main was merged into
develop after tagging version v0.1. A fix was needed and so a hotfix branch was created. When the fix was completed,
it was merged into main and develop. Main was tagged with version v0.2. Also, work was performed on two feature
branches. When one feature branch was done, it was merged into develop. Then, a release branch was created and it
was merged into main when the release was finalized. Finally, main was tagged with version v1.0.

7.14.7 Git/Github: Version Control and Branch Development

This section provides information about getting started with Git and Github and describes some mechanics of topic
branch development on the Axom project. For most project work, we interact with our Git repository via our Github
project.

If you are new to the Git or want to brush up on its features, there are several good sources of information available on
the web:

• Atlassian Git Tutorial has a lot of useful stuff.

• The Git Docs is a complete reference for Git commands and options. It also provides some cheat sheets you can
download.

• Learn Git Branching is nice for visual, hands-on learners.

• The e-book Pro Git, by Scott Chacon is an excellent overview guide to using Git effectively.

288 Chapter 7. Axom Copyright and License Information

https://github.com/LLNL/axom
https://github.com/LLNL/axom
https://www.atlassian.com/git/
https://git-scm.com/docs/
http://learngitbranching.js.org/
https://git-scm.com/book/en/v2

Axom Documentation

SSH Keys

If you have not used Github before, you should start by creating and adding your SSH keys to Github. Github provides
a good tutorial here. Performing these two simple steps will make it easier for you to interact with our Git repository
without having to repeatedly enter login credentials.

Cloning the Repo

All development work on Axom is performed in a local workspace copy of the Git repository. To make a local workspace
copy, you clone the repo into a directory that you will work in. This is done by typing:

$ git clone --recursive git@github.com:LLNL/axom.git

Note: You don’t need to remember the URL for the Axom repo above. It can be found by going to the Axom repo on
our Github project and clicking on the ‘Clone or download’ button on the upper right hand corner above the source.

The ‘–recursive’ argument above is needed to pull in all Git submodules that we use in the project. In particular, you
will need the BLT build system, which is a Git sub-module in Axom, in your local copy of the repo. In case you forget
to pass the ‘–recursive’ argument to the ‘git clone’ command, you can type the following commands after cloning:

$ cd axom
$ git submodule init
$ git submodule update

Either way, the end result is the same and you are good to go.

Git Environment Support

After cloning, we recommend that you run the development setup script we provide in the top-level Axom directory to
ensure that your Git environment is configured properly; i.e.,:

$ cd axom
$./scripts/setup-for-development.sh

This script sets up several things we find useful, such as Git editor, aliases, client-side hooks, useful tips, etc.

You can also define your own aliases for common git commands to simplify your workflow. For example, the following
sets up an alias for unstaging files:

$ git config alias.unstage 'reset HEAD--'

Then, the alias can be used as a regular Git command as illustrated below:

$ git unstage <file>

Moreover, you may want to tap in to some of your shell’s features to enhance your Git experience. Chief among the
most notable and widely used features are:

1. Git Completion, which allows tab-completion of Git commands and branch names.

2. Prompt Customization, which allows modifying your prompt to indicate the current branch name, whether there
are local changes, etc.

7.14. Developer Guide 289

https://help.github.com/en/enterprise/2.18/user/github/authenticating-to-github/adding-a-new-ssh-key-to-your-github-account

Axom Documentation

Git ships with contributed plugins for popular shells. Examples illustrating how to use these plugins in bash and tcsh/csh
are given below.

Setting up your Bash Environment

If you are in Bash, you can set your environment as follows:

1. Get the git-prompt.sh and auto-completion scripts from github

$ wget https://raw.githubusercontent.com/git/git/master/contrib/completion/git-
→˓prompt.sh
$ wget https://raw.githubusercontent.com/git/git/master/contrib/completion/git-
→˓completion.bash

2. Optionally, you may want to move the files to another location. Nominaly, folks put those as hidden files in their
home directory

$ mv git-prompt.sh $HOME/.git-prompt.sh
$ mv git-completion.bash $HOME/.git-completion.bash

3. Add the following to your .bashrc

source ~/.git-prompt.sh
source ~/.git-completion.bash
export GIT_PS1_SHOWDIRTYSTATE=1
export GIT_PS1_SHOWSTASHSTATE=1
export GIT_PS1_SHOWUNTRACKEDFILES=1

Set your PS1 variable
reset=$(tput sgr0)
bold=$(tput bold)
export PS1='[\w] \[$bold\]$(__git_ps1 " (%s)")\[$reset\]\n\[$bold\]\u@\h\[$reset\] >
→˓ '

Setting up your tcsh/csh Environment

Likewise, if you are using tcsh/csh, you can do the following:

1. Get the auto-completion scripts from github. Note, git-completion.tcsh makes calls to git-completion.bash, so
you need to have both

$ wget https://raw.githubusercontent.com/git/git/master/contrib/completion/git-
→˓completion.tcsh
$ wget https://raw.githubusercontent.com/git/git/master/contrib/completion/git-
→˓completion.bash

2. Optionally, you may want to move the files to another location. Nominally, folks put those as hidden files in their
home directory

$ mv git-completion.tcsh $HOME/.git-completion.tcsh
$ mv git-completion.bash $HOME/.git-completion.bash

3. Add the following to your .tcshrc or .cshrc

290 Chapter 7. Axom Copyright and License Information

Axom Documentation

source ~/.git-completion.tcsh

Add alias to get the branch
alias __git_current_branch 'git rev-parse --abbrev-ref HEAD >& /dev/null && echo "
→˓{`git rev-parse --abbrev-ref HEAD`}"'

Set your prompt variable for example:
alias precmd 'set prompt="%n@%m[%c2]`__git_current_branch` "'

Topic Branch Development

It is worth re-emphasizing a fundamental principle of the Gitflow development model that we described in Gitflow
Branching Model.

Important: We never work directly on the develop or main branches. All development occurs on topic branches.

When we refer to a topic branch, it could be a feature branch, a bugfix branch, etc. The basic workflow for performing
development on a topic branch is:

1. Create a topic branch off the develop branch and push the new branch to Github.

2. Make changes and commit them to your branch in your local copy of the repository. Remember to push changes
to the Github repo regularly for backup and so you can easily recover earlier versions of your work if you need
to do so.

3. If you are working on your topic branch for a while, it is a good idea to keep your topic branch current with the
develop branch by merging develop into your topic branch regularly. This will simplify the process of merging
your work into the develop branch when you are ready.

4. When your work is complete (including required testing, documentation, etc.), create a pull request so others on
the team can review your work. See Pull Requests and Code Reviews.

Here are some details about each of these steps.

Step 1 – Create a topic branch

Most development occurs on a topic branch created off the develop branch. Occasions where a branch is
created from another branch, such as a ‘hotfix’ branch created off main, are described in Gitflow Branching
Model. To create a branch in Git, provide the -b option to the git checkout command, followed by the
name of your topic branch. A topic branch name should include your username (i.e., login id) and a
brief description indicating the purpose of the branch. Typically, we label such branches using “feature”,
“bugfix”, etc. to make it clear what type of work is being performed on a branch. For example,:

$ git checkout -b feature/<userid>/my-cool-new-feature
$ git push -u

You can also attach a Github issue number to the branch name if the work you will do on the branch is
related to a issue. Then, Github will associate the issue with the commit when you merge your branch to
the develop branch. For example,:

$ git checkout -b bugfix/<userid>/issue-atk-<issue #>
$ git push -u

7.14. Developer Guide 291

Axom Documentation

Alternatively, if your branch addresses multiple issues, you should add the appropriate issue numbers (e.g.,
#374) to the messages in your commits that address them.

In each of these examples, the ‘git push -u’ command pushes the branch to the Github server and it will
appear in the list of branches you and other developers can see there.

Step 2 – Do development work

After you’ve created a topic branch and pushed it to Github, perform your development work on it; i.e.,
edit files, add files, etc. Common commands you will use are:

$ git add <file>
$ git commit
$ git push

The ‘add’ command adds a file (or files) to be staged for a commit operation. The ‘commit’ command
moves your staged changes to your local copy of the repository. The ‘push’ command pushes these changes
to the topic branch in the Git repo. To push your work, you could also do:

$ git push origin

This is equivalent to ‘git push’ if you specified the ‘-u’ option when you originally pushed your topic branch
when you created it.

Important: You may perform several local commits before you push your work to the Github repo.
Generally, it is a good idea to limit the amount of modifications contained in any one commit. By restricting
individual commits to a reasonable size that contain closely related work, it is easier to refer back to specific
changes you make when the need arises (as it inevitably will!). For example, if you regularly run your
code through a formatting tool (we use clang-format on the Axom project), it is preferable to commit
other content changes first and then commit formatting changes in a separate commit. That way, you can
distinguish substance from cosmetic changes easily in the Git history.

Recall the Git environment setup script we recommended that you run after cloning the repo in the Cloning
the Repo section above. One of the Git pre-commit hooks that the script sets up applies formatting con-
straints on the commit message you provide when you execute the ‘commit’ command. The constraints
are recommended Git practices that help make it easier to use various tools with the Git version control
system. Specifically:

• Commit message subject line is at most 50 characters

• Subject line and body of commit message are separated by a blank line

• Main body of commit message is wrapped to 78 characters

292 Chapter 7. Axom Copyright and License Information

Axom Documentation

Step 3 – Keep current with develop

If you will be working on your topic branch for a while, it is a good idea to merge changes (made by other
developers) from the develop branch to your topic branch regularly. This will help avoid getting too far out
of sync with the branch into which your work will be merged eventually. Otherwise, you may have many
conflicts to resolve when you are ready to merge your topic branch into develop and the merge could be
difficult.

Before you begin the merge, make sure all outstanding changes to your topic branch are committed. Then,
make sure your local repo is up-to-date with the develop branch by checking it out and pulling in the latest
changes; i.e.,:

$ git checkout develop
$ git pull

Next, checkout your topic branch and merge changes in from the develop branch, and check for conflicts:

$ git checkout <your topic branch>
$ git merge develop

The ‘merge’ command will tell you whether there are conflicts and which files have them. Hopefully, you
will not see any conflicts and you can continue working on your topic branch. If there are conflicts, you
must resolve them before you will be able to merge your topic branch to develop. So, you may as well
resolve them right away. You can resolve them by editing the conflicting files and committing the changes.
Merge conflicts appear in a file surrounded by lines with special characters on them. For example, if you
open a conflicted file in an editor, you may see:

<<<<<<< HEAD
// lines of code, etc...
=======
// more lines of code, etc...
>>>>>>> develop

The section above the ‘=======’ line are the file contents in the current branch head (your topic branch).
The lines below are the contents of the develop branch that conflict with yours. To resolve the conflict,
choose the correct version of contents you want and delete the other lines.

Alternatively, you can use a tool to help resolve your conflicts. The ‘git mergetool’ command helps you
run a merge tool. One such tool is called “meld”, which is very powerful and intuitive. Diff tools like
“tkdiff” are also helpful for resolving merge conflicts.

Important: Git will not let you commit a file with merge conflicts. After you resolve merge conflicts
in a file, you must stage the file for commit (i.e., git add <filename>), commit it (i.e., `git commit), and
push it to the Github repo (i.e., git push) before you can merge.

7.14. Developer Guide 293

Axom Documentation

Step 4 – Create a pull request

When your work is complete, and you are ready to merge your topic branch to the develop branch, you
must initiate a pull request in Github. Go into the Axom Github project, select your branch, and click
Create pull request in the left column. Make sure you select the correct destination branch. The default
destination branch in our project is set up to be the develop branch. So, in most cases, you won’t have to
do anything special.

You must also select appropriate team members to review changes. Our Github project is set up to require
at least one other developer to approve the pull request before a merge.

Important: You cannot approve your own pull request.

When your pull request is approved (see Code Review Checklist for more information), you merge your
topic branch to the develop branch by clicking the “merge” button in Github. If there are no merge conflicts,
the merge will proceed and you are done. If there are conflicts, Github will indicate this and will not let
you merge until all conflicts are resolved.

The preferred way to resolve conflicts at this point is to go into your topic branch and do the following:

$ git fetch origin
$ git merge origin

The ‘fetch’ command pulls changes from the remote branch into your local branch. Running the ‘merge’
command will show which files have conflicts. Fix the conflicts as described in Step 3 – Keep current with
develop. After all conflicts are resolved, run the ‘commit’ and ‘push’ commands as usual:

$ git commit
$ git push

Lastly, complete the merge in Github by clicking the merge button.

Important: To keep things tidy, please delete your topic branch in Github after it is merged if you
no longer need it for further development. Github provides an option to automatically delete the
source branch of a merge after the merge is complete. Alternatively, you can click on the Github
branches tab and manually delete the branch.

Checking Out an Existing Branch

When working on multiple branches, or working on one with someone else on the team, you will need to checkout a
specific branch. Any existing branch can be checked out from the Git repository. Here are some useful commands:

$ git fetch
$ git branch -a
$ git checkout <branch name>

The ‘fetch’ command retrieves new work committed by others on branches you may have checked out, but without
merging those changes into your local copies of those branches. You will need to merge branches if you want changes
from one branch to be moved into another. The ‘branch’ command lists all available remote branches. The ‘checkout’
command checks out the specified branch into your local working space.

294 Chapter 7. Axom Copyright and License Information

Axom Documentation

Note: You do not give the ‘-b’ option when checking out an existing branch. This option is only used when
creating a new branch.

Here is a concrete example:

$ git branch -a | grep homer
remotes/origin/feature/homer/pick-up-bart

$ git checkout feature/homer/pick-up-bart
Branch feature/homer/pick-up-bart set up to track remote branch feature/homer/pick-up-

→˓bart
Switched to a new branch 'feature/homer/pick-up-bart'

7.14.8 Pull Requests and Code Reviews

Before any code is merged into the develop or main branches, it must be tested, documented, reviewed, and accepted.
Creating a pull request on the Axom Github project to merge a branch into develop or main initiates the test and review
processes. All required build configurations and tests must pass for a pull request to be approved. Also, new tests
(unit, integration, etc.) must be created to exercise any new functionality that is introduced. This will be assessed by
reviewers of each pull request. See Step 4 – Create a pull request for details about creating pull requests.

Code changes in a pull request must be accepted by at least one member of the Axom development team other than
the originator of the pull request. It is recommended that several team members review pull requests, especially when
changes affect APIs, dependencies (within Axom and external), etc. Pull request reviewers can be selected on Github
when the pull request is created. Changes reviewed by the team are accepted, rejected, or commented on for improve-
ment; e.g., issues to be addressed, suggested changes, etc. Pull requests can be updated with additional changes and
commits as needed. When a pull request is approved, it can be merged. If the merged branch is no longer needed for
development, it should be deleted.

In addition to successful compilation and test passing, changes to the develop and main branches should be scrutinized
in other ways and using other code health tools we use. See Git/Github: Version Control and Branch Development for
more information about using our continuous integration tools.

Pull Request Summary

To recap, here is a summary of steps in a pull request:

1. When code is ready to be considered for acceptance, create a pull request on the Axom Github project. Identify
the appropriate reviewers and add them to the pull request.

2. Code must build successfully and all relevant tests must pass, including new tests required for new functionality.

3. All issues (build failures, test failures, reviewer requests) must be addressed before a pull request is accepted.

4. Pull requests must be approved by at least one member of development team other than the pull request originator.

5. When a pull request is approved it may be merged. If the merged branch is no longer needed, it should be deleted.
This can be done when merging with Github.

7.14. Developer Guide 295

Axom Documentation

Code Review Checklist

Beyond build and test correctness, we also want to ensure that code follows common conventions before acceptance.
The following list is a high-level summary of the types of concerns we want to identify during pull request reviews and
resolve before a pull request is merged. Please see the Axom Coding Guide for details on items in this list.

1. A new file or directory must be placed in its proper location; e.g., in the same directory with existing files
supporting related functionality.

2. File contents must be organized clearly and structure must be consistent with conventions.

3. Namespace and other scoping conventions must be followed.

4. Names (files, types, methods, variables, etc.) must be clear, easily understood by others, and consistent with usage
in other parts of the code. Terminology must be constrained; i.e., don’t introduce a new term for something that
already exists and don’t use the same term for different concepts.

5. Documentation must be clear and follow conventions. Minimal, but adequate, documentation is preferred.

6. Implementations must be correct, robust, portable, and understandable to other developers.

7. Adequate tests (unit and performance) tests must be added for new functionality.

7.14.9 Component Structure

This section describes the structure of directories, files, and their contents for an Axom component. This section should
be used as a guide to identify tasks to be done when adding a new software component to Axom. These include:

• Creating the appropriate directory structure

• Modifying and adding CMake files and variables

• Generating C and Fortran interfaces

• Writing documentation

• Writing tests

Note: The discussion here does not contain coding guidelines. Please see Axom Coding Guide for that information.

Component Directory Structure

In the axom/src/axom directory, you will find a subdirectory for each Axom component. For example:

$ cd axom/src/axom
$ ls -1
CMakeLists.txt
core
inlet
lumberjack
...

All files for each component are contained in subdirectories in the component directory.

To illustrate, consider the sidre component directory:

296 Chapter 7. Axom Copyright and License Information

../coding_guide/index.html
../coding_guide/index.html

Axom Documentation

$ cd axom/src/axom/sidre
$ ls -1 -F
CMakeLists.txt
core/
docs/
examples/
tests/

Note that, besides directories, the top-level component directory contains a few files:

• CMakeLists.txt contains CMake information for the component in the Axom build system.

Components are free to organize their header and source files in whatever manner makes sense. For example, in sidre,
these core header and source files are in a subdirectory called core. As is common practice for C++ libraries, associated
header and source files are co-located in the same directories.

The docs directory contains the component documentation. Subdirectories in the docs directory are named for each type
of documentation. The directories doxygen and sphinx are required. Each Axom component uses Doxygen for source
code documentation and Sphinx for user documentation. Other documentation directories can be used as needed. For
example, sidre also contains documentation directories dot for dot-generated figures, and design for design documents.

The interface directory contains interface files for use by languages other than C++. To make it easy for applications
written in C and Fortran, for example, to use Axom directly in their native languages, Axom components provide APIs
in these languages. For information about how we generate these APIs, see C and Fortran Interfaces.

A test directory is required for each component which contains a comprehensive set of unit tests. See Tests and
Examples for information about writing tests and inserting them into our testing framework.

An examples directory is optional, but recommended. It contains simple code examples illustrating component usage.

Important: For consistency, these subdirectory names within the top-level component directory should be the same
for each Axom component.

CMake Files and Variables

To properly configure and compile code for a component, and generate consistent make targets, existing CMake files
and variables need to be modified in addition to adding CMake files for the new component. In this section, we describe
the sort of changes and additions that are required. For additional details about our CMake and BLT usage, please look
in files in existing Axom components.

Add CMake macro definitions

The top-level CMake directory axom/src/cmake contains a file called AxomConfig.cmake that defines macro constants
for enabling Axom components and setting third-party library (TPL) dependencies that are used to enforce consistency
for conditionally-compiled code. When a new component or dependency is added, that file must be modified by:

1. Adding the name of the component to the COMPS variable

2. Adding new TPL dependency to the TPL_DEPS variable

The CMake variables are used to generate macro constants in the Axom configuration header file. For each new CMake
variable added, an associated #cmakedefine definition must be added to the config.hpp.in file in the axom/src/
include directory.

7.14. Developer Guide 297

Axom Documentation

Modify top-level CMakeLists.txt file

When adding a new Axom component, the file axom/src/components/CMakeLists.txt must be modified to hook
the component into the CMake build configuration system. Specifically:

1. Add option to enable component. For example,:

axom_add_component(COMPONENT_NAME sidre DEFAULT_STATE ${AXOM_ENABLE_ALL_COMPONENTS})

2. Add component dependency target by adding component name to the axom_components variable.

Add component CMakeLists.txt files

There are several CMakeLists.txt files that must be added in various component directories. We try to maintain
consistent organization and usage across all Axom components to avoid confusion. To illustrate, we describe the key
contents of the CMakeLists.txt files in the sidre Axom component. See those files or those in other components for
more details.

Top-level component directory

The top-level component directory contains a CMakeLists.txt, e.g., axom/src/components/sidre/
CMakeLists.txt, which contains the following items:

1. A CMake macro call that checks for any of the required components and/or third-party dependencies and errors
out with a helpful message, e.g.,:

axom_component_requires(NAME Sidre
COMPONENTS SLIC
TPLS Conduit)

Note: These dependencies should be limited to the requirements of this singular component. Do not list inherited
dependencies unless they are used directly in this component. Instead ensure that the upstream component has
the correct requirements listed.

Note: Optional dependencies should not be listed here. Instead toggle their behaviors via CMake logic by
adding defines, source files, and dependencies.

2. Subdirectories additions with guards as needed; e.g.,:

add_subdirectory(src)

and:

if (AXOM_ENABLE_TESTS)
add_subdirectory(tests)

endif()

3. CMake exports of component targets; e.g.,:

install(EXPORT <component name>-targets DESTINATION lib/cmake)

298 Chapter 7. Axom Copyright and License Information

Axom Documentation

4. Code formatting and static analysis targets; e.g.,:

axom_add_code_checks(BASE_NAME <component name>)

Note: Each Axom component should use the common clang-format configuration file defined for the project at src/
.clang-format. The file is used to define source code formatting options that are applied when the clang-format tool
is run on the code.

Component src directory

The CMakeLists.txt file in the component src directory defines:

1. A variable for component header files named <component name>_headers

2. A variable for component source files named <component name>_sources

3. A variable for component dependencies named <component name>_depends

For example, these variables for the sidre component are sidre_headers, sidre_sources, and sidre_depends.

Note: It is important to account for all conditional inclusion of items in these CMake variable names. For example, a
C interface is generated to support a Fortran API, typically. So if Fortran is not enabled, it is usually not necessary to
include the C header files in sidre_headers. Similarly, do not include items in the dependency variable if they are not
found.

This file also adds source subdirectories as needed (using the CMake add_subdirectory command), adds the com-
ponent as a Axom library, and adds target definitions for dependencies. For example, the command to add sidre as a
library is:

axom_add_library(NAME
sidre

SOURCES
${sidre_sources}
${sidre_fortran_sources}

HEADERS
${sidre_headers}

DEPENDS_ON
${sidre_depends}

)

All components should follow this format to describe the library information.

7.14. Developer Guide 299

Axom Documentation

Component docs directory

A component docs directory contains a sphinx that has the hand-written user documentation that is built and hosted on
the Axom’s ReadTheDocs page. These are included by listing them in the Table of Contents and in the Documentation
section of src/index.rst.

Component tests and examples

The content of component tests and examples directories, including as CMake files are discussed in Tests and
Examples.

Filename and CMake Target Conventions for Axom Documentation

The conventions in this section are intended to make it easy to generate a specific piece of documentation for a an
Axom component manually. In Axom, we use ‘make’ targets to build documentation. Typing make help will list all
available targets. When the following conventions are followed, all documentation targets for a component will be
grouped together in this listing. Also, it should be clear from each target name what the target is for.

CMake targets for component user guides and source code docs (i.e., Doxygen) are:

<component name>_user_docs

and

<component name>_doxygen_docs

respectively. For example:

sidre_user_docs (sidre component user guide)
sidre_doxygen_docs (sidre Doxygen source code docs)

C and Fortran Interfaces

Typically, we use the Shroud tool to generate C and Fortran APIs from our C++ interface code. Shroud is a python
script that generate code from a yaml file that describes C++ types and their interfaces. It was developed for the Axom
project and has since been generalized and is supported as a standalone project. To illustrate what is needed to generate
multi-language API code via a make target in the Axom build system, we describe the contents of the sidre Axom
component interface directory axom/src/components/sidre/src/interface that must be added:

1. A yaml file, named sidre_shroud.yaml, which contains an annotated description of C++ types and their in-
terfaces in sidre C++ files. This file and its contents are generated manually.

2. Header files, such as sidre.h, that can be included in C files. Such a file includes files containing Shroud-
generated ‘extern C’ prototypes.

3. Directories to hold the generated files for different languages; e.g., c_fortran for C and Fortran APIs, python
for python API, etc.

4. ‘Splicer’ files containing code snippets that get inserted in the generated files.

5. A CMakeLists.txt files that contains information for generating CMake targets for Shroud to generate the
desired interface code. For example:

300 Chapter 7. Axom Copyright and License Information

https://axom.readthedocs.io/en/develop/index.html
https://github.com/LLNL/shroud

Axom Documentation

add_shroud(YAML_INPUT_FILE sidre_shroud.yaml
YAML_OUTPUT_DIR yaml
C_FORTRAN_OUTPUT_DIR c_fortran
PYTHON_OUTPUT_DIR python
DEPENDS_SOURCE

c_fortran/csidresplicer.c c_fortran/fsidresplicer.f
python/pysidresplicer.c

DEPENDS_BINARY genfsidresplicer.f
)

This tells shroud which yaml file to generate code files from, which directories to put generated files in, which
splicer files to use, etc.

The end result of properly setting up these pieces is a make target called generate_sidre_shroud that can be invoked
to generate sidre API code in other languages Axom supports.

Documentation

Complete documentation for an Axom component consists of several parts described in the following sections. All user
documentation is accessible on Axom Read The Docs page.

User Documentation

Each Axom component uses Sphinx for user documentation. This documentation is generated by invoking appropriate
make targets in our build system. For example, make sidre_docs builds html files from Sphinx user documentation
for the sidre component.

The main goal of good user documentation is to introduce the software to users so that they can quickly understand
what it does and how to use it. A user guide for an Axom component should enable a new user to get a reasonable
sense of the capabilities the component provides and what the API looks like in under 30 minutes. Beyond introductory
material, the user guide should also help users understand all major features and ways the software may be used. Here
is a list of tips to help you write good documentation:

1. Try to limit documentation length and complexity. Using figures, diagrams, tables, bulleted lists, etc. can help
impart useful information more quickly than text alone.

2. Use examples. Good examples can help users grasp concepts quickly and learn to tackle problems easily.

3. Place yourself in the shoes of targeted users. Detailed instructions may be best for some users, but may be
onerous for others who can quickly figure things out on their own. Consider providing step-by-step instructions
for completeness in an appendix, separate chapter, via hyperlink, etc. to avoid clutter in sections where you are
trying to get the main ideas across.

4. Try to anticipate user difficulties. When possible, describe workarounds, caveats, and places where software is
immature to help users set expectations and assumptions about the quality and state of your software.

5. Test your documentation. Follow your own instructions completely. If something is unclear or missing, fix your
documentation. Working with a co-worker who is new to your work, or less informed about it, is also a good
way to get feedback and improve your documentation.

6. Make documentation interesting to read. While you are not writing a scintillating novel, you want to engage
users with your documentation enough so that they don’t fall asleep reading it.

7. Quickly incorporate feedback. When a user provides some useful feedback on your documentation, it shows they
care enough to help you improve it to benefit others. Incorporate their suggestions in a timely fashion and ask
them if you’ve addressed their concerns. Hopefully, this will encourage them to continue to help.

7.14. Developer Guide 301

https://axom.readthedocs.io

Axom Documentation

Speaking of good user documentation, the reStructuredText Primer provides enough information to quickly learn
enough to start using the markdown language for generating sphinx documentation.

Code Documentation

Each Axom component uses Doxygen for code documentation. This documentation is generated by invoking appropri-
ate make targets in our build system. For example, make sidre_doxygen builds html files from Doxygen code documen-
tation for the sidre component.

The main goal of code documentation is to provide an easily navigable reference document of your software interfaces
and implementations for users who need to understand details of your code.

We have a useful discussion of our Doxygen usage conventions in the Documentation Section of the Axom Coding
Guide. The Doxygen Manual contains a lot more details.

Axom’s code documentation is published along with our user documentation.

7.14.10 Tests and Examples

This section describes how to build and organize tests and examples for Axom components. These live in tests and
examples directories within each component top-level directory.

Comprehensive collections of well-designed unit tests and integration tests are important tools for developing quality
software. Good tests help to ensure that software operates as expected as it is being developed and as it is used in
different ways. To maintain a high level of usefulness, tests must be maintained and developed along with the rest of
project software. Tests should be expanded and modified as software evolves so that they can always be used to verify
that software functionality is correct.

Unit tests are most effective for designing and modifying individual software units to make sure they continue work
properly. Integration tests help to make sure that various sets of software units work together. Typically, integration
testing is more complex and subtle than the sum of the independent unit tests of the parts that comprise the integrated
system. Proving that component X and component Y each work independently doesn’t prove that X and Y are compat-
ible or that they will work together. Also, defects in individual components may bear no relationship to issues an end
user would see.

When developing software, it is important to keep these thoughts in mind and to use tests effectively to meet your goals.
Exposing issues when designing and refactoring individual software components may be best accomplished with unit
tests, often run manually as you are adding or modifying code. Detecting broken regressions (e.g., “this used to work,
but something changed and now it doesn’t”) may be best done by frequently running automated integration tests.

This section describes how to write and manually run tests in Axom.

A Few Guidelines for Writing Tests

Before we describe the mechanics of writing tests in the Axom framework, we describe some test guidelines. The aim
of these guidelines is to help ensure that tests are complete, correct, easy to run, and easy to modify as needed when
software changes.

• Decompose tests so that each test is independent of the others. For example, a unit test file should test features
of a single class and not contain tests of other classes.

• Each specific behavior should be specified in one and only one test. For example, all unit tests for a container class
may live in a single test file, but you should verify each container operation (e.g., container creation/destruction,
item insertion, item removal, container traversal, etc.) in exactly one test. In particular, if a test covers some
behavior, checking that same behavior in another test is unnecessary.

302 Chapter 7. Axom Copyright and License Information

http://www.sphinx-doc.org/en/stable/rest.html
../coding_guide/sec07_documentation.html
../coding_guide/sec07_documentation.html
http://www.doxygen.nl/manual/
https://axom.readthedocs.io/en/develop/doxygen/html
https://axom.readthedocs.io

Axom Documentation

• Limit each test to as few logical assertions as possible. Ideally, each behavior should require one logical assertion.
However, sometimes it makes sense to have more than one check. For example, a test for an empty container
may assert that its ‘empty’ method returns true and also assert that its ‘size’ method returns zero.

• Tests should be independent on the order in which they are run.

• Tests should be independent of the platform (hardware architecture, compiler, etc.) on which they are run.

• Tests should be named clearly and consistently. See Filename and CMake Target Conventions for Axom Tests
and Examples for a description of Axom conventions for test names.

Unit Tests

In Axom, we use the Google Test framework for C and C++ unit tests and we use the Fortran Unit Test Framework
(FRUIT) for Fortran unit tests.

Organization of tests in either language/framework are similar should follow the principles summarized in the guidelines
above. Each Google Test or FRUIT file is compiled into its own executable that can be run directly or as the build target
test. Each executable may contain multiple tests. So that running individual tests as needed is not overly burdensome,
such as unit tests for a C++ class, we put all tests for distinct software units in files separate from those for other units.
Tests within each file should be sized so that too many different behaviors are not executed or verified in a single test.

See Filename and CMake Target Conventions for Axom Tests and Examples for test file naming and make target con-
ventions.

Google Test (C++/C Tests)

The contents of a typical Google Test file look like this:

#include "gtest/gtest.h"

#include ... // include Axom headers needed to compiler tests in file

// ...

TEST(<test_case_name>, <test_name_1>)
{

// Test 1 code here...
// EXPECT_EQ(...);

}

TEST(<test_case_name>, <test_name_2>)
{

// Test 2 code here...
// EXPECT_TRUE(...);

}

// Etc.

Each unit test is defined by the Google Test TEST() macro which accepts a test case name identifier, such as the name
of the C++ class being tested, and a test name, which indicates the functionality being verified by the test. For each
test, logical assertions are defined using Google Test assertion macros. Failure of expected values will cause the test
to fail, but other tests will continue to run.

Note that the Google Test framework will generate a main() routine for each test file if it is not explicitly provided.
However, sometimes it is necessary to provide a main() routine that contains operation to run before or after the unit

7.14. Developer Guide 303

https://github.com/google/googletest
https://sourceforge.net/projects/fortranxunit/
https://sourceforge.net/projects/fortranxunit/

Axom Documentation

tests in a file; e.g., initialization code or pre-/post-processing operations. A main() routine provided in a test file should
be placed at the end of the file in which it resides.

Here is an example main() from an Axom test that sets up a slic logger object to be used in tests:

int main(int argc, char * argv[])
{
int result = 0;

::testing::InitGoogleTest(&argc, argv);

SimpleLogger logger; // create & initialize test logger,
// finalized when exiting main scope

::testing::FLAGS_gtest_death_test_style = "threadsafe";
result = RUN_ALL_TESTS();

return result;
}

Note that Google Test is initialized first, followed by initialization of the slic SimpleLogger object. The
RUN_ALL_TESTS() Google Test macro will run all the tests in the file.

As another example, consider a set of tests that use MPI. The main() routine will initialize and finalize MPI before
and after tests are run, respectively:

int main(int argc, char * argv[])
{
int result = 0;

::testing::InitGoogleTest(&argc, argv);

SimpleLogger logger; // create & initialize test logger,
// finalized when exiting main scope

MPI_Init(&argc, &argv);

result = RUN_ALL_TESTS();

MPI_Finalize();

return result;
}

Note that Google test is initialized before MPI_Init() is called.

Other Google Test features, such as fixtures, may be used as well.

See the Google Test Primer for discussion of Google Test concepts, how to use them, and a listing of available assertion
macros, etc.

304 Chapter 7. Axom Copyright and License Information

https://github.com/google/googletest/blob/master/googletest/docs/Primer.md

Axom Documentation

FRUIT (Fortran Tests)

Fortran unit tests using the FRUIT framework are similar in structure to the Google Test tests for C and C++ described
above.

The contents of a typical FRUIT test file look like this:

module <test_case_name>
use iso_c_binding
use fruit
use <axom_module_name>
implicit none

contains

subroutine test_name_1
! Test 1 code here...
! call assert_equals(...)
end subroutine test_name_1

subroutine test_name_2
! Test 2 code here...
! call assert_true(...)
end subroutine test_name_2

! Etc.

The tests in a FRUIT test file are placed in a Fortran module named for the test case name, such as the name of the C++
class whose Fortran interface is being tested. Each unit test is in its own Fortran subroutine named for the test name,
which indicates the functionality being verified by the unit test. Within each unit test, logical assertions are defined
using FRUIT methods. Failure of expected values will cause the test to fail, but other tests will continue to run.

Note that each FRUIT test file defines an executable Fortran program. The program is defined at the end of the test file
and is organized as follows:

program fortran_test
use fruit
use <axom_component_unit_name>
implicit none
logical ok

! initialize fruit
call init_fruit

! run tests
call test_name_1
call test_name_2

! compile summary and finalize fruit
call fruit_summary
call fruit_finalize

call is_all_successful(ok)
if (.not. ok) then

(continues on next page)

7.14. Developer Guide 305

Axom Documentation

(continued from previous page)

call exit(1)
endif

end program fortran_test

Please refer to the FRUIT documentation for more information.

CMake Files and Variables for Tests

The CMakeLists.txt file in component test directory defines the following items:

1. Variables for test source files as needed. Separate variables should be used for Fortran, C++, etc. For example,
gtest_sidre_tests for C++ tests, gtest_sidre_C_tests for C tests, and fruit_sidre_tests for Fortran
tests. Note that we use the Google Test framework for C and C++ tests and Fruit for Fortran tests.

2. An executable and test variable for each test executable to be generated. These variables use the
blt_add_executable and axom_add_test macros, respectively, as described above.

Note: Fortran executables and tests should be guarded to prevent generation when Fortran is not enabled.

See Tests and Examples for details about writing tests in Axom.

Examples

Examples for Axom components serve to illustrate more realistic usage of those components. They can also be run as
tests if that’s appropriate.

The source code for each component test should be contained in the component examples directory if it is contained
in one file. If it contains multiple files, these should be placed in a descriptively-named subdirectory of the examples
directory.

In addition, each example should be given its own CMake-generated make target.

CMake Files and Variables for Examples

The CMakeLists.txt file in each component’s examples directory defines the following items:

1. Variables for example source files and header files as needed Separate variables should be used for Fortran, C++,
etc. For example, example_sources for C++, F_example_sources for Fortran.

2. An executable and test variable for each example executable to be generated and each executable to be run as a
test. These definitions use the blt_add_executable and axom_add_test macros, respectively. For example:

blt_add_executable(NAME <example executable name>
SOURCES <example source>
OUTPUT_DIR ${EXAMPLE_OUTPUT_DIRECTORY}
DEPENDS_ON <example dependencies>)

and:

axom_add_test(NAME <example executable name>
COMMAND <example executable name>)

Fortran executables and tests should be guarded to prevent generation if Fortran is not enabled.

306 Chapter 7. Axom Copyright and License Information

https://sourceforge.net/projects/fortranxunit/

Axom Documentation

Filename and CMake Target Conventions for Axom Tests and Examples

The conventions in this section are intended to make it easy to tell what is in a given component test or example file
and to make it easy to run desired test or example. In Axom, we use make targets to build and run tests and examples.
Typing make help will list all available targets. When the following conventions are followed, all test and example
targets for a component will be grouped together in this listing. Also, it will be clear from each target name what the
target is for.

Test file names and make targets

The format of a test file name is:

<component name>_<test name>_<optional language specifier>

Examples:

sidre_buffer.cpp ('Buffer' class C++ unit test)
sidre_buffer_C.cpp ('Buffer' class C unit test)
sidre_buffer_F.f ('Buffer' class Fortran unit test)

When test files are named like this, it is easy to see what they contain. Additionally, when added to the appropriate
CMakeLists.txt file (see src/components/sidre/tests/CmakeLists.txt file for example), the extension
‘_test’ will be added to the make target name so that the test will appear as follows in the make target listing when make
help is typed:

sidre_buffer_test
sidre_buffer_C_test
sidre_buffer_F_test

Note: We should also add a target for each component to run all its tests; e.g., ‘make sidre_tests’

Example file names and make targets

The format of an example file name is:

<component name>_<example name>_<optional language specifier>_ex

Examples:

sidre_shocktube_ex.cpp ('shocktube' C++ example)
sidre_shocktube_F_ex.f ('shocktube' Fortran example)

7.14. Developer Guide 307

Axom Documentation

Running Tests and Examples

Axom examples and tests can be run in different ways. Examples and tests can be run individually by manually running
their executables. Built examples are in the build directory under examples and tests are under tests.

Tests can also be ran as a suite with the build target test from the build directory. For example:

$ make test

This will run all tests and examples and report a summary of passes and failures. Detailed output on individual tests is
suppressed.

If a test fails, you can invoke its executable directly to see the detailed output of which checks passed or failed. This is
especially useful when you are modifying or adding code and need to understand how unit test details are working, for
example.

7.14.11 Third-party Libraries

Axom dependencies are grouped into four categories: Git submodules, built-in Third-party Libraries (TPLs) in the
Axom source tree, system-level TPLs, and other TPL libraries. The following sections describe how to install and
update these dependencies for Axom.

• How does one add a new compiler or platform to the mix?

• How does one build a new set of TPLs for a single platform or compiler for testing?

• What is the procedure for changing versions of one or more TPLs?

• How do we keep things straight when using different TPL versions for different branches?

• How to use the scripts for team TPL support vs. local development and experimentation?

• Others?

Determinism

We strive for as close to deterministic behavior in our builds as possible. By this, we mean that repeated builds should
act the same in the following regards:

• Set of libraries with their options and versions

• Compilers, compiler flags, and versions

• Installed file and directory structure with permissions

Build Scripts and Their Configuration Files

There are three levels of build scripts or programs that drive TPL builds. As you move up the levels, and away from
Spack, the scripts require less configuration and even build multiple sets of TPLs and/or Axom configurations at a time.

Here is a brief description of what the levels are handling and what important configuration and input files they use,
from lowest level to highest.

308 Chapter 7. Axom Copyright and License Information

Axom Documentation

Level 1: Spack

Spack is a multi-platform package manager that builds and installs multiple versions and configurations of software
packages. It has recipes on how to build each package with variants on each package to customize them to your needs.
For example, Axom has variants for Fortran and MPI, among others. These recipes handle how to drive the individual
packages build systems, as well as any packages they depend on. Spack also handles system level packages, so you
can describe where they are on your system instead of building them from scratch. You will need to describe which
compilers are available on your system as well.

• Platform specific configuration files live under scripts/spack/configs/<platform name>. There is one
file (spack.yaml) per platform that handles the following:

– compilers: This section contains the compiler specs that describe the location and any other required
information about that compiler. For example, compiler or linker flags.

– packages: This section describes the system level packages. For example, where they are located and what
version they are. This file is very imporant due to its ability to drastically reduce the amount of packages
that Spack builds.

• Axom specific Spack package files live under scripts/spack/packages. These override the package files
that live in Spack’s repository here var/spack/repos/builtin/packages. We try to minimize these but we
have had to alter the existing packages to apply fixes before pushing them up to Spack proper or alterations to the
recipes that are Axom specific. This overriding does not happen at the Spack level, but at the next level, Uberenv.

• Spack’s Github repo

• Spack’s documentation

Note: Spack does not stop at the first error. It attempts to build as many packages as possible. Due to this, finding
the actual error can sometimes be hard but looking through the log for a large indented section will help. The error
will be in that section and also a message with a path to the full log will be printed by Spack afterwards. Searching for
-build-out.txt in your output should help.

Level 1: Vcpkg

Vcpkg is an open-source C++ Library Manager for Windows, Linux, and MacOS by Microsoft. Axom only uses it for
our Windows TPL builds.

• Project specific package files live under develop/scripts/vcpkg_ports. There are two different files for
each package:

– portfile.cmake: This file is the recipe on how to build the package. Vcpkg has strict rules about how
your project is laid out and you can do the conversion in this file as well.

– vcpkg.json: This is the manifest file that describes information about the package. For example, depen-
dencies, license information, and optional features.

• Vcpkg’s Github repo

• Vcpkg’s documentation

7.14. Developer Guide 309

https://github.com/spack/spack
https://spack.readthedocs.io/en/latest/
https://github.com/microsoft/vcpkg
https://github.com/microsoft/vcpkg#table-of-contents

Axom Documentation

Level 2: Uberenv

Uberenv simplifies the use of two level 1 package managers, Spack and Vcpkg. We rely on Uberenv for two major
points: reducing multiple commands into one and adding as much determinism as possible. The basic workflow in
Uberenv is the following:

1. Setup necessary paths and directories like the base directory where the package manager will be installed.

2. Clone the package manager to the specific Git commit.

3. Apply patches to package manager. For example, disabling extra config scopes in Spack.

4. Adds our repositories package repository to Spack, so our packages take precedence.

5. Clean previous temporary information from previous runs that may bleed into this run.

6. Optionally create a package source mirror.

7. Install packages via the selected package manager.

• .uberenv_config.json: This file describes project specific configurations, such as, where to download the
package manager, what git commit to use, and the top level package to install.

• Uberenv’s Github repo

• Uberenv’s documentation

Note: Uberenv’s warnings and errors are easy to find by searching the output for [ERROR: or [Warning:. Uberenv
will stop at the first error.

Level 3: Build Scripts

There are three “build” scripts that live in scripts/llnl that are designed to handle suites of building TPLs via
uberenv and Spack. They automatically handle the platform differences and know the full list of compilers and package
specs required.

• scripts/spack/specs.json: This contains a list of all specs required per platform or machine name.

• build_tpls.py: This script starts with building all TPLs listed in specs.json. It will copy the generated
host-configs to the base of the Axom repository. After building all of the TPLs, it will test Axom against those
built TPLs. As well, as testing the installed using-with-cmake example for correctness. This script stops at
the first failed TPL build but attempts to build all host-configs against the Axom source with a summary at the
end of which succeeded or failed.

• build_src.py: This scripts takes the existing host-configs, or the specific one you point at, and builds and tests
Axom against them. It also tests the using-with-cmake examples.

• build_devtools.py: This script builds and installs the developer tools listed in the axomdevtools Spack
package. It also uses a different set of Spack configs located in scripts/spack/devtools_config, so that
the regular Spack configs can reuse the seldom and previously built developer tools.

Note: Due to the large amount of information printed to the screen over a full build, the build scripts redirect most
build step output to log files. They will not only tell you what command is being run, i.e., [exe: some/command
--with-options], but it will tell you the log file being written to before it redirects the output from the command,
i.e., [[log file: /path/to/log.

310 Chapter 7. Axom Copyright and License Information

https://github.com/LLNL/uberenv
https://uberenv.readthedocs.io/en/latest/

Axom Documentation

Updating TPLs

Git submodules

Currently, Axom uses three external packages that appear in the repo as Git submodules. These are the following,
including the location of the package in the Axom source tree:

• BLT, which is the CMake-based build system we use. Location: axom/src/cmake/blt.

• Axom Data, which is where we maintain data files used in testing Axom. Location: axom/data.

• Uberenv, which contains Python scripts we use to help automate building third-party dependencies for develop-
ment and deployment. Location: axom/scripts/uberenv.

There is no software installation process for these dependencies in the traditional sense. To update one of these packages
in Axom, simply go into its directory in Axom and check out a new version. If a version is intended to be changed
in the Axom repo, make the version change on a branch and submit a GitHub pull request as you would do for other
software changes. More info on Building and Installing Axom.

Built-in TPLs

Axom several lightweight header-only libraries that we use internally and expose for downstream customers to use if
they wish.

• CLI11, is a command line parser for C++11 and beyond that provides a rich feature set with a simple and intuitive
interface.

• fmt, is an open-source formatting library providing a fast and safe alternative to C stdio and C++ iostreams.

• sol, is a C++ library binding to Lua.

• Sparsehash, contains several hash-map implementations.

Note: Axom patches all built-in TPLs to be under the axom namespace. This is to prevent symbol collisions
with other projects, either our dependencies or downstream customers who wish their own versions. For example,
fmt::format("foo") is axom::fmt::format("foo").

They can be found in the directory: src/thirdparty. The basic instructions on how to update a built-in TPL are as
follows:

1. Download the new release and override the source that is already there. This can often involve removing files
no-longer needed but most of the current ones are a single header file.

2. Review and apply the existing patch files. More than likely, you will not be able to directly apply the patch but
it will give you the general idea on what needs to be applied. For example, the namespace update mentioned
above.

3. Ensure that the build and tests still pass. More info on Tests and Examples.

4. Follow the normal pull request work flow. More info on Pull Requests and Code Reviews.

7.14. Developer Guide 311

https://github.com/LLNL/blt.git
https://github.com/LLNL/axom_data.git
https://github.com/LLNL/uberenv.git
https://github.com/CLIUtils/CLI11
https://github.com/fmtlib/fmt
https://github.com/ThePhD/sol2
https://github.com/sparsehash/sparsehash

Axom Documentation

Local Third-party Library Installation

It is often useful to have a different set of TPLs during the development process. For example, you may want to try out
a new library or version of an existing library.

From the top-level Axom directory, run the following script to build all TPLs for all existing compiler specs on the
platform you are currently on:

$./scripts/llnl_scripts/build_tpls.py -d local/install/path

where local/install/path is a directory location where you want the libraries to be installed.

It will output whether the TPL install succeeded and, subsequently, whether an Axom build against the TPL install
succeeded.

Running the script produces new host-config files (i.e., CMake cache files) that you can use to build and test Axom with
the installation, if issues arise. The generated host-config files will be located in the top-level Axom directory of your
local clone of the repo. If any changes to Axom code are needed to work with the TPL update(s), make the changes
and test them.

Note: You can build a subset of TPLs for a platform, by passing a Spack spec arguments to the build_tpls.py
script. For example,

--spec clang@10.0.0~cpp14+devtools+mfem+c2c

will build the TPLs for the clang 10.0.0 compiler. Please see the scripts/spack/specs.json file for a list of
currently tested specs.

Shared Third-party Library Installation Steps

The following instructions describe how to install local copies of Axom TPLs on Livermore Computing (LC) platforms
and recreate our Docker containers with a new set of TPLs. Typically, this process is followed when you want to update
one or more TPLs which Axom depends on. After they are built and the required changes are merged into develop,
they will be available for other Axom developers to use during development, in Axom Gitlab CI testing, etc.

1. Working on a local branch. Make a local clone of the Axom repo and create a branch to work on.

2. Changing versions of system packages or other TPLs. To change a version of a system package, which applies
to an LC platforms or a Docker container image we use for CI testing on GitHub, go into the directory axom/
scripts/spack/configs. There you will find a sub-directory for each supported LC system type. Each sub-
directory has a spack.yaml file which contains an entry for each system level package we rely on. Find the
entry for the library you wish to update and change the version number. Do this for each system you want to
test/change, including configurations in the docker subdirectory.

Note: Inside of the spack.yaml for each system package directory, there is a compilers section containing
compiler and version information for compilers we use for development and testing. If you wish to test and build
with a new compiler or version on a system, modify the appropriate spack.yaml file.

To change a version of a non-system TPL, go into the axom/scripts/spack/packages directory. There you
will find a sub-directory for each TPL Axom uses. Modify the contents of the Spack package file package.py
in each package sub-directory as needed.

312 Chapter 7. Axom Copyright and License Information

Axom Documentation

Note: Before continuing, you should test that the installation works on all LC systems with the steps in Local
Third-party Library Installation.

3. Install TPLs on all required LC machines. This step needs to be run on each of the machines named in Axom’s
standard host-configs. When you are confident that everything is correct, become the service user atk via the
following command:

$ xsu atk

Note: This command requires special access permissions. If you need them, contact the Axom team.

Run the corresponding command for the system you are on:

blueos
$ lalloc 1 -W 120 scripts/llnl/build_tpl.py

toss_4
$ srun -N1 --interactive -t 120 scripts/llnl/build_tpl.py

This script will build all third-party libraries for all compilers specs for the machine you are on. These will be in-
stalled into the shared LC directory /usr/workspace/axom/libs/<SYS_TYPE>/<time date>/<compiler>
used by Axom developers. When completed, they will produce new host-config files for each configura-
tion. These host-configs will be at the base of the repository and named in the following pattern: <machine
name>-<SYS_TYPE>-<compiler spec>.cmake Give these files to your regular user account and log back in
to that account. Copy these new host-config files to the host-configs subdirectory and commit them to your
branch. Make sure all file changes from all previous steps are also committed and pushed upstream.

Note: If this step fails, delete the time date stamped directory that was created. If you forget to do this, it will
eventually be deleted by hand in bulk when they are past a certain age and no longer needed.

4. Build new Docker images. We utilize Docker images that have pre-built TPLs in our Github CI checks. To build
these, go to our GitHub Actions page. Click on “Actions” and then on “Docker TPL build” in the “Workflows”
menu. Find the “Run Workflow” drop-down menu, select your branch, and click on the “Run workflow” button.
This will launch the build of the docker images.

When the docker image build completes, click on your build and find the “Artifacts” listed at the bottom of the
page. These contain host-configs for building Axom on the docker images. Download them and copy them to
Axom’s host-configs/docker subdirectory. Rename them to match the corresponding host-config.

5. Update Azure Pipelines to the new Docker images. To complete the setup of the new docker images, the
Compiler_ImageName entries in azure-pipelines.yaml at the top-level directory must be updated with the
timestamped names of the new images. The new names can be found in the log files from the successful GitHub
action. On the left of the page for the successful action is a “Jobs” menu. Click on each job and then find the “Get
dockerhub repo name” section of the log. The second line of the section there should be an entry of the form
axom/tpls:clang-10_12-18-20_00h-10m. Copy the name beginning with axom/tpls to the appropriate
locations in azure-pipelines.yaml. Repeat this with the names from each compiler job used in the GitHub
action. Axom’s docker images are hosted on our DockerHub page.

6. Make sure all changes in your branch are committed and pushed, and create a pull request for a merge to develop.
If everything went well, all checks on your Github PR should pass.

7.14. Developer Guide 313

https://github.com/LLNL/axom/actions/workflows/docker_build_tpls.yml
https://hub.docker.com/r/axom/tpls/tags

Axom Documentation

7.14.12 GPU Porting in Axom

Axom uses the following two libraries as the main workhorses for GPU porting:

• RAJA: Handles software abstractions that enable architecture and programming model portability for HPC ap-
plications

• Umpire: Resource management library that allows the discovery, provision, and management of memory on
machines with multiple memory devices like NUMA and GPUs.

From RAJA and Umpire, Axom derives a set of convenience macros and function wrappers in the axom namespace
encapsulating commonly-used RAJA and Umpire functions, and preset execution spaces for host/device execution.

For the user’s guide on using GPU utilities, see also Core Acceleration.

Macros

Axom’s macros can be found in the file axom/core/Macros.hpp.

Most of the GPU-related macros are used to guard device code for compilation.

For guarding device code:

/*!
* \def AXOM_USE_GPU
*
* \brief Convenience macro used for GPU-enabled checks
*
* \note AXOM_USE_CUDA is defined if Axom is built with CUDA.
* AXOM_USE_HIP is defined if Axom is built with HIP.
*/
#if defined(AXOM_USE_CUDA) || defined(AXOM_USE_HIP)
#define AXOM_USE_GPU

#endif

/*!
* \def AXOM_DEVICE_CODE
*
* \brief Convenience macro used for kernel code
*/
#if defined(__CUDA_ARCH__) || defined(__HIP_DEVICE_COMPILE__)
#define AXOM_DEVICE_CODE

#endif

/*!
* \def AXOM_GPUCC
*
* \brief Convenience macro for compiling CUDA/HIP source files
*/
#if defined(__CUDACC__) || defined(__HIPCC__)
#define AXOM_GPUCC

#endif

Note:

• Functions called in CUDA or HIP GPU device code require the __device__ annotation.

314 Chapter 7. Axom Copyright and License Information

https://github.com/LLNL/RAJA
https://github.com/LLNL/Umpire
https://github.com/LLNL/axom/blob/develop/src/axom/core/Macros.hpp

Axom Documentation

• Functions that will be called in device code and CPU host code require the __host__ __device__ annotation.

The following code shows the macros used in Axom to apply these annotations:

/*!
* \def AXOM_DEVICE
* \def AXOM_HOST_DEVICE
*
* \brief CUDA or HIP host/device macros for decorating functions/lambdas
*
* \note These will expand to the corresponding CUDA/HIP decorations when
* compiled with -DAXOM_USE_CUDA or -DAXOM_USE_HIP
*/
#if defined(__CUDACC__) || defined(__HIPCC__)
#define AXOM_DEVICE __device__
#define AXOM_HOST_DEVICE __host__ __device__
#define AXOM_HOST __host__

#else
#define AXOM_DEVICE
#define AXOM_HOST_DEVICE
#define AXOM_HOST

#endif

/*!
* \def AXOM_LAMBDA
*
* \brief Convenience macro used for lambda capture by value.
* \note When CUDA or HIP is used, the macro always expands to a host/device lambda.
*/
#if defined(AXOM_USE_CUDA) || defined(AXOM_USE_HIP)
#define AXOM_LAMBDA [=] AXOM_HOST_DEVICE
#define AXOM_DEVICE_LAMBDA [=] AXOM_DEVICE
#define AXOM_HOST_LAMBDA [=] AXOM_HOST

#else
#define AXOM_LAMBDA [=]
#define AXOM_DEVICE_LAMBDA [=]
#define AXOM_HOST_LAMBDA [=]

#endif

Below is a function that uses Axom macros to apply a __host__ __device__ annotation and guard the use of a
CUDA intrinsic to inside a kernel:

/*!
* \brief Counts the number of leading zeros in \a word
* \accelerated
* \return The number of zeros to the left of the first set bit in \word,
* starting with the least significant bit.
*/
AXOM_HOST_DEVICE inline std::int32_t countl_zero(std::int32_t word) noexcept
{
/* clang-format off */

#if defined(__CUDA_ARCH__) && defined(AXOM_USE_CUDA)
// Use CUDA intrinsic for count leading zeros

(continues on next page)

7.14. Developer Guide 315

Axom Documentation

(continued from previous page)

return __clz(word);
#elif defined(__HIP_DEVICE_COMPILE__) && defined(AXOM_USE_HIP)
// Use HIP intrinsic for count leading zeros
return __clz(word);

#elif defined(_AXOM_CORE_USE_INTRINSICS_MSVC)
unsigned long cnt;
return _BitScanReverse(&cnt, word) ? 31 - cnt : 32;

#elif defined(_AXOM_CORE_USE_INTRINSICS_GCC) || defined(_AXOM_CORE_USE_INTRINSICS_PPC)
return word != std::int32_t(0) ? __builtin_clz(word) : 32;

#else
std::int32_t y {};
std::int32_t n = 32;
y = word >> 16; if(y != 0) { n -= 16; word = y;}
y = word >> 8; if(y != 0) { n -= 8; word = y;}
y = word >> 4; if(y != 0) { n -= 4; word = y;}
y = word >> 2; if(y != 0) { n -= 2; word = y;}
y = word >> 1; if(y != 0) { return std::int32_t(n - 2); }
return std::int32_t(n - word);

#endif
/* clang-format off */

}

Memory

Axom’s memory management routines can be found in the file axom/core/memory_management.hpp.

Memory Management Routines

Umpire has the concept of “allocators” associated with each memory resource type
(umpire::resource::MemoryResourceType).

To allocate memory on a particular resource, you use the ID for the allocator associated with the
umpire::resource::MemoryResourceType.

You are able to set a default allocator, whereby all your memory allocations will go on the resource associated with the
allocator unless otherwise specified:

/// \name Memory Management Routines
/// @{

#ifdef AXOM_USE_UMPIRE

/*!
* \brief Returns the ID of the predefined allocator for a given resource.
* \param [in] resource_type the Umpire resource type
* \return ID the id of the predefined umpire allocator.
*/
inline int getUmpireResourceAllocatorID(
umpire::resource::MemoryResourceType resource_type)

{
umpire::ResourceManager& rm = umpire::ResourceManager::getInstance();

(continues on next page)

316 Chapter 7. Axom Copyright and License Information

https://github.com/LLNL/axom/blob/develop/src/axom/core/memory_management.hpp
https://github.com/LLNL/Umpire/blob/develop/src/umpire/resource/MemoryResourceTypes.hpp#L63

Axom Documentation

(continued from previous page)

umpire::Allocator alloc = rm.getAllocator(resource_type);
return alloc.getId();

}

/*!
* \brief Sets the default memory allocator to use.
* \param [in] resource_type the Umpire resource type
*/
inline void setDefaultAllocator(umpire::resource::MemoryResourceType resource_type)
{
umpire::ResourceManager& rm = umpire::ResourceManager::getInstance();
umpire::Allocator allocator = rm.getAllocator(resource_type);
rm.setDefaultAllocator(allocator);

}

#endif

/*!
* \brief Sets the default memory allocator to use.
* \param [in] allocId the Umpire allocator id
*
* \note This function has no effect when Axom is not compiled with Umpire.
*/
inline void setDefaultAllocator(int allocId)
{
#ifdef AXOM_USE_UMPIRE
umpire::ResourceManager& rm = umpire::ResourceManager::getInstance();
umpire::Allocator allocator = rm.getAllocator(allocId);
rm.setDefaultAllocator(allocator);

#else
AXOM_UNUSED_VAR(allocId);

#endif
}

/*!
* \brief Returns the ID of the current default allocator.
* \return ID the ID of the current default allocator.
* \post ID != INVALID_ALLOCATOR_ID
*/
inline int getDefaultAllocatorID()
{
#ifdef AXOM_USE_UMPIRE
return umpire::ResourceManager::getInstance().getDefaultAllocator().getId();

#else
return 0;

#endif
}

/*!
* \brief Allocates a chunk of memory of type T.
*
* \param [in] n the number of elements to allocate.

(continues on next page)

7.14. Developer Guide 317

Axom Documentation

(continued from previous page)

* \param [in] allocID the Umpire allocator to use (optional)
*
* \tparam T the type of pointer returned.
*
* \note By default allocate() will use the current default allocator. The
* caller may explicitly specify a different allocator to use by supplying the
* second, optional argument, or change the default allocator by calling
* axom::setDefaultAllocator().
*
* \return p pointer to the new allocation or a nullptr if allocation failed.
*/
template <typename T>
inline T* allocate(std::size_t n, int allocID = getDefaultAllocatorID()) noexcept;

/*!
* \brief Frees the chunk of memory pointed to by the supplied pointer, p.
* \param [in/out] p a pointer to memory allocated with allocate/reallocate or a
* nullptr.
* \post p == nullptr
*/
template <typename T>
inline void deallocate(T*& p) noexcept;

/*!
* \brief Reallocates the chunk of memory pointed to by the supplied pointer.
*
* \param [in] p pointer to memory allocated with allocate/reallocate, or a
* nullptr.
* \param [in] n the number of elements to allocate.
* \param [in] allocID the ID of the allocator to use if pointer is null
* (optional)
*
* \tparam T the type pointer p points to.
*
* \return p pointer to the new allocation or a nullptr if allocation failed.
*
* \note When n == 0, this function returns a valid pointer (of size 0) in the
* current allocator's memory space. This follows the semantics of
* Umpire's reallocate function.
* \note When p is a null pointer, allocID is used to allocate the data.
* Otherwise, it is unused.
*/
template <typename T>
inline T* reallocate(T* p,

std::size_t n,
int allocID = getDefaultAllocatorID()) noexcept;

/*!
* \brief Copies memory from the source to the destination.
*
* \param [in/out] dst the destination to copy to.
* \param [in] src the source to copy from.

(continues on next page)

318 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

* \param [in] numbytes the number of bytes to copy.
*
* \note When using Umpire if either src or dst is not registered with the
* ResourceManager then the default host allocation strategy is assumed for
* that pointer.
*/
inline void copy(void* dst, const void* src, std::size_t numbytes) noexcept;

/// @}

Note: When Axom is built without Umpire, the getters and setters shown above become no-ops or are undefined, while
the memory allocation functions default to C++ standard library functions with only allocation on the host (CPU):

• axom::allocate calls std::malloc

• axom::deallocate calls std::free

• axom::reallocate calls std::realloc

• axom::copy calls std::memcpy

MemorySpace

/*!
* \brief Memory spaces supported by Array-like types
*
* This abstraction is not implemented using Umpire's MemoryResourceType enum
* in order to also include a "Dynamic" option as a default template parameter
* for Array-like types
*/
enum class MemorySpace
{
Dynamic,

#ifdef AXOM_USE_UMPIRE
Host,
Device,
Unified,
Pinned,
Constant

#endif
};

Axom provides the axom::MemorySpace enum type to define values indicating the memory space where data in
axom::Array and axom::ArrayView lives.

Dynamic allows you to define the location at runtime, with some caveats (see Core Containers for more details and
examples).

7.14. Developer Guide 319

Axom Documentation

Useful Links

Umpire Tutorial - First two sections cover Allocators and Resources.

Kernels

axom::for_all

axom::for_all can be found in the file axom/core/execution/for_all.hpp.

axom::for_all is a wrapper around RAJA forall, which is used to execute simple for-loop kernels.

This is used in Axom to execute for-loop style kernels that will be run on a GPU device, or on both a GPU device and
a CPU host. For example:

template <typename ExecSpace, typename KernelType>
void axom::for_all(const IndexType& N, KernelType&& kernel)

template <typename ExecSpace, typename KernelType>
void axom::for_all(const IndexType& begin, const IndexType& end, KernelType&& kernel)

Note: When Axom is built without RAJA, axom::for_all becomes a for-loop on host (CPU).

RAJA::kernel

RAJA::kernel is used to execute kernels implemented using nested loops.

This is used infrequently, mainly seen only in a few unit tests.

Your general go-to will be axom::for_all.

Useful Links

RAJA Loops - Covers RAJA::forall, RAJA::kernel, RAJA::launch kernel execution methods.

Execution Spaces & Policies

Axom’s execution spaces can be found in the file axom/core/execution/execution_space.hpp.

Axom’s execution spaces are derived from an axom::execution_space<ExecSpace> traits class containing RAJA
execution policies and default Umpire memory allocators associated with each space.

Axom currently supports four execution spaces, each one a type with the following specialization of the
execution_space class:

• SEQ_EXEC - Sequential execution policies on host

• OMP_EXEC - OpenMP execution policies on host

• CUDA_EXEC - CUDA execution policies in Unified Memory (host + device)

• HIP_EXEC - HIP execution policies in Unified Memory (host + device)

320 Chapter 7. Axom Copyright and License Information

https://umpire.readthedocs.io/en/develop/sphinx/tutorial.html
https://github.com/LLNL/axom/blob/develop/src/axom/core/execution/for_all.hpp
https://raja.readthedocs.io/en/develop/sphinx/user_guide/feature/loop_basic.html#simple-loops-raja-forall
https://github.com/LLNL/axom/search?q=RAJA%3A%3Akernel
https://raja.readthedocs.io/en/develop/sphinx/user_guide/feature/loop_basic.html#elements-of-loop-execution
https://github.com/LLNL/axom/blob/develop/src/axom/core/execution/execution_space.hpp
https://github.com/LLNL/axom/tree/develop/src/axom/core/execution/internal

Axom Documentation

Additionally, HIP_EXEC and CUDA_EXEC types are templated by the number of threads and SYNCHRONOUS or
ASYNC execution:

/*!
* \brief Indicates parallel execution on the GPU with CUDA.
*
* \tparam BLOCK_SIZE the number of CUDA threads in a block.
* \tparam ExecutionMode indicates synchronous or asynchronous execution.
*/
template <int BLOCK_SIZE, ExecutionMode EXEC_MODE = SYNCHRONOUS>
struct CUDA_EXEC
{ };

Each execution space provides:

• Axom policies that are type aliases of RAJA policies to be used with kernels, RAJA types, and RAJA operations

– loop_policy - For RAJA scans and other operations; axom::for_all uses the loop_policy from the
templated execution space.

– reduce_policy - For RAJA reduction types that perform reduction operations:

using reduce_pol = typename axom::execution_space<ExecSpace>::reduce_policy;
RAJA::ReduceSum<reduce_pol, axom::IndexType> totalSum(0);

// Sum integers [0,99]
axom::for_all<ExecSpace>(
100,
AXOM_LAMBDA(axom::IndexType i) { totalSum += i; });

std::cout << "\nTotal Reduction Sum ("
<< axom::execution_space<ExecSpace>::name()
<< ") :" << totalSum.get() << std::endl;

– atomic_policy - For RAJA atomic operations that avoid race conditions when updating data values:

using atomic_pol = typename axom::execution_space<ExecSpace>::atomic_policy;

int *sum =
axom::allocate<int>(1, axom::execution_space<ExecSpace>::allocatorID());

*sum = 0;

// Increment sum 100 times
axom::for_all<ExecSpace>(
100,
AXOM_LAMBDA(axom::IndexType) { RAJA::atomicAdd<atomic_pol>(sum, 1); });

std::cout << "\nTotal Atomic Sum (" << axom::execution_space<ExecSpace>::name()
<< ") :" << sum[0] << std::endl;

– sync_policy - For Axom’s synchronize function, which is a wrapper around RAJA::synchronize().
Synchronizes execution threads when using an asynchronous loop_policy:

/*!
* \brief Synchronizes all execution threads when using an ASYNC policy with
* the specified execution space.

(continues on next page)

7.14. Developer Guide 321

https://raja.readthedocs.io/en/develop/sphinx/user_guide/feature/scan.html#scans
https://raja.readthedocs.io/en/develop/sphinx/user_guide/feature/reduction.html#reduction-operations
https://raja.readthedocs.io/en/develop/sphinx/user_guide/feature/atomic.html#atomics
https://github.com/LLNL/axom/blob/482749b322057ca7ef9a6d786e948692d9f72246/src/axom/core/execution/synchronize.hpp

Axom Documentation

(continued from previous page)

*
* \tparam ExecSpace the execution space
*/
template <typename ExecSpace>
inline void synchronize() noexcept
{
AXOM_STATIC_ASSERT(execution_space<ExecSpace>::valid());

#ifdef AXOM_USE_RAJA
using sync_policy = typename execution_space<ExecSpace>::sync_policy;
RAJA::synchronize<sync_policy>();

#endif
}

• Umpire allocator defaults

– memory_space - The memory space abstraction for use by Core Containers like axom::Array.

– allocatorID() - Gets the allocator ID for the Umpire resource to use in this execution space.

• General information on the execution space

– name() - Name of the execution space

– onDevice() - Is the execution space on device? (True/False)

– valid() - Is the execution space valid? (True)

– async() - Is the execution space asynchronous? (True/False)

The Mint component also provides a set of nested execution policies located at
axom/mint/execution/internal/structured_exec.hpp to be used with RAJA::kernel e.g. for iterating over mint
meshes.

Note: When Axom is built without RAJA, only SEQ_EXEC is available for host (CPU) execution. When Axom is built
with RAJA but without Umpire for memory management on device, only SEQ_EXEC and OMP_EXEC is available for
host (CPU) execution.

General, Rough Porting Tips

• Start with figuring out what memory you need on device, and use axom::Array, axom::ArrayView, and mem-
ory_managment routines to do the allocations:

// Allocate 100 2D Triangles in unified memory
using cuda_exec = axom::CUDA_EXEC<256>;
using TriangleType = axom::primal::Triangle<double, 2>;
axom::Array<Triangle> tris (100, axom::execution_space<cuda_exec>::allocatorID()));
axom::ArrayView<Triangle> tris_view(tris);

// Allocate the sum of Triangle areas
using reduce_pol = typename axom::execution_space<cuda_exec>::reduce_policy;
RAJA::ReduceSum<reduce_pol, double> totalArea(0);

• Using an axom::for_all kernel with a device policy, attempt to access and/or manipulate the memory on
device:

322 Chapter 7. Axom Copyright and License Information

https://github.com/LLNL/axom/blob/develop/src/axom/mint/execution/internal/structured_exec.hpp

Axom Documentation

axom::for_all<cuda_exec>(
100,
AXOM_LAMBDA(int idx) {
// Set values on device
tris_view[idx] = Triangle();
totalArea = 0;

});

• Add the functions you want to call on device to the axom::for_all kernel:

axom::for_all<cuda_exec>(
100,
AXOM_LAMBDA(int idx) {
tris_view[idx] = Triangle();
totalArea = 0;

// Call area() method on device
double area = tris_view[idx].area();

});

• Apply a __host__ __device__ annotation to your functions if you see the following error or similar:

error: reference to __host__ function 'area' in __host__ __device__ function

– Recompiling will likely introduce complaints about more functions (the functions being the non-decorated
functions your newly-decorated functions are calling):

error: reference to __host__ function 'abs<double>' in __host__ __device__␣
→˓function

error: reference to __host__ function 'signedArea<2>' in __host__ __device__␣
→˓function

Keep decorating until all the complaints are gone.

– Most of the C++ standard library is not available on device. Your options are Axom’s equivalent func-
tions/classes if it exists, or to add your own or rewrite the code to not use standard library.

• With no more decorating complaints from the compiler, write the logically correct kernel:

// Computes the total area of a 100 triangles
axom::for_all<cuda_exec>(
100,
AXOM_LAMBDA(int idx) {
totalArea += tris_view[idx].area();

});

– If at this point your kernel is not working/segfaulting, it is hopefully a logical error, and you can debug the
kernel without diving into debugging tools.

– Utilize printf() for debugging output

– Try using the SEQ_EXEC execution space

7.14. Developer Guide 323

Axom Documentation

Useful Links

• List of debugging tools:

– Totalview (CUDA)

– Nvidia Nsight Developer Tools (CUDA)

∗ LLNL Guide for Sierra

∗ ORNL Guides for Nsight Compute and Nsight Systems

– HPCToolkit (CUDA, HIP)

– ROCprof (HIP)

– ROCgdb (HIP)

• ORNL Training Archives

• LLNL HPC Tutorials

7.14.13 Miscellaneous Development Items

This section describes various development tasks that need to be performed at times and which are not covered in other
sections.

Web Documentation

Axom web-based documentation is hosted on our Read the Docs project. Multiple versions are visible there, including
the latest content on the develop branch (latest) and the main branch (main). The documentation that appears is auto-
matically re-generated each time a change is pushed to a branch in the GitHub repository that is enabled to be displayed
on the Read the Docs project. If you are modifying Axom documentation, you can enable the branch you are working
on so that you can see what it looks like as you push changes to the branch. If your documentation changes are part
of a GitHub pull request, it is a good idea to enable the documentation for that branch and put a link to it in the pull
request summary. This makes it easy for reviewers to check over your changes.

Note: When you no longer need the documentation of your branch to be visible on Read the Docs (e.g., your pull
request is merged), please disable that branch on Read the Docs.

Code Health Tools

This section describes how to run code health tools we use.

Code Coverage

Setting up and running code coverage analysis. . .

324 Chapter 7. Axom Copyright and License Information

https://help.totalview.io/
https://developer.nvidia.com/tools-overview
https://lc.llnl.gov/confluence/display/SIERRA/NVIDIA+Nsight+Developer+Tools
https://www.olcf.ornl.gov/wp-content/uploads/2020/02/OLCF-Webinar-Nsight-Compute.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2020/02/Summit-Nsight-Systems-Introduction.pdf
https://github.com/HPCToolkit/hpctoolkit
https://rocmdocs.amd.com/en/latest/ROCm_Tools/ROCm-Tools.html
https://rocmdocs.amd.com/en/latest/ROCm_Tools/ROCgdb.html
https://docs.olcf.ornl.gov/training/training_archive.html
https://hpc.llnl.gov/documentation/tutorials
https://readthedocs.org/projects/axom/

Axom Documentation

Static Analysis

Setting up and running static analysis tools. . . .

Memory Checking

Setting up and running memory checking tools. . . .

7.15 Coding Guidelines

These guidelines define code style conventions for the Axom project. Most of the items were taken from the cited
references, sometimes with modifications and simplifications; see References and Useful Resources.

The guidelines emphasize code readability, correctness, portability, and interoperability. Agreement on coding style
and following common idioms and patterns provides many benefits to a project with multiple developers. A uniform
“look and feel” makes it easier to read and understand source code, which increases team productivity and reduces
confusion and coding errors when developers work with code they did not write. Also, guidelines facilitate code reviews
by enforcing consistency and focusing developers on common concerns. Some of these guidelines are arbitrary, but
all are based on practical experience and widely accepted sound practices. For brevity, most guidelines contain little
detailed explanation or justification.

Each guideline is qualified by one of three auxiliary verbs: “must”, “should”, or “may” (or “must not”, “should not”,
“may not”).

• A “must” item is an absolute requirement.

• A “should” item is a strong recommendation.

• A “may” item is a potentially beneficial stylistic suggestion.

How to apply “should” and “may” items often depends on the particular code situation. It is best to use these in ways
that enhance code readability and help reduce user and developer errors.

Important:

• Variations in coding style for different Axom components is permitted. However, coding style within each Axom
component must be consistent.

• Deviations from these guidelines must be agreed upon by the Axom team.

• When the team agrees to change the guidelines, this guide must be updated.

Contents:

7.15.1 1 Changing Existing Code

Follow existing code style

1.1 When modifying existing code, the style conventions already in use in each file must be followed unless the scope
of changes makes sense (see next item). This is not intended to stifle personal creativity - mixing style is disruptive and
may cause confusion for users and fellow developers.

1.2 When making stylistic changes to existing code, those changes should extend to a point where the style is consistent
across a reasonable scope. This may mean that an entire file is changed to prevent multiple conflicting styles.

7.15. Coding Guidelines 325

Axom Documentation

Only change code from other sources when it makes sense

1.3 The Axom project may contain code pulled in from sources outside Axom. These guidelines apply to code developed
within Axom primarily. The decision to modify externally-developed code that we pull into Axom will be evaluated
on a case-by-case basis. Modifying such code to be compliant with these guidelines should typically be done only if a
significant rewrite is undertaken for other reasons.

7.15.2 2 Names

Good names are essential to sound software design. This section contains guidelines for naming files, types, func-
tions, class members, variables, etc. The main goal is to use clear and unambiguous names. Also, we want naming
conventions for different entities so that, when applied, the role of each is obvious from the form of its name.

Good names are clear and meaningful

2.1 Every name must be meaningful. In particular, its meaning must be clear to other code developers and users, not
just the author of the name.

A substantial benefit of good name selection is that it can greatly reduce the amount of developer debate
to define a concept. A good name also tends to reduce the amount of documentation required for others to
understand it. For example, when the name of a function clearly indicates what it does and the meaning
and purpose of each argument is clear from its name, then code comments may be unnecessary. Documen-
tation can be a substantial part of software and requires maintenance. Minimizing the amount of required
documentation reduces this burden.

Avoid cryptic names

2.2 Tersely abbreviated or cryptic names should be avoided. However, common acronyms and jargon that are well
understood by team members and users may be used.

Use terminology consistently

2.3 Terminology must be used consistently; i.e., for names and concepts in the code and in documentation. Multiple
terms should not be used to refer to the same concept and a concept should not be referred to by multiple terms.

Using a clear, limited set of terminology in a software project helps maintain the consistency and integrity
of the software, and it makes the code easier to understand for developers and users.

2.4 Each name must be consistent with other similar names in the code.

For example, if getter/setter methods follow the convention “getFoo” and “setFoo” respectively, then
adding a new setter method called “putBar” is clearly inconsistent.

326 Chapter 7. Axom Copyright and License Information

Axom Documentation

Name directories so it’s easy to know what’s in them

2.5 Each directory must be named so that the collective purpose of the files it contains is clear. All directory names
should follow the same style conventions.

All directory names should use all lower case letters and consist of a single word in most cases. A directory
name with more than one word should use an ‘underscore’ to separate words.

For example, use:

cool_stuff

not

cool-stuff

Follow file extension conventions

2.6 C++ header and source file extensions must be: *.hpp and *.cpp, respectively.

2.7 C header and source files (e.g., tests, examples, and generated API code) must have extensions *.h and *.c, respec-
tively.

2.8 Fortran source files (e.g., tests and examples, and generated API code) must have the extension *.f or *.F . *.F
must be used if the preprocessor is needed to compile the source file.

Associated source and header file names should match

2.9 The names of associated header and source files should match, apart from the file extension, to make their associ-
ation clear.

For example, the header and source files for a class “Foo” should be named “Foo.hpp” and “Foo.cpp”,
respectively.

Also, files that are closely related in other ways, such as a header file containing prototypes for a set of
methods that are not class members and a source file containing implementations of those methods, should
be named the same or sufficiently similar so that their relationship is clear.

File contents should be clear from file name

2.10 The name of each file must clearly indicate its contents.

For example, the header and source file containing the definition and implementation of a major type,
such as a class must include the type name of the type in the file name. For example, the header and
implementation file for a class called “MyClass” should be named “MyClass.hpp” and “MyClass.cpp”,
respectively.

Files that are not associated with a single type, but which contain closely related functionality or concepts,
must be named so that the functionality or concepts are clear from the name. For example, files that define
and implement methods that handle file I/O should be named “FileIO.hpp” and “FileUtils.cpp”, or similar.

7.15. Coding Guidelines 327

Axom Documentation

File names should not differ only by case

2.11 File names that differ only in letter case must not be used.

Since we must support Windows platforms, which have limited case sensitivity for file names, having files
with names “MyClass.hpp” and “myclass.hpp”, for example, is not acceptable.

Namespace name format

2.12 All namespaces defined must use all lowercase letters for consistency and to avoid user confusion.

Type name format

2.13 Type names (i.e., classes, structs, typedefs, enums, etc.) must be nouns and should be in mixed case with each
word starting with an upper case letter and all other letters in lower cases.

For example, these are preferred type names:

DataStore, MyCollection, TypeUtils

These type names should not be used:

dataStore, mycollection, TYPEUTILS

2.14 Separating characters, such as underscores, should not be used between words in a type name.

For example, these names are not preferred type names:

Data_store, My_Collection

Note: Exceptions to the guidelines above include cases where types play a similar role to those in common use
elsewhere. For example, naming an iterator class “base_iterator” would be acceptable if it is conceptually similar with
the C++ standard library class.

2.15 Suffixes that may be used by compilers for name mangling, or which are used in the C++ standard library, such as
“_t”, must not be used in type names.

Function name format

2.16 Function names must use “camelCase” or “pot_hole” style. camelCase is preferred.

camelCase style: The first word has all lower case letters. If multiple words are used, each word after the
first starts with an upper case letter and all other letters in the word are lower case. Underscores must not
be used in camelCase names, but numbers may be used.

For example, these are proper camelCase names:

getLength(), createView2()

pot_hole style: All letters are lower case. If multiple words are used, they are separated by a single
underscore. Numbers may be used in pothole style names.

For example, these are acceptable pothole style variable names:

328 Chapter 7. Axom Copyright and License Information

Axom Documentation

push_front(), push_back_2()

2.17 Names of related functions, such as methods for a class, should follow the same style.

Note: Exception: While consistency is important, name style may be mixed when it makes sense to do so. While
camelCase style is preferred for class member functions, a class may also contain methods that follow pot_hole style if
those methods perform operations that are similar to C++ standard library functions, for example.

For example, the following method names are acceptable for a class with camelCase style names:

push_back(), push_front()

if those methods are similar in behavior to C++ standard methods.

Function names should indicate behavior

2.18 Each function name must indicate clearly indicate what the function does.

For example:

calculateDensity(), getDensity()

are good function names because they distinguish the fact that the first performs a calculation and the
second returns a value. If a function were named:

density()

what it actually does is murky; i.e., folks would have to read its documentation or look at its implementation
to see what it actually does.

2.19 Function names should begin with a verb because they perform an action.

2.20 Verbs such as “is”, “has”, “can”, etc. should be used for functions with a boolean return type.

For example, the following names are preferred:

isInitialized(), isAllocated()

Related functions should have similar names

2.21 Complementary verbs such as “get/set”, “add/remove” and “create/destroy” must be used for routines that perform
complementary operations.

Such symmetry prevents confusion and makes interfaces easier to use.

7.15. Coding Guidelines 329

Axom Documentation

Data member and variable name format

2.22 All variables (class/struct members, function-scoped variables, function arguments, etc.) must use either “camel-
Case” style or “pot_hole” style. Pot_hole style is preferred since it distinguishes variable names from method names.

For example, these are acceptable variable names:

myAverage, person_name, pressure2

2.23 Non-static class and struct data member names must have the prefix “m_”.

This convention makes it obvious which variables are class members/struct fields and which are other local
variables. For example, the following are acceptable names for class data members using camelCase style:

m_myAverage, m_personName

and acceptable pothole style:

m_my_average, m_person_name

2.24 Static class/struct data member names and static file scope variables must have the prefix “s_”.

Similar to the guideline above, this makes it obvious that the variable is static.

Variable names should indicate type

2.25 Verbs, such as “is”, “has”, “can”, etc., should be used for boolean variables (i.e., either type bool or integer that
indicates true/false).

For example, these names are preferred:

m_is_initialized, has_license

to these names:

m_initialized, license

2.26 A variable that refers to a non-fundamental type should give an indication of its type.

For example,:

Topic* my_topic;

is clearer than:

Topic* my_value;

330 Chapter 7. Axom Copyright and License Information

Axom Documentation

Macro and enumeration name format

2.27 Preprocessor macro constants must be named using all uppercase letters and underscores should be used between
words.

For example, these are acceptable macro names:

MAX_ITERATIONS, READ_MODE

These are not acceptable:

maxiterations, readMode

2.28 The name of each enumeration value should start with a capital letter and use an underscore between words when
multiple words are used.

For example,:

enum Orange
{

Navel,
Valencia,
Num_Orange_Types

};

7.15.3 3 Directory Organization

The goal of the guidelines in this section is to make it easy to locate a file easily and quickly. Make it easy for your
fellow developers to find stuff they need.

Limit scope of directory contents

3.1 The contents of each directory and file must be well-defined and limited so that the directory can be named to
clearly indicate its contents. The goal is to prevent directories and files from becoming bloated with too many divergent
concepts.

Put files where it’s easy to find them

3.2 Header files and associated implementation files should reside in the same directory unless there is a good reason
to do otherwise. This is common practice for C++ libraries.

3.3 Each file must reside in the directory that corresponds to (and named for) the code functionality supported by the
contents of the file.

7.15. Coding Guidelines 331

Axom Documentation

7.15.4 4 Header File Organization

The goal of these guidelines is to make it easy to find essential information in header files easily and quickly. Header
files define software interfaces so consistently-applied conventions for file organization can significantly improve user
understanding and developer productivity.

All header file contents should be related

4.1 A header file may contain multiple type definitions (e.g., structs, classes, enums, etc.). However, type definitions
and function declarations in a header file must be related closely and/or support the primary type for which the file is
named.

4.2 A “typedef” statement, when used, should appear in the header file where the type is defined.

This practice helps ensure that all names associated with a given type are available when the appropriate
header file is used and eliminates potentially inconsistent type names.

Include in a header file only what’s needed to compile it

4.3 A header file must be self-contained and self-sufficient.

Specifically, each header file

• Must have proper header file include guards (see Header file layout details) to prevent multiple
inclusion. The macro symbol name for each guard must be chosen to guarantee uniqueness within
every compilation unit in which it appears.

• Must include all other headers and/or forward declarations it needs to be compiled standalone. In
addition, a file should not rely on symbols defined in other header files it includes; the other files
should be included explicitly.

• Must contain implementations of all generic templates and inline methods defined in it. A compiler
will require the full definitions of these constructs to be seen in every source file that uses them.

Note: Function templates or class template members whose implementations are fully specialized with all template
arguments must be defined in an associated source file to avoid linker errors (e.g., multiply-defined symbols). Fully
specialized templates are not templates and are treated just like regular functions.

4.4 Extraneous header files or forward declarations (i.e., those not required for standalone compilation) must not be
included in header files.

Spurious header file inclusions, in particular, introduce spurious file dependencies, which can increase
compilation time unnecessarily.

Use forward declarations when you can

4.5 Header files should use forward declarations instead of header file inclusions when possible. This may speed up
compilation, especially when recompiling after header file changes.

Note: Exceptions to this guideline:

• Header files that define external APIs for the Axom project must include all header files for all types that appear
in the API. This makes use of the API much easier.

332 Chapter 7. Axom Copyright and License Information

Axom Documentation

• When using a function, such as an inline method or template, that is implemented in a header file, the header file
containing the implementation must be included.

• When using C++ standard library types in a header file, it may be preferable to include the actual headers rather
than forward reference headers, such as ‘iosfwd’, to make the header file easier to use. This prevents users from
having to explicitly include standard headers wherever your header file is used.

4.6 A forward type declaration must be used in a header file when an include statement would result in a circular
dependency among header files.

Note: Forward references, or C++ standard ‘fwd’ headers, are preferred over header file inclusions when they are
sufficient.

Organize header file contents for easy understanding

4.7 Header file include statements should use the same ordering pattern for all files.

This improves code readability, helps to avoid misunderstood dependencies, and insures successful com-
pilation regardless of dependencies in other files. A common, recommended header file inclusion ordering
scheme is (only some of these may be needed):

1. Headers in the same Axom component

2. Other headers within the project

3. TPL headers; e.g., MPI, OpenMP, HDF5, etc.

4. C++ and C standard library headers

5. System headers

Also, code is easier to understand when include files are ordered alphabetically within each of these sec-
tions and a blank line is inserted between sections. Adding comments that describe the header file cate-
gories can be helpful as well. For example,

// Headers from this component
#include "OtherClassInThisComponent.hpp"

// "other" component headers
#include "other/SomeOtherClass.hpp"

// C standard library
#include <stdio.h>

// C++ standard library
#include <unordered_map>
#include <vector>

// Non-std system header
#include <unistd.h>

Note: Ideally, header file inclusion ordering should not matter. Inevitably, this will not always be the case. Following
the ordering prescription above helps to avoid problems when others’ header files are not constructed following best
practices.

7.15. Coding Guidelines 333

Axom Documentation

4.8 Routines should be ordered and grouped in a header file so that code readability and understanding are enhanced.

For example, all related methods should be grouped together. Also, public methods, which are part of an
interface, should appear before private methods.

All function arguments should have names

4.9 The name of each function argument must be specified in a header file declaration. Also, names in function
declarations and definitions must match.

For example, this is not an acceptable function declaration:

void doSomething(int, int, int);

Without argument names, the only way to tell what the arguments mean is to look at the implementation
or hope that the method is documented well.

Header file layout details

Content must be organized consistently in all header files. This section summarizes the recommended header file layout
using numbers and text to illustrate the basic structure. Details about individual items are contained in the guidelines
after the summary.

// (1) Axom copyright and release statement

// (2) Doxygen file prologue

// (3a) Header file include guard, e.g.,
#ifndef MYCLASS_HPP
#define MYCLASS_HPP

// (4) Header file inclusions (when NEEDED in lieu of forward declarations)
#include "myHeader.hpp"

// (5) Forward declarations NEEDED in header file (outside of project namespace)
class ForwardDeclaredClass;

// (6a) Axom project namespace declaration
namespace axom {

// (7a) Internal namespace (if used); e.g.,
namespace awesome {

// (8) Forward declarations NEEDED in header file (in project namespace(s))
class AnotherForwardDeclaredClass;

// (9) Type definitions (class, enum, etc.) with Doxygen comments e.g.,
/*!
* \brief Brief ...summary comment text...
*
* ...detailed comment text...
*/
class MyClass {

(continues on next page)

334 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

int m_classMember;
};

// (7b) Internal namespace closing brace (if needed)
} // awesome namespace closing brace

// (6b) Project namespace closing brace
} // axom namespace closing brace

// (3b) Header file include guard closing endif */
#endif // closing endif for header file include guard

4.10 (Item 1) Each header file must contain a comment section that includes the Axom copyright and release statement.

See 7 Code Documentation for details.

4.11 (Item 2) Each header file must begin with a Doxygen file prologue.

See 7 Code Documentation for details.

4.12 (Items 3a,3b) The contents of each header file must be guarded using a preprocessor directive that defines a
unique “guard name” for the file.

The guard must appear immediately after the file prologue and use the ‘#ifndef’ directive (item 2a); this
requires a closing ‘#endif’ statement at the end of the file (item 2b).

The preprocessor constant must use the file name followed by “_HPP” for C++ header files; e.g., “MY-
CLASS_HPP” as above.

The preprocessor constant must use the file name followed by “_H” for C header files.

4.13 (Item 4) All necessary header file inclusion statements must appear immediately after copyright and release
statement and before any forward declarations, type definitions, etc.

4.14 (Item 5) Any necessary forward declarations for types defined outside the project namespace must appear after
the header include statements and before the Axom project namespace statement.

4.15 (Items 6a, 6b, 7a, 7b) All types defined and methods defined in a header file must be included in a namespace.

Either the project “axom” namespace (item 6a) or a namespace nested within the project namespace (item
7a) may be used, or both may be used. A closing brace (“}”) is required to close each namespace
declaration (items 6b and 7b) before the closing ‘#endif’ for the header file include guard.

4.16 (Item 8) Forward declarations needed must appear in the appropriate namespace before any other statements
(item 8).

4.17 (Item 9) All class and other type definitions must appear after header file inclusions and forward declarations. A
proper class prologue must appear before the class definition. See 7 Code Documentation for details.

7.15. Coding Guidelines 335

Axom Documentation

7.15.5 5 Source File Organization

The goal is to make it easy to find essential information in a file easily and quickly. Consistently-applied conventions
for file organization can significantly improve user understanding and developer productivity.

Each source file should have an associated header file

5.1 Each source file should have an associated header file with a matching name, such as “Foo.hpp” for the source file
“Foo.cpp”.

Note: Exceptions: Test files may not require headers.

Header file include order should follow rules for header files

5.2 The first header file inclusion in a source file must be the header file associated with the source file (when there is
one). After that the rules for including headers in other headers apply. For example,

#include "MyAssociatedHeaderFile.hpp"

// Other header file inclusions...

See Organize header file contents for easy understanding for header file inclusion rules.

Avoid extraneous header file inclusions

5.2 Unnecessary header files should not be included in source files (i.e., headers not needed to compile the file stan-
dalone).

Such header file inclusions introduce spurious file dependencies, which may increases compilation time
unnecessarily.

Function order in source and header files should match

5.3 The order of functions implemented in a source file should match the order in which they appear in the associated
header file.

This makes the methods easier to locate and compare with documentation in the header file.

Source file layout details

Content must be organized consistently in all source files. This section summarizes the recommended source file layout
using numbers and text to illustrate the basic structure. Details about individual items are contained in the guidelines
after the summary.

// (1) Axom copyright and release statement

// (2) Doxygen file prologue

// (3) Header file inclusions (only those that are NECESSARY)
#include "..."

(continues on next page)

336 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

// (4a) Axom project namespace declaration
namespace axom {

// (5a) Internal namespace (if used); e.g.,
namespace awesome {

// (6) Initialization of static variables and data members, if any; e.g.,
Foo* MyClass::s_shared_foo = 0;

// (7) Implementation of static class member functions, if any

// (8) Implementation of non-static class members and other methods

// (5b) Internal namespace closing brace (if needed)
} // awesome namespace closing brace

// (4b) Project namespace closing brace
} // axom namespace closing brace

5.4 (Item 1) Each source file must contain a comment section that includes the Axom copyright and release statement.

See 7 Code Documentation for details.

5.5 (Item 2) Each source file must begin with a Doxygen file prologue.

See 7 Code Documentation for details.

5.6 (Item 3) All necessary header file include statements must appear immediately after the copyright and release
statement and before any implementation statements in the file.

Note: If a header is included in a header file, it should not be included in the associated source file.

5.7 (Items 4a, 4b, 5a, 5b) All contents in a source file must follow the same namespace inclusion pattern as its
corresponding header file (See Header file layout details).

Either the main project namespace (item 4a) or internal namespace (item 5a) may be used, or both may be
used. A closing brace (“}”) is required to close each namespace declaration (items 4b and 5b).

5.8 (Item 6) Any static variables and class data members that are defined in a header file must be initialized in the
associated source file before any method implementations.

5.9 (Items 7, 8) Static method implementations must appear before non-static method implementations.

7.15.6 6 Scope

Use namespaces to avoid name collisions

6.1 All Axom code must be included in the project namespace ‘axom’; e.g.,:

namespace axom {
// . . .

}

7.15. Coding Guidelines 337

Axom Documentation

6.2 Each Axom component must define its own unique namespace within the “axom” namespace. All contents of each
component must reside within that namespace.

Use namespaces to hide non-API code in header files

6.3 Code that must be appear in header files (e.g., templates) that is not intended to be part of a public interface, such
as helper classes/structs and methods, should be placed in an internal namespace.

Common names for such namespaces include ‘internal’ (for implementations used only internally) and
‘detailed’ (for types, etc. used only internally). Any reasonable choice is acceptable; however, the choice
must be the same within each Axom component.

Note that declaring helper classes/structs private within a class definition is another good option. See Hide
nested classes when possible for details.

Use ‘unnamed’ namespace for hiding code in source files

6.4 Classes/structs and methods that are meant to be used only internally to a single source file should be placed in the
‘unnamed’ namespace to make them invisible outside the file.

This guarantees link-time name conflicts will not occur. For example:

namespace {
void myInternalFunction();

}

Apply the ‘using directive’ carefully

6.5 The ‘using directive’ must not be used in any header file.

Applying this directive in a header file leverages a bad decision to circumvent the namespace across every
file that directly or indirectly includes that header file.

Note: This guideline implies that each type name appearing in a header file must be fully-qualified (i.e., using the
namespace identifier and scope operator) if it resides in a different namespace than the contents of the file.

6.6 The ‘using directive’ may be used in a source file to avoid using a fully-qualified type name at each declaration.
Using directives must appear after all “#include” directives in a source file.

6.7 When only parts of a namespace are used in an implementation file, only those parts should be included with a
using directive instead of the entire namespace contents.

For example, if you only need the standard library vector container form the “std” namespace, it is prefer-
able to use:

using std::vector;

rather than:

using namespace std;

338 Chapter 7. Axom Copyright and License Information

Axom Documentation

Use access qualifiers to control class interfaces

6.8 Class members must be declared in the following order:

1. “public”

2. “protected”

3. “private”

That is, order members using these access qualifiers in terms of “decreasing scope of visibility”.

Note: Declaring methods before data members is preferred because methods are more commonly considered part of
a class interface. Also, separating methods and data into their own access qualified sections usually helps make a class
definition clearer.

6.9 Class data members should be “private”. The choice to use “public” or “protected” data members must be scruti-
nized by other team members.

Information hiding is an essential part of good software engineering and private data is the best means for
a class to preserve its invariants. Specifically, a class should maintain control of how object state can be
modified to minimize side effects. In addition, restricting direct access to class data enforces encapsulation
and facilitates design changes through refactoring.

Use ‘friend’ and ‘static’ rarely

6.10 “Friend” declarations should be used rarely. When used, they must appear within the body of a class definition
before any class member declarations. This helps make the friend relationship obvious.

Note that placing “friend” declarations before the “public:” keyword makes them private, which preserves
encapsulation.

6.11 Static class members (methods or data) must be used rarely. In every case, their usage should be carefully reviewed
by the team.

When it is determined that a static member is needed, it must appear first in the appropriate member sec-
tion. Typically, static member functions should be “public” and static data members should be “private”.

Hide nested classes when possible

6.12 Nested classes should be private unless they are part of the enclosing class interface.

For example:

class Outer
{

// ...
private:
class Inner
{

// ...
};

};

7.15. Coding Guidelines 339

Axom Documentation

When only the enclosing class uses a nested class, making it private does not pollute the enclosing scope
needlessly. Furthermore, nested classes may be forward declared within the enclosing class definition and
then defined in the implementation file of the enclosing class. For example:

class Outer
{
class Inner; // forward declaration

// use name 'Inner' in Outer class definition
};

// In Outer.cpp implementation file...
class Outer::Inner
{

// Inner class definition
}

This makes it clear that the nested class is only needed in the implementation and does not clutter the class
definition.

Limit scope of local variables

6.13 Local variables should be declared in the narrowest scope possible and as close to first use as possible.

Minimizing variable scope makes source code easier to comprehend and may have performance and other
benefits. For example, declaring a loop index inside a for-loop statement such as:

for (int ii = 0; ...) {

is preferable to:

int ii;
...
for (ii = 0; ...) {

Beyond readability, this rule has benefits for thread safety, etc.

Note:

Exception: When a local variable is an object, its constructor
and destructor may be invoked every time a scope (such as a loop) is entered and exited, respectively.

Thus, instead of this:

for (int ii = 0; ii < 1000000; ++ii) {
Foo f;
f.doSomethingCool(ii);

}

it may be more efficient to do this:

Foo f;
for (int ii = 0; ii < 1000000; ++ii) {

f.doSomethingCool(ii);
}

340 Chapter 7. Axom Copyright and License Information

Axom Documentation

6.14 A local reference to any item in the global namespace (which should be rare if needed at all) should use the scope
operator (“::”) to make the fact that it resides in the global namespace clear.

For example:

int local_val = ::global_val;

7.15.7 7 Code Documentation

This section contains guidelines for content and formatting of code documentation mentioned in earlier sections. The
aims of these guidelines are to:

• Document files, data types, functions, etc. consistently.

• Promote good documentation practices so that essential information is presented clearly and lucidly, and which
do not over-burden developers.

• Generate source code documentation using the Doxygen system.

Document only what’s needed

7.1 Documentation should only include what is essential for users and other developers to easily understand code.
Comments should be limited to describing constraints, pre- and post-conditions, and other issues that are important,
but not obvious. Extraneous comments (e.g., documenting “the obvious”) should be avoided.

Code that uses clear, descriptive names (functions, variables, etc.) and clear logical structure is preferable
to code that relies on a lot of comments for understanding. To be useful, comments must be understood by
others and kept current with the actual code. Generally, maintenance and understanding are better served
by rewriting tricky, unclear code than by adding comments to it.

Documenting new code vs. existing code

7.2 New source code must be documented following the guidelines in this section. Documentation of existing code
should be modified to conform to these guidelines when appropriate.

7.3 Existing code documentation should be improved when its inadequate, incorrect, or unclear.

Note: When code is modified, documentation must be changed to reflect the changes.

Write clear documentation

7.4 To make comment text clear and reduce confusion, code comments should be written in grammatically-correct
complete sentences or easily understood sentence fragments.

7.15. Coding Guidelines 341

Axom Documentation

Documentation should be easy to spot

7.5 End-of-line comments should not be used to document code logic, since they tend to be less visible than other
comment forms and may be difficult to format cleanly.

Short end-of-line comments may be useful for labeling closing braces associated with nested loops, con-
ditionals, for scope in general, and for documenting local variable declarations.

7.6 All comments, except end-of-line comments, should be indented to match the indentation of the code they are
documenting. Multiple line comment blocks should be aligned vertically on the left.

7.7 Comments should be clearly delimited from executable code with blank lines and “blocking characters” (see ex-
amples below) to make them stand out and, thus, improve the chances they will be read.

7.8 White space, such as blank lines, indentation, and vertical alignment should be used in comment blocks to enhance
readability, emphasize important information, etc.

General Doxygen usage

The Doxygen code documentation system uses C or C++ style comment sections with special markings and Doxygen-
specific commands to extract documentation from source and header files. Although Doxygen provides many sophis-
ticated documentation capabilities and can generate a source code manual in a variety of formats such as LaTeX, PDF,
and HTML, these guidelines address only a small subset of Doxygen syntax. The goal of adhering to a small, simple
set of documentation commands is that developers will be encouraged to build useful documentation when they are
writing code.

Brief vs. detailed comments

The Doxygen system interprets each documentation comment as either “brief” or “detailed”.

• A brief comment is a concise statement of purpose for an item (usually no more than one line) and starts with
the Doxygen command “\brief” (or “@brief”). Brief comments appear in summary sections of the generated
documentation. They are typically seen before detailed comments when scanning the documentation; thus good
brief comments make it easier to can or navigate a source code manual.

• A detailed comment is any comment that is not identified as ‘brief’.

7.9 A “brief” description should be provided in the Doxygen comment section for each of the following items:

• A type definition (i.e., class, struct, typedef, enum, etc.)

• A macro definition

• A struct field or class data member

• A class member function declaration (in the header file class definition)

• An unbound function signature (in a header file)

• A function implementation (when there is no description in the associated header file)

7.10 Important information of a more lengthy nature (e.g., usage examples spanning multiple lines) should be provided
for files, major data types and definitions, functions, etc. when needed. A detailed comment must be separated from
a brief comment in the same comment block with a line containing no documentation text.

342 Chapter 7. Axom Copyright and License Information

Axom Documentation

Doxygen comment blocks

7.11 Doxygen comment blocks may use either JavaDoc, Qt style, or one of the C++ comment forms described below.

JavaDoc style comments consist of a C-style comment block starting with two *’s, like this:

/**
* ...comment text...
*/

Qt style comments add an exclamation mark (!) after the opening of a C-style comment block,like this:

/*!
* ...comment text...
*/

For JavaDoc or Qt style comments, the asterisk characters (”*”) on intermediate lines are optional, but
encouraged.

C++ comment block forms start each line with an additional slash:

///
/// ...comment text...
///

or an exclamation mark:

//!
//! ...comment text...
//!

For these C++ style comment forms, the comment delimiter is required on each line.

7.12 A consistent Doxygen comment block style must be used within a component.

7.13 Doxygen comment blocks must appear immediately before the items they describe; i.e., no blank lines between
comment and documented item. This insures that Doxygen will properly associate the comment with the item.

Doxygen inline comments

7.14 Inline Doxygen comments may be used for class/struct data members, enum values, function arguments, etc.

When inline comments are used, they must appear after the item on the same line and must use the
following syntax:

/*!< ...comment text... */

Note that the “<” character must appear immediately after the opening of the Doxygen comment (with
no space before). This tells Doxygen that the comment applies to the item immediately preceding the
comment. See examples in later sections.

7.15 When an item is documented using the inline form, the comment should not span multiple lines.

7.15. Coding Guidelines 343

Axom Documentation

Copyright and release statement

7.16 Each file must contain a comment section that includes the project software release information (using whichever
comment characters are appropriate for the language the file is written in). In the interest of brevity, the complete
release statement is summarized here to show the essential information. The full version can be found in any of the
project files.

Note: Change this when we release the code.

/*
* Copyright (c) 2017-2024, Lawrence Livermore National Security, LLC.
* Produced at the Lawrence Livermore National Laboratory.
*
* All rights reserved.
*
* This source code cannot be distributed without permission and
* further review from Lawrence Livermore National Laboratory.
*/

See Header file layout details and Source file layout details for guidelines on placement of copyright and release state-
ment in header and source files, respectively.

File documentation

7.17 Each header file that declares a global type, method, etc. must have a Doxygen file prologue similar to the
following:

/*!

*
* \file ...optional name of file...
*
* \brief A brief statement describing the file contents/purpose. (optional)
*
* Optional detailed explanatory notes about the file.
*
**
*/

The "\\file" command **must** appear first in the file prologue. It
identifies the comment section as documentation for the file.

The file name **may** include (part of) the path if the file name is not
unique. If the file name is omitted on the line after the "\\file"
command, then any documentation in the comment block will belong to
the file in which it is located instead of the summary documentation
in the listing of documented files.

Note: Doxygen requires that a file itself must be documented for documentation to be generated for any global item
(global function, typedef, enum, etc.) defined in the file.

344 Chapter 7. Axom Copyright and License Information

Axom Documentation

See Header file layout details and Source file layout details for guidelines on placement of file prologue in header and
source files, respectively.

Brief and detailed comments

7.18 A brief statement of purpose for the file should appear as the first comment after the file command. If included,
the brief statement, must be preceded by the “\brief” command.

7.19 Any detailed notes about the file may be included after the brief comment. If this is done, the detailed comments
must be separated from the brief statement by a line containing no documentation text.

Type documentation

7.20 Each type and macro definition appearing in a header file must have a Doxygen type definition comment prologue
immediately before it. For example

/*!
**
*
* \brief A brief statement of purpose of the type or macro.
*
* Optional detailed information that is helpful in understanding the
* purpose, usage, etc. of the type/macro ...
*
* \sa optional cross-reference to other types, functions, etc...
* \sa etc...
*
* \warning This class is only partially functional.
*
**
*/

Note: Doxygen requires that a compound entity, such as a class, struct, etc. be documented in order to document any
of its members.

Brief and detailed comments

7.21 A brief statement describing the type must appear as the first text comment using the Doxygen command “\brief”.

7.22 Important details about the item should be included after the brief comment and, if included, must be separated
from the brief comment by a blank line.

7.15. Coding Guidelines 345

Axom Documentation

Cross-references and caveats

7.23 Cross-references to other items, such as other related types should be included in the prologue to enhance the
navigability of the documentation.

The Doxygen command “\sa” (for “see also”) should appear before each such cross-reference so that links
are generated in the documentation.

7.24 Caveats or limitations about the documented type should be noted using the “\warning” Doxygen command as
shown above.

Function documentation

7.25 Each unbound function should be be documented with a function prologue in the header file where its prototype
appears or in a source file immediately preceding its implementation.

7.26 Since C++ class member functions define the class interface, they should be documented with a function prologue
immediately preceding their declaration in the class definition.

Example function documentation

The following examples show two function prologue variations that may be used to document a method in a class
definition. The first shows how to document the function arguments in the function prologue.

/*!

*
* \brief Initialize a Foo object with given operation mode.
*
* The "read" mode means one thing, while "write" mode means another.
*
* \return bool indicating success or failure of initialization.
* Success returns true, failure returns false.
*
* \param[in] mode OpMode enum value specifying initialization mode.
* ReadMode and WriteMode are valid options.
* Any other value generates a warning message and the
* failure value ("false") is returned.
*

*/
bool initMode(OpMode mode);

The second example shows how to document the function argument inline.

/*!
**
*
* @brief Initialize a Foo object to given operation mode.
*
* The "read" mode means one thing, while "write" mode means another.
*
* @return bool value indicating success or failure of initialization.

(continues on next page)

346 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

* Success returns true, failure returns false.
*

*/
bool initMode(OpMode mode /*!< [in] ReadMode, WriteMode are valid options */);

Note that the first example uses the “\” character to identify Doxygen commands; the second uses “@”.

Brief and detailed comments

7.27 A brief statement of purpose for a function must appear as the first text comment after the Doxygen command
“\brief” (or “@brief”).

7.28 Any detailed function description, when included, must appear after the brief comment and must be separated
from the brief comment by a line containing no text.

Return values

7.29 If the function has a non-void return type, the return value should be documented in the prologue using the
Doxygen command “\return” (or “@return”) preceding a description of the return value.

Functions with “void” return type and C++ class constructors and destructors should not have such doc-
umentation.

Arguments

7.30 Function arguments should be documented in the function prologue or inline (as shown above) when the intent
or usage of the arguments is not obvious.

The inline form of the comment may be preferable when the argument documentation is short. When a
longer description is provided (such as when noting the range of valid values, error conditions, etc.) the
description should be placed within the function prologue for readability. However, the two alternatives
for documenting function arguments must not be mixed within the documentation of a single function to
reduce confusion.

In any case, superfluous documentation should be avoided. For example, when there are one or two ar-
guments and their meaning is obvious from their names or the description of the function, providing no
comments is better than cluttering the code by documenting the obvious. Comments that impart no useful
information are distracting and less helpful than no comment at all.

7.31 When a function argument is documented in the prologue comment section, the Doxygen command “param”
should appear before the comment as in the first example above.

7.32 The “in/out” status of each function argument should be documented.

The Doxygen “param” command supports this directly by allowing such an attribute to be specified as
“param[in]”, “param[out]”, or “param[in,out]”. Although the inline comment form does not support this,
such a description should be included; e.g., by using “[in]”, “[out]”, or “[in,out]” in the comment.

7.15. Coding Guidelines 347

Axom Documentation

Grouping small functions

7.33 Short, simple functions (e.g., inline methods) may be grouped together and documented with a single descriptive
comment when this is sufficient.

An example of Doxygen syntax for such a grouping is:

//@{
//! @name Setters for data members

void setMember1(int arg1) { m_member1 = arg1; }
void setMember2(int arg2) { m_member2 = arg2; }

//@}

Header file vs. source file documentation

7.34 Important implementation details (vs. usage detailed) about a function should be documented in the source file
where the function is implemented, rather than the header file where the function is declared.

Header file documentation should include only purpose and usage information germane to an interface.
When a function has separate implementation documentation, the comments must not contain Doxygen
syntax. Using Doxygen syntax to document an item in more than one location (e.g., header file and source
file) can cause undesired Doxygen formatting issues and potentially confusing documentation.

A member of a class may be documented as follows in the source file for the class as follows (i.e., no
Doxygen comments):

/*

*
* Set operation mode for a Foo object.
*
* Important detailed information about what the function does...
*

*/
bool Foo::initMode(OpMode mode)
{

...function body...
}

Data member documentation

7.35 Each struct field or class data member should have a descriptive comment indicating its purpose.

This comment may as appear as a prologue before the item, such as:

/*!
* \brief Brief statement describing the input mode...
*
* Optional detailed information about the input mode...

(continues on next page)

348 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

*/
int m_input_mode;

or, it may appear after the item as an inline comment such as:

int m_input_mode; /*!< \brief Brief statement describing the input mode.... */

Brief and detailed comments

7.36 Regardless of which documentation form is used, a brief description must be included using the Doxygen com-
mand “\brief” (or “@brief”).

7.37 Any detailed description of an item, if included, must appear after the brief comment and be separated from the
brief comment with a line containing no documentation text.

When a detailed comment is provided, or the brief statement requires more than one line, the prologue
comment form should be used instead of the inline form to make the documentation easier to read.

Grouping data members

7.38 If the names of data members are sufficiently clear that their meaning and purpose are obvious to other developers
(which should be determined in a code review), then the members may be grouped together and documented with a
single descriptive comment.

An example of Doxygen syntax for such a grouping is:

//@{
//! @name Data member description...

int m_member1;
int m_member2;
...
//@}

Summary of common Doxygen commands

This Section provides an overview of commonly used Doxygen commands. Please see the Doxygen guide for more
details and information about other commands.

Note that to be processed properly, Doxygen commands must be preceded with either “\” or “@” character. For brevity,
we use “\” for all commands described here.

\brief
The “brief” command is used to begin a brief description of a documented item. The brief description
ends at the next blank line.

\file
The “file” command is used to document a file. Doxygen requires that to document any global item
(function, typedef, enum, etc.), the file in which it is defined must be documented.

\name
The “name” command, followed by a name containing no blank spaces, is used to define a name that
can be referred to elsewhere in the documentation (via a link).

7.15. Coding Guidelines 349

http://www.doxygen.nl/manual/

Axom Documentation

\param
The “param” command documents a function parameter/argument. It is followed by the parameter
name and description. The “\param” command can be given an optional attribute to indicate usage
of the function argument; possible values are “[in]”, “[out]”, and “[in,out]”.

\return
The “return” command is used to describe the return value of a function.

\sa
The “sa” command (i.e., “see also”) is used to refer (and provide a link to) another documented item.
It is followed by the target of the reference (e.g., class/struct name, function name, documentation
page, etc.).

@{,@}
These two-character sequences begin and end a grouping of documented items. Optionally, the group
can be given a name using the “name” command. Groups are useful for providing additional organi-
zation in the documentation, and also when several items can be documented with a single description
(e.g., a set of simple, related functions).

\verbatim, \endverbatim
The “verbatim/endverbatim” commands are used to start/stop a block of text that is to appear exactly
as it is typed, without additional formatting, in the generated documentation.

-, -#
The “-” and “-#” symbols begin an item in a bulleted list or numbered list, respectively. In either
case, the item ends at the next blank line or next item.

\b, \e
These symbols are used to make the next word bold or emphasized/italicized, respectively, in the
generated documentation.

7.15.8 8 Design and Implement for Correctness and Robustness

The guidelines in this section describe various software design and implementation practices that help enforce correct-
ness and robustness and avoid mis-interpretation or confusion by others.

Keep it simple. . .

8.1 Simplicity, clarity, ease of modification and extension should always be a main goal when writing new code or
changing existing code.

8.2 Each entity (class, struct, variable, function, etc.) should embody one clear, well-defined concept.

The responsibilities of an entity may increase as it is used in new and different ways. However, changes
that divert it from its original intent should be avoided. Also, large, monolithic entities that provide too
much functionality or which include too many concepts tend to increase code coupling and complexity and
introduce undesirable side effects. Smaller, clearly constrained objects are easier to write, test, maintain,
and use correctly. Also, small, simple objects tend to get used more often and reduce code redundancy.

350 Chapter 7. Axom Copyright and License Information

Axom Documentation

Avoid global and static data

8.3 Global, complex, or opaque data sharing should not be used. Shared data increases coupling and contention
between different parts of a code base, which makes maintenance and modification difficult.

8.4 Static or global variables of class type must not be used.

Due to indeterminate order of construction, their use may cause bugs that are very hard to find. Static or
global variables that are pointers to class types may be used and must be initialized properly in a single
source file.

Avoid macros and magic numbers for constants

8.5 Preprocessor macros should not be used when there is a better alternative, such as an inline function or a constant
variable definition.

For example, this:

const double PI = 3.1415926535897932384626433832;

is preferable to this:

#define PI (3.1415926535897932384626433832)

Macros circumvent the ability of a compiler to enforce beneficial language concepts such as scope and
type safety. Macros are also context-specific and can produce errors that cannot be understood easily in a
debugger. Macros should be used only when there is no better choice for a particular situation.

8.6 Hard-coded numerical constants and other “magic numbers” must not be used directly in source code. When such
values are needed, they should be declared as named constants to enhance code readability and consistency.

Avoid issues with compiler-generated class methods

The guidelines in this section apply to class methods that may be automatically generated by a compiler, including
constructors, destructors, copy, and move methods. Developers should be aware of the conditions under which com-
pilers will and will not generate these methods. Developers should also be aware of when compiler-generated methods
suffice and when they do not. After providing some guidelines, we discuss standard C++ rules that compilers follow for
generating class methods when they are not explicitly defined. See Understand standard rules for compiler-generated
methods.

The most important cases to pay attention to involve the destructor, copy constructor, and copy-assignment operator.
Classes that provide these methods, either explicitly or compiler-generated, are referred to as copyable. Failing to
follow the rules for these methods can be damaging due to errors or unexpected behavior. Rules involving the move
constructor and move-assignment operator are less important since they mostly affect efficiency and not correctness.
Copy operations can be used to accomplish the same end result as move operations, just less efficiently. Move semantics
are an important optimization feature of C++. The C++11 standard requires compilers to use move operations instead
of copy operations when certain conditions are fulfilled. Classes that provide move operations, either explicitly or
compiler-generated, are referred to as movable.

7.15. Coding Guidelines 351

Axom Documentation

Rule of three

8.7 Each class must follow the Rule of Three which states: if the destructor, copy constructor, or copy-assignment
operator is explicitly defined, then the others must be defined.

Compiler-generated and explicit versions of these methods must not be mixed. If a class requires one of
these methods to be implemented, it almost certainly requires all three to be implemented.

This rule helps guarantee that class resources are managed properly. C++ copies and copy-assigns ob-
jects of user-defined types in various situations (e.g., passing/returning by value, container manipulations,
etc.). These special member functions will be called, if accessible. If they are not user-defined, they are
implicitly-defined by the compiler.

Compiler-generated special member functions can be incorrect if a class manages a resource whose handle
is an object of non-class type. Consider a class data member which is a bare pointer to an object. The
compiler-generated class destructor will not free the object. Also, the compiler-generated copy constructor
and copy-assignment operator will perform a “shallow copy”; i.e., they will copy the value of the pointer
without duplicating the underlying resource.

Neglecting to free a pointer or perform a deep copy when those operations are expected can result in serious
logic errors. Following the Rule of Three guards against such errors. On the rare occasion these actions
are intentional, a programmer-written destructor, copy constructor, and copy-assignment operator are ideal
places to document intent of design decisions.

Restrict copying of non-copyable resources

8.8 A class that manages non-copyable resources through non-copyable handles, such as pointers, should declare the
copy methods private and and leave them unimplemented.

When the intent is that such methods should never be called, this is a good way to help a compiler to catch
unintended usage. For example:

class MyClass
{

// ...

private:
DISABLE_DEFAULT_CTOR(MyClass);
DISABLE_COPY_AND_ASSIGNMENT(MyClass);

// ...
};

When code does not have access to the private members of a class tries to use such a method, a compile-
time error will result. If a class does have private access and tries to use one of these methods an link-time
error will result.

This is another application of the “Rule of Three”.

Please see 10 Common Code Development Macros, Types, etc. for more information about the macros
used in this example to disable compiler-generated methods.

Note: Exception: If a class inherits from a base class that declares these methods private, the subclass need not declare
the methods private. Including comments in the derived class header indicating that the the parent class enforces the
non-copyable properties of the class is helpful.

352 Chapter 7. Axom Copyright and License Information

Axom Documentation

Rely on compiler-generated methods when appropriate

8.9 When the compiler-generated methods are appropriate (i.e., correct and sufficiently fast), the default constructor,
copy constructor, destructor, and copy assignment may be left undeclared. In this case, it is often helpful to add
comments to the class header file indicating that the compiler-generated versions of these methods will be used.

8.10 If a class is default-constructable and has POD (“plain old data”) or pointer data members, a default constructor
should be provided explicitly and its data members must be initialized explicitly if a default constructor is provided.
A compiler-generated default constructor will not initialize such members, in general, and so will leave a constructed
object in an undefined state.

For example, the following class should provide a default constructor and initialize its data members in it:

class MyClass
{

MyClass();

// ...

private:
double* m_dvals;
int[] m_ivals;

};

Functors should always be copyable

8.11 By convention, a functor class should have a copy constructor and copy-assignment operator.

Typically, the compiler-generated versions are sufficient when the class has no state or non-POD data mem-
bers. Since such classes are usually small and simple, the compiler-generated versions of these methods
may be used without documenting the use of default value semantics in the functor definition.

For example:

class MyFunctor
{

// Compiler-generated copy ctor and copy assignment sufficient

private:
DIABLE_DEFAULT_CTOR(MyFunctor); // prevent default construction

// ...
};

Note that in this example, the default constructor is disabled to prevent default construction. This can help prevent
programming errors when object state must be fully initialialized on construction. For more information about common
Axom macros, see 10 Common Code Development Macros, Types, etc..

7.15. Coding Guidelines 353

Axom Documentation

Understand standard rules for compiler-generated methods

This section provides some background information related to the guidelines in the previous section. There, we provide
guidelines that help to decide when to define class methods that may be generated automatically by a compiler and when
relying on compiler-generated versions suffices. Here, we describe the conditions under which compilers generate
methods automatically.

Consider the following simple class:

class MyClass
{
public:

int x;
};

How many methods does it have? None?

Actually, MyClass may have as many as six methods depending on how it is used: a default constructor, destructor,
copy constructor, copy-assignment operator, move constructor, and move-assignment operator. Any of these may be
generated by a compiler.

Note: See 11 Portability, Compilation, and Dependencies for discussion about using C++11 features such as move
semantics.

C++ compiler rules for generating class member functions are:

• The parameter-less default constructor is generated if a class does not define any constructor and all base classes
and data members are default-constructable. This means that once you declare a copy constructor (perhaps to
disable the automatically provided one), the compiler will not supply a default constructor.

• The destructor is automatically supplied if possible, based on the members and the base classes.

• A copy constructor is generated if all base classes and members are copy-constructable. Note that reference
members are copy-constructable.

• The copy-assignment operator is generated if all base classes and members are copy-assignable. For this purpose,
reference members are not considered copy-assignable.

• A move constructor is supplied unless the class has any of the following: a user-defined copy constructor, copy-
assignment operator, move-assignment operator, or destructor. If the move constructor cannot be implemented
because not all base classes or members are move-constructable, the supplied move constructor will be defined
as deleted.

• A move-assignment operator is generated under the same conditions as the move constructor.

The importance of understanding these rules and applying the guidelines in the previous section is underscored by the
fact that compiler-generated methods may have different behaviors depending on how they are used. Here we provide
some examples based on MyClass defined above.

If MyClass has a user-defined constructor, then

MyClass item1;

and

MyClass item2 = MyClass();

will both call the user-defined default constructor “MyClass()” and there is only one behavior.

354 Chapter 7. Axom Copyright and License Information

Axom Documentation

However, if MyClass relies on the compiler-generated constructor

MyClass item1;

performs default initialization, while

MyClass item2 = MyClass();

performs value initialization.

Default initialization calls the constructors of any base classes, and nothing else. Since constructors for intrinsic types
do not do anything, that means all member variables will have garbage values; specifically, whatever values happen to
reside in the corresponding addresses.

Value initialization also calls the constructors of any base classes. Then, one of two things happens:

• If MyClass is a POD class (all member variables are either intrinsic types or classes that only contain intrinsic
types and have no user-defined constructor/destructor), all data is initialized to 0.

• If MyClass is not a POD class, the constructor does not touch any data, which is the same as default initialization
(so member variables have garbage values unless explicitly constructed otherwise).

Other points worth noting:

• Intrinsic types, such as int, float, bool, pointers, etc. have constructors that do nothing (not even initialize to
zero), destructors that do nothing, and copy constructors and copy assignment-ers that blindly copy bytes.

• Comparison operators, such as “==” or “!=” are never automatically generated by a compiler, even if all base
classes and members are comparable.

Initializing and copying class members

Initialize all members at construction

8.12 Class type variables should be defined using direct initialization instead of copy initialization to avoid unwanted
and spurious type conversions and constructor calls that may be generated by compilers.

For example, use:

std::string name("Bill");

instead of:

std::string name = "Bill";

or:

std::string name = std::string("Bill");

8.13 Each class data member must be initialized (using default values when appropriate) in every class constructor.
That is, an initializer or initialization must be provided for each class data member so that every object is in a well-
defined state upon construction.

Generally, this requires a user-defined default constructor when a class has POD members. Do not assume
that a compiler-generated default constructor will leave any member variable in a well-defined state.

7.15. Coding Guidelines 355

Axom Documentation

Note: Exception: A class that has no data members, including one that is derived from a base class with a de-
fault constructor that provides full member initialization, does not require a user-defined default constructor since the
compiler-generated version will suffice.

Know when to use initialization vs. assignment

8.14 Data member initialization should be used instead of assignment in constructors, especially for small classes.
Initialization prevents needless run-time work and is often faster.

8.15 When using initialization instead of assignment to set data member values in a constructor, data members should
always be initialized in the order in which they appear in the class definition.

Compilers adhere to this order regardless of the order that members appear in the class initialization list.
So you may as well agree with the compiler rules and avoid potential errors that could result when one
member depends on the state of another.

8.16 For classes with complex data members, assignment within the body of the constructor may be preferable.

If the initialization process is sufficiently complex, it may be better to initialize (i.e., assign) member
objects in a method that is called after object creation, such as “init()”.

Use the copy-and-swap idiom

8.17 A user-supplied implementation of a class copy-assignment operator should check for assignment to self, must
copy all data members from the object passed to operator, and must return a reference to “*this”.

The copy-and-swap idiom should be used.

Initializing, copying, and inheritance

8.18 A constructor must not call a virtual function on any data member object since an overridden method defined in
a subclass cannot be called until the object is fully constructed.

There is no general guarantee that data members are fully-created before a constructor exits.

8.19 All constructors and copy operations for a derived class must call the necessary constructors and copy operations
for each of its base classes to insure that each object is properly allocated and initialized.

Prefer composition to inheritance

8.20 Class composition should be used instead of inheritance to extend behavior.

Looser coupling between objects is typically more flexible and easier to maintain and refactor.

356 Chapter 7. Axom Copyright and License Information

Axom Documentation

Keep inheritance relationships simple

8.21 Class hierarchies should be designed so that subclasses inherit from abstract interfaces; i.e., pure virtual base
classes.

Inheritance is often done to reuse code that exists in a base class. However, there are usually better design
choices to achieve reuse. Good object-oriented use of inheritance is to reuse existing calling code by
exploiting base class interfaces using polymorphism. Put another way, “interface inheritance” should be
used instead of “implementation inheritance”.

8.22 Deep inheritance hierarchies; i.e., more than 2 or 3 levels, should be avoided.

8.23 Multiple inheritance should be restricted so that only one base class contains methods that are not “pure virtual”.

8.24 “Private” and “protected” inheritance must not be used unless you absolutely understand the ramifications of such
a choice and are sure that it will not create design and implementation problems.

Such a choice must be reviewed with team members. There almost always exist better alternatives.

Design for/against inheritance

8.25 One should not inherit from a class that was not designed to be a base class; e.g., if it does not have a virtual
destructor.

Doing so is bad practice and can cause problems that may not be reported by a compiler; e.g., hiding base
class members. To add functionality, one should employ class composition rather than by “tweaking” an
existing class.

8.26 The destructor of a class that is designed to be a base class must be declared “virtual”.

However, sometimes a destructor should not be declared virtual, such as when deletion through a pointer
to a base class object should be disallowed.

Use virtual functions responsibly

8.27 Virtual functions should be overridden responsibly. That is, the pre- and post-conditions, default arguments, etc.
of the virtual functions should be preserved.

Also, the behavior of an overridden virtual function should not deviate from the intent of the base class.
Remember that derived classes are subsets, not supersets, of their base classes.

8.28 Inherited non-virtual methods must not be overloaded or hidden.

8.29 A virtual function in a base class should only be implemented in the base class if its behavior is always valid
default behavior for any derived class.

8.30 If a method in a base class is not expected to be overridden in any derived class, then the method should not be
declared virtual.

8.31 If each derived class has to provide specific behavior for a base class virtual function, then it should be declared
pure virtual.

8.32 Virtual functions must not be called in a class constructor or destructor. Doing so is undefined behavior. Even if
it seems to work correctly, it is fragile and potentially non-portable.

7.15. Coding Guidelines 357

Axom Documentation

Inline functions

Function inlining is a compile time operation and the full definition of an inline function must be seen wherever it is
called. Thus, the implementation of every function to be inlined must be provided in a header file.

Whether or not a function implemented in a header file is explicitly declared inline using the “inline” keyword, the
compiler decides if the function will be inlined. A compiler will not inline a function that it considers too long or too
complex (e.g., if it contains complicated conditional logic). When a compiler inlines a function, it replaces the function
call with the body of the function. Most modern compilers do a good job of deciding when inlining is a good choice.

It is possible to specify function attributes and compiler flags that can force a compiler to inline a function. Such
options should be applied with care to prevent excessive inlining that may cause executable code bloat and/or may
make debugging difficult.

Note: When in doubt, don’t use the “inline” keyword and let the compiler decide whether to inline a function.

Inline short, simple functions

8.33 Simple, short frequently called functions, such as accessors, that will almost certainly be inlined by most compilers
should be implemented inline in header files.

Only inline a class constructor when it makes sense

8.34 Class constructors should not be inlined in most cases.

A class constructor implicitly calls the constructors for its base classes and initializes some or all of its
data members, potentially calling more constructors. If a constructor is inlined, the construction and ini-
tialization needed for its members and bases will appear at every object declaration.

Note: Exception: A class/struct that has only POD members, is not a subclass, and does not explicitly declare a
destructor, can have its constructor safely inlined in most cases.

Do not inline virtual methods

8.35 Virtual functions must not be inlined due to polymorphism.

For example, do not declare a virtual class member function as:

inline virtual void foo() { }

In most circumstances, a virtual method cannot be inlined because a compiler must do runtime dispatch
on a virtual method when it doesn’t know the complete type at compile time.

Note: Exception: It is safe to define an empty destructor inline in an abstract base class with no data members.

Important: Should we add something about C++11 ‘final’ keyword???

358 Chapter 7. Axom Copyright and License Information

Axom Documentation

Function and operator overloading

There’s a fine line between clever and. . .

8.36 Operator overloading must not be used to be clever to the point of obfuscation and cause others to think too hard
about an operation. Specifically, an overloaded operator must preserve “natural” semantics by appealing to common
conventions and must have meaning similar to non-overloaded operators of the same name.

Overloading operators can be beneficial, but should not be overused or abused. Operator overloading
is essentially “syntactic sugar” and an overloaded operator is just a function like any other function. An
important benefit of overloading is that it often allows more appropriate syntax that more easily commu-
nicates the meaning of an operation. The resulting code can be easier to write, maintain, and understand,
and it may be more efficient since it may allow the compiler to take advantage of longer expressions than
it could otherwise.

Overload consistently

8.37 Function overloading must not be used to define functions that do conceptually different things.

Someone reading declarations of overloaded functions should be able to assume (and rightfully so!) that
functions with the same name do something very similar.

8.38 If an overloaded virtual method in a base class is overridden in a derived class, all overloaded methods with the
same name in the base class must be overridden in the derived class.

This prevents unexpected behavior when calling such member functions. Remember that when a virtual
function is overridden, the overloads of that function in the base class are not visible to the derived class.

Common operators

8.39 Both boolean operators “==” and “!=” should be implemented if one of them is.

For consistency and correctness, the “!=” operator should be implemented using the “==” operator imple-
mentation. For example:

bool MyClass::operator!= (const MyClass& rhs)
{

return !(this == rhs);
}

8.40 Standard operators, such as “&&”, “||”, and “,” (i.e., comma), must not be overloaded.

Built-in versions of these operators are typically treated specially by a compiler. Thus, programmers cannot
implement their full semantics. This can cause confusion. For example, the order of operand evaluation
cannot be guaranteed when overloading operators “&&” or “||”. This may cause problems as someone
may write code that assumes that evaluation order is the same as the built-in versions.

7.15. Coding Guidelines 359

Axom Documentation

Function arguments

Consistent argument order makes interfaces easier to use

8.41 Function arguments must be ordered similarly for all routines in an Axom component.

Common conventions are either to put all input arguments first, then outputs, or vice versa. Input and output
arguments must not be mixed in a function signature. Parameters that are both input and output can make
the best choice unclear. Conventions consistent with related functions must always be followed. When
adding a new parameter to an existing method, the established ordering convention must be followed.

Note: When adding an argument to an existing method, do not just stick it at the end of the argument list.

Pointer and reference arguments and const

8.42 Each function argument that is not a built-in type (i.e., int, double, char, etc.) should be passed either by reference
or as a pointer to avoid unnecessary copies.

8.43 Each function reference or pointer argument that is not changed by the function must be declared “const”.

Always name function arguments

8.44 Each argument in a function declaration must be given a name that exactly matches the function implementation.

For example, use:

void computeSomething(int op_count, int mode);

not:

void computeSomething(int, int);

Function return points

8.45 Each function should have exactly one return point to make control logic clear.

Functions with multiple return points tend to be a source of errors when trying to understand or modify
code, especially if there are multiple return points within a scope. Such code can always be refactored to
have a single return point by using local scope boolean variables and/or different control logic.

A function may have two return points if the first return statement is associated with error condition check,
for example. In this case, the error check should be performed at the start of the function body before
other statements are reached. For example, the following is a reasonable use of two function return points
because the error condition check and the return value for successful completion are clearly visible:

int computeSomething(int in_val)
{
if (in_val < 0) { return -1; }

// ...rest of function implementation...

(continues on next page)

360 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

return 0;
}

Note: Exception. If multiple return points actually fit well into the logical structure of some code, they may be used.
For example, a routine may contain extended if/else conditional logic with several “if-else” clauses. If needed, the code
may be more clear if each clause contains a return point.

Proper type usage

8.46 The “bool” type should be used instead of “int” for boolean true/false values.

8.47 The “string” type should be used instead of “char*”.

The string type supports and optimizes many character string manipulation operations which can be error-
prone and less efficient if implemented explicitly using “char*” and standard C library functions. Note
that “string” and “char*” types are easily interchangeable, which allows C++ string data to be used when
interacting with C routines.

8.48 An enumeration type should be used instead of macro definitions or “int” data for sets of related constant values.

Since C++ enums are distinct types with a compile-time specified set of values, there values cannot be
implicitly cast to integers or vice versa – a “static_cast” operator must be used to make the conversion
explicit. Thus, enums provide type and value safety and scoping benefits.

In many cases, the C++11 enum class construct should be used since it provides stronger type safety and
better scoping than regular enum types.

Templates

8.49 A class or function should only be made a template when its implementation is independent of the template type
parameter.

Note that class member templates (e.g., member functions that are templates of a class that is not a template)
are often useful to reduce code redundancy.

8.50 Generic templates that have external linkage must be defined in the header file where they are declared since
template instantiation is a compile time operation. Implementations of class templates and member templates that are
non-trivial should be placed in the class header file after the class definition.

Use const to enforce correct usage

8.51 The “const” qualifier should be used for variables and methods when appropriate to clearly indicate usage and
to take advantage of compiler-based error-checking. For example, any class member function that does not change the
state of the object on which it is called should be declared “const”

Constant declarations can make code safer and less error-prone since they enforce intent at compile time.
They also improve code understanding because a constant declaration clearly indicates that the state of a
variable or object will not change in the scope in which the declaration appears.

8.52 Any class member function that does not change a data member of the associated class must be declared “const”.

This enables the compiler to detect unintended usage.

7.15. Coding Guidelines 361

Axom Documentation

8.53 Any class member function that returns a class data member that should not be changed by the caller must be
declared “const” and must return the data member as a “const” reference or pointer.

Often, both “const” and non-“const” versions of member access functions are needed so that callers may
declare the variable that holds the return value with the appropriate “const-ness”.

Casts and type conversions

Avoid C-style casts, const_cast, and reinterpret_cast

8.54 C-style casts must not be used.

All type conversions must be done explicitly using the named C++ casting operators; i.e., “static_cast”,
“const_cast”, “dynamic_cast”, “reinterpret_cast”.

8.55 The “const_cast” operator should be avoided.

Casting away “const-ness” is usually a poor programming decision and can introduce errors.

Note: Exception: It may be necessary in some circumstances to cast away const-ness, such as when calling const-
incorrect APIs.

8.56 The “reinterpret_cast” must not be used unless absolutely necessary.

This operator was designed to perform a low-level reinterpretation of the bit pattern of an operand. This
is needed only in special circumstances and circumvents type safety.

Use the explicit qualifier to avoid unwanted conversions

8.57 A class constructor that takes a single non-default argument, or a single argument with a default value, must be
declared “explicit”.

This prevents compilers from performing unexpected (and, in many cases, unwanted!) implicit type con-
versions. For example:

class MyClass
{
public:

explicit MyClass(int i, double x = 0.0);
};

Note that, without the explicit declaration, an implicit conversion from an integer to an object of type
MyClass could be allowed. For example:

MyClass mc = 2;

Clearly, this is confusing. The “explicit” keyword forces the following usage pattern:

MyClass mc(2);

to get the same result, which is much more clear.

362 Chapter 7. Axom Copyright and License Information

Axom Documentation

Memory management

Allocate and deallocate memory in the same scope

8.58 Memory should be deallocated in the same scope in which it is allocated.

8.59 All memory allocated in a class constructor should be deallocated in the class destructor.

Note that the intent of constructors is to acquire resources and the intent of destructors is to free those
resources.

8.60 Pointers should be set to null explicitly when memory is deallocated. This makes it easy to check pointers for
“null-ness” when needed.

Use new/delete consistently

8.61 Data managed exclusively within C++ code must be allocated and deallocated using the “new” and “delete”
operators.

The operator “new” is type-safe, simpler to use, and less error-prone than the “malloc” family of C func-
tions. C++ new/delete operators must not be combined with C malloc/free functions.

8.62 Every C++ array deallocation statement must include “[]” (i.e., “delete[]”) to avoid memory leaks.

The rule of thumb is: when “[]” appears in the allocation, then “[]” must appear in the corresponding
deallocation statement.

7.15.9 9 Code Formatting

Conditional statements and loops

9.1 Curly braces should be used in all conditionals, loops, etc. even when the content inside the braces is a “one-liner”.

This helps prevent coding errors and misinterpretation of intent. For example, this:

if (done) { ... }

is preferable to this:

if (done) ...

9.2 One-liners may be used for “if” conditionals with “else/else if” clauses when the resulting code is clear.

For example, either of the following styles may be used:

if (done) {
id = 3;

} else {
id = 0;

}

or:

if (done) { id = 3; } else { id = 0; }

9.3 Complex “if/else if” conditionals with many “else if” clauses should be avoided.

7.15. Coding Guidelines 363

Axom Documentation

Such statements can always be refactored using local boolean variables or “switch” statements. Doing so
often makes code easier to read and understand and may improve performance.

9.4 An explicit test for zero/nonzero must be used in a conditional unless the tested quantity is a boolean or pointer
type.

For example, a conditional based on an integer value should use:

if (num_lines != 0) { ... }

not:

if (num_lines) { ... }

White space and code alignment

Most conventions for indentation, spacing and code alignment preferred by the team are enforced by using the clang-
format tool.

There are several build system targets related to code formatting grouped under the check and style targets. The former
verify that the code is properly formatted, while the latter modify source files to conform to axom’s rules.

Important: Axom’s style targets modify source files. Please ensure that you’ve committed/staged all your changes
before running them.

Tip: When axom is configured to use the make-based generator, the entire codebase can be formatted by running
make clangformat_style from the build directory. Simiarly, one can verify that the code if properly formatted by
running make clangformat_check. There are also component-specific variants for these targets, e.g. for axom’s
core component, we have core_clangformat_style and core_clangformat_check.

Not all preferred formatting conventions are supported by clang-format. The following guidelines provide additional
recommendations to make code easier to read and understand.

White space enhances code readability

9.5 Blank lines and indentation should be used throughout code to enhance readability.

Examples of helpful white space include:

• Between operands and operators in arithmetic expressions.

• After reserved words, such as “while”, “for”, “if”, “switch”, etc. and before the parenthesis or curly
brace that follows.

• After commas separating arguments in functions.

• After semi-colons in for-loop expressions.

• Before and after curly braces in almost all cases.

9.6 White space must not appear between a function name and the opening parenthesis to the argument list. In par-
ticular, if a function call is broken across source lines, the break must not come between the function name and the
opening parenthesis.

9.7 Tabs must not be used for indentation since this can be problematic for developers with different text editor settings.

364 Chapter 7. Axom Copyright and License Information

Axom Documentation

Vertical alignment helps to show scope

9.8 When function arguments (in either a declaration or implementation) appear on multiple lines, the arguments should
be vertically aligned for readability.

9.9 All statements within a function body should be indented within the surrounding curly braces.

9.10 All source lines in the same scope should be vertically aligned. Continuation of previous lines may be indented
if it make the code easier to read.

Break lines where it makes sense

9.11 When a line is broken at a comma or semi-colon, it should be broken after the comma or semi-colon, not before.
This helps make it clear that the statement continues on the next line.

9.12 When a source line is broken at an arithmetic operator (i.e., +, -, etc.), it should be broken after the operator, not
before.

Use parentheses for clarity

9.13 Parentheses should be used in non-trivial mathematical and logical expressions to clearly indicate structure and
intended order of operations. Do not assume everyone who reads the code knows all the rules for operator precedence.

7.15.10 10 Common Code Development Macros, Types, etc.

This section provides guidelines for consistent use of macros and types defined in Axom components, such as
“axom_utils” and “slic”, and in our build system that we use in day-to-day code development.

Important: Code that is guarded with macros described in this section must not change the externally-observable
execution behavior of the code.

The macros are intended to help users and developers avoid unintended or potentially erroneous usage, etc. not confuse
them.

Unused variables

10.2 To silence compiler warnings and express variable usage intent more clearly, macros in the AxomMacros.hpp
header file in the source include directory must be used when appropriate. For example,:

void my_function(int x, int AXOM_DEBUG_PARAM(y))
{
// use variable y only for debug compilation

}

Here, the AXOM_DEBUG_PARAM macro indicates that the variable ‘y’ is only used when the code is compiled in
debug mode. It also removes the variable name in the argument list in non-debug compilation to prevent unwanted
compiler warnings.

Please see the AxomMacros.hpp header file for other available macros and usage examples.

7.15. Coding Guidelines 365

Axom Documentation

Disabling compiler-generated methods

10.3 To disable compiler-generated class/struct methods when this is desired and to clearly express this intent, the
AXOMMacros.hpp header file in source include directory contains macros that should be used for this purpose. See
Avoid issues with compiler-generated class methods for more information about compiler-generated methods.

Please see the AXOMMacros.hpp header file for other available macros and usage examples.

Conditionally compiled code

10.4 Macros defined by Axom build system must be used to control conditional code compilation.

For example, complex or multi-line code that is intended to be exposed only for a debug build must be guarded using
the AXOM_DEBUG macro:

void MyMethod(...)
{
#if defined(AXOM_DEBUG)
// Code that performs debugging checks on object state, method args,
// reports diagnostic messages, etc. goes here

#endif

// rest of method implementation
}

Axom provides various other macro constants for conditionally-compiled code which reflect which built-in and
third-party libraries are being used and which Axom components are enabled. The macro constants are defined
in the config.hpp.in file in the top-level Axom source directory. Each of these macro constants has the form
AXOM_USE_<FOO>, where FOO is the name of an Axom library dependency or the name of an Axom component.

When CMake is run to configure an Axom build, the macro constants are set based on CMake options and Axom
dependencies and this file is converted to the config.hpp header file in the Axom build space. The config.hpp
header file is included in all Axom source and header files for consistent application of the macro constants throughout
the code.

Error handling

10.5 Macros provided in the “slic” component should be used to provide runtime checks for incorrect or questionable
usage and informative messages for developers and users.

Runtime checks for incorrect or questionable usage and generation of informative warning, error, notice messages can
be a tremendous help to users and developers. This is an excellent way to provide run-time debugging capabilities in
code. Using the “slic” macros ensures that syntax and meaning are consistent and that output information is handled
similarly throughout the code.

When certain conditions are encountered, the macros can emit failed boolean expressions and descriptive messages
that help to understand potentially problematic usage. Here’s an example of common SLIC macro usage in AXOM:

Bar* myCoolFunction(int in_val, Foo* in_foo)
{
if (in_val < 0 || in_foo == nullptr)
{
SLIC_CHECK_MSG(in_val >= 0, "in_val must be non-negative");
SLIC_CHECK(in_foo != nullptr);
return nullptr;

(continues on next page)

366 Chapter 7. Axom Copyright and License Information

Axom Documentation

(continued from previous page)

} else if (!in_foo->isSet()) {
SLIC_CHECK_MSG(in_foo->isSet(),

"in_foo is not set, will use default settings");
const int val = in_val >= 0 ? in_val : DEFAULT_VAL;
in_foo->setDefaults(val);

}

Bar* bar = new Bar(in_foo);

return bar;
}

This example uses slic macros that are only active when the code is compiled in debug mode. When compiled in
release mode, for example, the macros are empty and so do nothing. Also, when a condition is encountered that is
problematic, such as ‘in_val < 0’ or ‘in_foo == nullptr’, the code will emit the condition and an optional message and
not halt. This allows calling code to catch the issue (in this case a null return value) and react. There are other macros
(e.g., SLIC_ASSERT) that will halt the code if that is desired.

Slic macros operate in one of two compilation-defined modes. Some macros are active only in for a debug compile.
Others are active for any build type. Macros provided for each of these modes can be used to halt the code or not after
describing the condition that triggered them. The following table summarizes the SLIC macros.

Macro type When active? Halts code?
ERROR Always Yes
WARNING Always No
ASSERT Debug only Yes
CHECK Debug only No

Typically, we use macros ERROR/WARNING macros rarely. They are used primarily to catch cases that are obvious
programming errors or would put an application in a state where continuing is seriously in doubt. CHECK macros are
used most often, since they provide useful debugging information and do not halt the code – they allow users to catch
cases from which they can recover. ASSERT macros are used in cases where halting the code is desired, but only in
debug mode.

Please see the slic.hpp header file to see which macros are available and how to use them.

Important: It is important to apply these macros judiciously so that they benefit users and other developers. We want
to help folks use our software correctly and not “spam” them with too much information.

7.15.11 11 Portability, Compilation, and Dependencies

C++ is a huge language with many advanced and powerful features. To avoid over-indulgence and obfuscation, we
would like to avoid C++ feature bloat. By constraining or even banning the use of certain language features and
libraries, we hope to keep our code simple and portable. We also hope to avoid errors and problems that may occur
when language features are not completely understood or not used consistently. This section lists such restrictions and
explains why use of certain features is constrained or restricted.

7.15. Coding Guidelines 367

Axom Documentation

Portability

Nothing beyond C++11

11.1 C++ language features beyond standard C++11 must not be used unless reviewed by the team and verified that
the features are supported by all compilers we need to support.

Changing this guideline requires full consensus of all team members.

No non-standard language constructs

11.2 Special non-standard language constructs, such as GNU extensions, must not be used if they hinder portability.

Note: Any deviation from these C++ usage requirements must be agreed on by all members of the team and vetted
with our main application users.

Compilation

Avoid conditional compilation

11.3 Excessive use of the preprocessor for conditional compilation at a fine granularity (e.g., selectively including or
removing individual source lines) should be avoided.

While it may seem convenient, this practice typically produces confusing and error-prone code. Often, it
is better to refactor the code into separate routines or large code blocks subject to conditional compilation
where it is more clear.

Code reviews by team members will dictate what is/is not acceptable.

The compiler is your friend

11.4 Developers should rely on compile-time and link-time errors to check for code correctness and invariants.

Errors that occur at run-time and which depend on specific control flow and program state are inconvenient
for users and can be difficult to detect and fix.

Important: Add specific guidance on how this should be done. . .

Minimize dependencies on third-party libraries (TPLs)

11.5 While it is generally desirable to avoid recreating functionality that others have already implemented, we should
limit third-party library dependencies for Axom to make it easier for users. We are a library, and everything we neces-
sarily depend on will become a dependency for our user.

Before introducing any significant TPL dependency on Axom (e.g., hdf5), it must be agreed on by
the development team and vetted with our main users.

11.6 Unless absolutely necessary, any TPL we depend on must not be exposed through any public interface in Axom.

368 Chapter 7. Axom Copyright and License Information

Axom Documentation

7.15.12 References and Useful Resources

Most of the guidelines here were gathered from the following list sources. The list contains a variety of useful resources
for programming in C++ beyond what is presented in these guidelines.

1. The Chromium Projects: C++ Dos and Don’ts. https://chromium.googlesource.com/chromium/src/+/HEAD/
styleguide/c++/c++-dos-and-donts.md

2. Dewhurst, S., C++ Gotchas: Avoiding Common Problems in Coding and Design, Addison-Wesley, 2003.

3. Dewhurst S., C++ Common Knowledge: Essential Intermediate Programming, Addison-Wesley, 2005.

4. Doxygen manual, http://www.doxygen.nl/manual/

5. Google C++ Style Guide, https://google.github.io/styleguide/cppguide.html

6. ISO/IEC 14882:2011 C++ Programming Language Standard.

7. Josuttis, N., The C++ Standard Library: A Tutorial and Reference, Second Edition, Addison-Wesley, 2012.

8. LLVM Coding Standards, llvm.org/docs/CodingStandards.html

9. Meyers, S., More Effective C++: 35 New Ways to Improve Your Programs and Designs, Addison-Wesley, 1996.

10. Meyers, S., Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library, Addison-
Wesley, 2001.

11. Meyers, S., Effective C++: 55 Specific Ways to Improve Your Programs and Designs (3rd Edition), Addison-
Wesley, 2005.

12. Meyers, S., Effective Modern C++: 42 Specific Ways to Improve Your Use of C++11 and C++14, O’Reilly.

13. Programming Research Ltd., High-integrity C++ Coding Standard, Version 4.0, 2013.

14. Sutter, H. and A. Alexandrescu, C++ Coding Standards: 101 Rules, Guidelines, and Best Practices, Addison-
Wesley, 2005.

7.16 License Info

7.16.1 Axom License

Copyright (c) 2017-2024, Lawrence Livermore National Security, LLC. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED

7.16. License Info 369

https://chromium.googlesource.com/chromium/src/+/HEAD/styleguide/c++/c++-dos-and-donts.md
https://chromium.googlesource.com/chromium/src/+/HEAD/styleguide/c++/c++-dos-and-donts.md
http://www.doxygen.nl/manual/
https://google.github.io/styleguide/cppguide.html

Axom Documentation

TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

370 Chapter 7. Axom Copyright and License Information

	Axom Software
	Documentation
	Component Level Dependencies
	Other Tools Application Developers May Find Useful
	Developer Resources
	Communicating with the Axom Team
	Mailing Lists
	Chat Room

	Axom Copyright and License Information
	Quickstart Guide
	Zero to Axom: Quick install of Axom and Third Party Dependencies
	Preparing Windows WSL/Ubuntu for Axom installation
	Using Axom in Your Project
	CMake-based build system example
	BLT-based build system example
	Makefile-based build system example

	The Code
	Getting the Code
	SSH keys
	Cloning the repo

	Repository Layout

	Configuration and Building
	Requirements, Dependencies, and Supported Compilers
	Basic requirements:
	Supported Compilers
	External Dependencies
	Library Dependencies
	Tool Dependencies

	Building and Installing Third-party Libraries
	Building and Installing Axom
	Host-config files
	Python helper script
	Run CMake directly

	CMake Configuration Options
	Axom components, tests, examples, etc.
	Axom build options, compiler support, and parallelism
	Tools and features primarily intended for developers
	Axom source code macro constants

	Make targets
	Compiling and Linking with an Application

	Axom Core User Guide
	API Documentation
	Core numerics
	Core utilities
	Core containers
	Array
	ArrayView
	Using Arrays in GPU Code
	StackArray

	Core acceleration

	Inlet User Guide
	API Documentation
	Introduction
	Requirements
	Glossary
	Quick Start
	Defining Schema
	Verification
	Accessing Data
	Generating Documentation
	Example Output: Input file Options
	thermal_solver
	solver
	kappa
	mesh
	u0
	MFEM Coefficient Output: Input file Options
	bcs
	Collection contents:
	attrs
	Collection contents:
	Nested Structs Output: Input file Options
	shapes
	Collection contents:
	geometry
	operators
	Collection contents:
	slice
	translate
	Collection contents:

	Readers
	Extra Lua Functionality

	Simple Types
	Fields
	Defining And Storing
	Accessing

	Containers
	Defining And Storing
	Accessing

	Arrays
	Defining And Storing
	Accessing

	Dictionaries
	Defining And Storing
	Accessing

	Advanced Types
	Individual Structs
	Defining And Storing
	Accessing

	Arrays and Dictionaries of Structs
	Defining And Storing
	Accessing

	Function Callbacks
	Defining And Storing
	Accessing

	Verification
	Container Verification
	Field Verification
	Function Verification
	Unexpected Entries in Input Files

	Klee User Guide
	Specifying Shapes
	Basics
	Paths
	Changing Dimensions on a Per-Shape Basis

	Overlay Rules
	Operators
	Supported Operators
	Named Operators

	Lumberjack User Guide
	API Documentation
	Introduction
	Requirements
	Code Guarding
	Quick Start
	Core Concepts
	Combining
	Communication
	Pushing

	Lumberjack Classes
	Basic
	Combiners
	Communicators
	Lumberjack Class
	Functions
	General
	Combiners
	Messages
	Combiner Class
	Functions
	Concrete Instances
	TextTagCombiner
	TextEqualityCombiner
	Communicator Class
	Functions
	Concrete Instances
	BinaryTreeCommunicator
	RootCommunicator
	Message Class
	Information
	Functions

	Mint User Guide
	API Documentation
	Key Features
	Requirements
	About this Guide
	Getting Started with Mint
	Prerequisites
	Goals
	Step 1: Add Header Includes
	Step 2: Get a Mesh
	Step 3: Add Fields
	Step 4: Evaluate a Scalar Field
	Step 5: Average to Cell Centers
	Step 6: Output the Mesh in VTK
	Step 7: Run the Example

	Preliminary Concepts
	Mesh Representation
	Topology
	Cells
	Faces
	Nodes
	Connectivity

	Geometry
	Field Data

	Mesh Types
	Structured Mesh
	Curvilinear Mesh
	Rectilinear Mesh
	Uniform Mesh

	Unstructured Mesh
	Single Cell Type Topology
	Mixed Cell Type Topology
	Cell Types
	Add a New Cell Type

	Particle Mesh

	Component Architecture
	The Mesh Base Class
	Mesh Field Data
	Concrete Mesh Classes
	Structured Mesh
	Unstructured Mesh
	Particle Mesh

	Mesh Storage Management
	Native Storage
	External Storage
	Sidre Storage

	Execution Model
	Execution Policy
	Execution Signature

	Finite Elements
	Lagrange Basis
	QUAD: Linear Quadrilateral
	QUAD9: Quadratic Quadrilateral
	TRIANGLE: Linear Triangle
	HEX: Linear Hexahedron
	HEX27: Quadratic Hexahedron
	PYRAMID: Linear Pyramid
	PRISM: Linear Prism/Wedge
	Add a New Lagrange Element

	Isoparametric Mapping
	Quadratures
	Add a New Finite Element Basis

	Tutorial
	Create a Uniform Mesh
	Create a Rectilinear Mesh
	Create a Curvilinear Mesh
	Create an Unstructured Mesh
	Create a Mixed Unstructured Mesh
	Working with Fields
	Add Fields
	Request Fields by Name
	Check Fields
	Remove Fields
	Query Fields

	Using External Storage
	Using Sidre
	Create a new Mesh in Sidre
	Import a Mesh from Sidre

	Node Traversal Functions
	Simple Loop Over Nodes
	Loop with Coordinates
	Loop with IJK Indices

	Cell Traversal Functions
	Simple Loop Over Cells
	Loop with Node IDs
	Loop with Coordinates
	Loop with Face IDs
	Loop with IJK Indices

	Face Traversal Functions
	Simple Loop Over Faces
	Loop with Node IDs
	Loop with Coordinates
	Loop with Cell IDs

	Finite Elements
	Create a Finite Element Object
	Evaluate Shape Functions
	Evaluate the Jacobian
	Forward Isoparametric Map
	Inverse Isoparametric Map

	Output to VTK

	Examples
	FAQ
	Appendix
	Mint Application Code Example
	AXOM_LAMBDA Macro
	Raw Sidre Data

	Multimat User Guide
	Primal User Guide
	API Documentation
	Primitives
	Operators
	Clip triangle against bounding box
	Closest point query
	Compute bounding box
	Intersection
	Orientation
	Distance

	Quest User Guide
	API Documentation
	Reading in a mesh
	Reading an STL file
	Reading a Pro/E file

	Check and repair a mesh
	Check for watertightness

	Surface mesh point queries: C API
	In/out C API
	Signed Distance query C API

	Surface mesh point queries: C++ API
	In/out Octree
	Signed Distance

	Point-in-cell query
	All nearest neighbors query
	Isosurface Detection

	Sidre User Guide
	API Documentation
	Introduction
	An introductory example
	Core concepts
	DataStore
	Buffer
	Group
	Methods to Operate on Groups
	Create, Modify, and Destroy Groups
	Group Properties
	Group Access
	Move and Copy Groups
	Methods to Operate on Views
	Create Views
	Destroy Views
	View Queries
	View Access
	Move and Copy Views
	List Format
	Group I/O Operations

	View
	View Property Operations
	Data Association Queries
	Data State Queries
	Data Description Queries
	Data Management Operations
	Data Access Methods
	Attribute Methods
	I/O Operations

	Attribute
	Data vs. Metadata Concepts
	Example 1: One View, One Buffer
	Example 2: Two Views, One Buffer
	Example 3: Two Views and One Buffer (View Copy)
	Example 4: More Basic Mechanics

	Datastore Queries
	Buffer Query
	Group Subtree Query

	Serial File I/O
	File I/O using the Group class
	Protocols for file I/O

	Parallel File I/O
	Introduction
	Parallel I/O using the IOManager class
	IOManager class use
	User-specified data in the root file

	Sidre Interaction with Conduit
	Mesh Blueprint
	Data Visualization

	Using Sidre with MFEM
	Associating MFEM Objects with an MFEMSidreDataCollection
	Saving Data to a File
	Restarting a Simulation
	Mixed-material Fields

	Slam User Guide
	API Documentation
	Introduction
	Set-theoretic abstraction
	Policy-based design
	Current limitations
	An introductory example
	Type aliases and variables
	Sets
	Relations
	Maps

	Constructing the mesh
	Sets
	Relations
	Maps

	Traversing the mesh
	Computing a derived field
	Computing element centroids
	Outputting mesh to disk

	Core concepts
	Set
	Relation
	Map

	Implementation details
	Policy-based design
	Simplifying mesh setup

	Slic User Guide
	API Documentation
	Key Features
	Requirements
	About this Guide
	Getting Started with Slic
	Step 1: Add Header Includes
	Step 2: Initialize Slic
	Step 3: Set the Message Format
	Step 4: Set Severity Level
	Step 5: Register a Log Stream
	Step 5.1: Tagged Log Streams
	Step 6: Log Messages
	Step 7: Finalize Slic
	Step 8: Run the Example

	Component Architecture
	Log Message Level
	Log Stream
	Log Message Format
	Default Message Format

	Built-In Log Streams
	Generic Output Stream
	Synchronized Stream
	Lumberjack Stream

	Add a Custom Log Stream
	Create a LogStream Subclass
	Implement LogStream::append()
	Register the new class with Slic

	Wrapping Slic in Macros
	Appendix
	Slic Application Code Example
	axom::utilities::processAbort()
	Slic Macros Used in Axom
	Collective Slic Macros

	Spin User Guide
	API Documentation
	RectangularLattice
	Mortonizer
	UniformGrid
	ImplicitGrid
	BVH
	Device Traversal API
	Example: Broad-phase collision detection

	SpatialOctree

	Developer Guide
	Development Process Summary
	Software Development Cycles
	Software Releases and Version Numbers
	Branch Development
	Code Reviews and Acceptance
	Contributors and Project Access
	Forking the repository
	Accepting a pull request from a forked repository

	Testing and Code Health
	Software Development Tools

	Continuous Integration
	Azure Pipelines
	LC GitLab

	Release Process
	1: Start Release Candidate Branch
	2: Issue a Pull Request
	3: Merge Release Candidate
	4: Draft a Github Release
	5: Make a Release Tarball
	6: Merge Main to Develop

	Release Notes
	Semantic Versioning
	Version Numbers and Meaning
	What Does a Change in Version Number Mean?

	Gitflow Branching Model
	Main and Develop Branches
	Topic Branches
	Release Branches
	Hotfix Branches
	Gitflow Illustrated

	Git/Github: Version Control and Branch Development
	SSH Keys
	Cloning the Repo
	Git Environment Support
	Setting up your Bash Environment
	Setting up your tcsh/csh Environment

	Topic Branch Development
	Step 1 – Create a topic branch
	Step 2 – Do development work
	Step 3 – Keep current with develop
	Step 4 – Create a pull request

	Checking Out an Existing Branch

	Pull Requests and Code Reviews
	Pull Request Summary
	Code Review Checklist

	Component Structure
	Component Directory Structure
	CMake Files and Variables
	Add CMake macro definitions
	Modify top-level CMakeLists.txt file
	Add component CMakeLists.txt files
	Top-level component directory
	Component src directory
	Component docs directory
	Component tests and examples

	Filename and CMake Target Conventions for Axom Documentation
	C and Fortran Interfaces
	Documentation
	User Documentation
	Code Documentation

	Tests and Examples
	A Few Guidelines for Writing Tests
	Unit Tests
	Google Test (C++/C Tests)
	FRUIT (Fortran Tests)

	CMake Files and Variables for Tests
	Examples
	CMake Files and Variables for Examples
	Filename and CMake Target Conventions for Axom Tests and Examples
	Test file names and make targets
	Example file names and make targets

	Running Tests and Examples

	Third-party Libraries
	Determinism
	Build Scripts and Their Configuration Files

	Level 1: Spack
	Level 1: Vcpkg
	Level 2: Uberenv
	Level 3: Build Scripts
	Updating TPLs

	Git submodules
	Built-in TPLs
	Local Third-party Library Installation
	Shared Third-party Library Installation Steps

	GPU Porting in Axom
	Macros
	Memory
	Memory Management Routines
	MemorySpace
	Useful Links

	Kernels
	axom::for_all
	RAJA::kernel
	Useful Links

	Execution Spaces & Policies
	General, Rough Porting Tips
	Useful Links

	Miscellaneous Development Items
	Web Documentation
	Code Health Tools
	Code Coverage
	Static Analysis
	Memory Checking

	Coding Guidelines
	1 Changing Existing Code
	Follow existing code style
	Only change code from other sources when it makes sense

	2 Names
	Good names are clear and meaningful
	Avoid cryptic names
	Use terminology consistently
	Name directories so it’s easy to know what’s in them
	Follow file extension conventions
	Associated source and header file names should match
	File contents should be clear from file name
	File names should not differ only by case
	Namespace name format
	Type name format
	Function name format
	Function names should indicate behavior
	Related functions should have similar names
	Data member and variable name format
	Variable names should indicate type
	Macro and enumeration name format

	3 Directory Organization
	Limit scope of directory contents
	Put files where it’s easy to find them

	4 Header File Organization
	All header file contents should be related
	Include in a header file only what’s needed to compile it
	Use forward declarations when you can
	Organize header file contents for easy understanding
	All function arguments should have names
	Header file layout details

	5 Source File Organization
	Each source file should have an associated header file
	Header file include order should follow rules for header files
	Avoid extraneous header file inclusions
	Function order in source and header files should match
	Source file layout details

	6 Scope
	Use namespaces to avoid name collisions
	Use namespaces to hide non-API code in header files
	Use ‘unnamed’ namespace for hiding code in source files
	Apply the ‘using directive’ carefully
	Use access qualifiers to control class interfaces
	Use ‘friend’ and ‘static’ rarely
	Hide nested classes when possible
	Limit scope of local variables

	7 Code Documentation
	Document only what’s needed
	Documenting new code vs. existing code
	Write clear documentation
	Documentation should be easy to spot
	General Doxygen usage
	Brief vs. detailed comments
	Doxygen comment blocks
	Doxygen inline comments

	Copyright and release statement
	File documentation
	Brief and detailed comments

	Type documentation
	Brief and detailed comments
	Cross-references and caveats

	Function documentation
	Example function documentation
	Brief and detailed comments
	Return values
	Arguments
	Grouping small functions
	Header file vs. source file documentation

	Data member documentation
	Brief and detailed comments
	Grouping data members

	Summary of common Doxygen commands

	8 Design and Implement for Correctness and Robustness
	Keep it simple…
	Avoid global and static data
	Avoid macros and magic numbers for constants
	Avoid issues with compiler-generated class methods
	Rule of three
	Restrict copying of non-copyable resources
	Rely on compiler-generated methods when appropriate
	Functors should always be copyable

	Understand standard rules for compiler-generated methods
	Initializing and copying class members
	Initialize all members at construction
	Know when to use initialization vs. assignment
	Use the copy-and-swap idiom
	Initializing, copying, and inheritance

	Prefer composition to inheritance
	Keep inheritance relationships simple
	Design for/against inheritance
	Use virtual functions responsibly
	Inline functions
	Inline short, simple functions
	Only inline a class constructor when it makes sense
	Do not inline virtual methods

	Function and operator overloading
	There’s a fine line between clever and…
	Overload consistently
	Common operators

	Function arguments
	Consistent argument order makes interfaces easier to use
	Pointer and reference arguments and const
	Always name function arguments

	Function return points
	Proper type usage
	Templates
	Use const to enforce correct usage
	Casts and type conversions
	Avoid C-style casts, const_cast, and reinterpret_cast
	Use the explicit qualifier to avoid unwanted conversions

	Memory management
	Allocate and deallocate memory in the same scope
	Use new/delete consistently

	9 Code Formatting
	Conditional statements and loops
	White space and code alignment
	White space enhances code readability
	Vertical alignment helps to show scope
	Break lines where it makes sense
	Use parentheses for clarity

	10 Common Code Development Macros, Types, etc.
	Unused variables
	Disabling compiler-generated methods
	Conditionally compiled code
	Error handling

	11 Portability, Compilation, and Dependencies
	Portability
	Nothing beyond C++11
	No non-standard language constructs

	Compilation
	Avoid conditional compilation
	The compiler is your friend

	Minimize dependencies on third-party libraries (TPLs)

	References and Useful Resources

	License Info
	Axom License

